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© Symmetric Exclusion processes ( j-SEP)
e SU(2) ferromagnet

© Brownian energy processes (k-BEP)

e SU(1,1) ferromagnet
e The KMP model

© Consequences of duality for transport models
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Exclusion processes j-SEP

State space
ForjeN/2 Q=xN.Q;={0,1,....2}N 5= (m,...,7n)

n"! = config. obtained by removing a particle at i and adding at / J
Generator
N—1
L=Ly+ > L+ Ly
i=1

(Lijig1 D)) = mi(2f — nig)[f(""T) — f()] ~ Bulk
+ (2 — ni)mier [F(™) — £()]
(Lif)(m) = 2jp1(2j — m)[f(n>") — f(n)] ~ Reservoir
+ (2 — 2jp1)m[f(n"°) — f(n)]
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@ If j=1/2then ()0 is the standard boundary driven symmetric
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ni(t) = fia,i(t) with 7,(t) standard SEP
a=1
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@ If j=1/2then ()0 is the standard boundary driven symmetric
exclusion process (SEP).

@ If j > 1/2then (n:)s>0 can be seen as the boundary driven
SEP on a ladder lattice with 2j levels at each site

2
ni(t) = fia,i(t) with 7,(t) standard SEP
a=1

@ If j — oo and p — 0 (with pj finite) then n;/»; — nj™ system of
independent random walkers.
@ If py = pny = p then the invariant measure is

Vi = S Bin(2). )

C. Giardina (TU/e-EURANDOM)



Exclusion processes

SU(2) structure

SU(2) group
R s i J

177

C. Giardina (TU/e-EURANDOM)



Exclusion processes  Br

P, = 20 W] = 2

i Y

Representation
S i) = (2f — nj)lmi + 1)
Ji i) = nilni — 1)
Py = (ni — ) |ni)

C. Giardina (TU/e-EURANDOM)



Exclusion processes  Brow

[Up = [J7, Jif] = —2J°

177

Representation
S i) = (2f — nj)lmi + 1)
Jf!n:) nilni — 1)
i) = (ni = J)lmi)

In a base {|0);, [1),---,|2j)i} we have

0 0 1 =/

+_ | %
Jt = i =

C. Giardina (TU/e-EURANDOM)



Exclusion processes  Brov

) ferromagnet

Quantum spin chain
The j-SEP generator can be read as the SU(2) ferromagnet:
N—1
—LT =H=H;+ Z H,'7,'+1 + Hy

i=1




Exclusion processes  Brov Concl

) ferromagnet

Quantum spin chain
The j-SEP generator can be read as the SU(2) ferromagnet:

N—1
—LT =H=H;+ Z H,'7,'+1 + Hy
=1
@ Buk o
—Hijip1 = 2Ji iy — 2/




Exclusion processes  Bro

SEP and SU 2) ferromagnet

Quantum spin chain
The j-SEP generator can be read as the SU(2) ferromagnet:
N—1
—LT =H=H;+ Z H,'7,'+1 + Hy
=1
@ Buk o
—Hijip1 = 2Ji iy — 2/

= Jf o +JTdE + 20200 — 2

C. Giardina (TU/e-EURANDOM)
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SEP and SU(2) ferromagnet

Quantum spin chain
The j-SEP generator can be read as the SU(2) ferromagnet:
N—1
—LT =H=H;+ Z H,'7,'+1 + Hy
=1
@ Buk o
—Hijip1 = 2Ji iy — 2/

= Jf o +JTdE + 20200 — 2

Note: from the group structure we deduce symmetries
[Houik, J°) =0 [Houk; JT1=0  [Hpuk,J ] =0

C. Giardina (TU/e-EURANDOM)
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SEP and SU(2) ferromagnet

Quantum spin chain
The j-SEP generator can be read as the SU(2) ferromagnet:
N—1
—LT =H=H;+ Z H,'7,'+1 + Hy
i=1
@ Buk L
—Hijip1 = 2Ji iy — 2/

=Jrd +JiJtE

2
i+1 i+1 + 2‘/1'0 /'3—1 —2

Note: from the group structure we deduce symmetries
[Houik, J°) =0 [Houk; JT1=0  [Hpuk,J ] =0

© Reservoir
—Hy = 2jp1(Ji + I — j) + (2 — 2jp1)(Jy — Jf — )

C. Giardina (TU/e-EURANDOM)
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Self-Duality for j-SEP

Theorem
@ The bulk j-SEP is self-dual with self-duality fct.

N
D(n,&) =[] Ditni- &) =
i=1

C. Giardina (TU/e-EURANDOM)
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Self-Duality for j-SEP

Theorem
@ The bulk j-SEP is self-dual with self-duality fct.

HD 77/7§I -

HTZIUI_1 §l+1)
2j(2j —1)- 2/—§/+1)

Sl

C. Giardina (TU/e-EURANDOM)
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Self-Duality for j-SEP

Theorem
@ The bulk j-SEP is self-dual with self-duality fct.

ni(ni —1)- —&i+1)
HD &)= Hzf GG g )

Sl

Q The boundary driven j-SEP is dual to the process
&(t) = (6o(1),&(1), Ens1(1)) with generator
L=L1+ Z,- Li7/+1 + Ly

N
(L)) = &(f(E°) ~ 1) Dm.&) = o2 [ Dilmir &) o

i=1

C. Giardina (TU/e-EURANDOM)
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Proof.
@ Bytheorem (), D;=Q'S
e Similarity H" = Q~"HQ: detailed balance

"
Qi(nisni) = 1(ni)on,my = (nj> Oyt
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Proof.
@ Bytheorem (), D;=Q'S
e Similarity H" = Q~"HQ: detailed balance

"
Qi(nisni) = 1(ni)on,my = (nj> Oyt

o Symmetry [Hpuxk, S] = 0: group structure

+ 2j =&
S =e’ Si(mi, & :( )
© - (m&1) ni—&i
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Proof.
@ Bytheorem (), D;=Q'S
e Similarity H" = Q~"HQ: detailed balance

"
Qi(nisni) = 1(ni)on,my = (nj> Oyt

o Symmetry [Hpuxk, S] = 0: group structure

s—ot = sme=(29)
1 I
e Combining (m)
Di(ni, &) = O/_1(77i,77i)5i(77/’75") = g

(&)

C. Giardina (TU/e-EURANDOM)
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Proof.

@ Bytheorem (), D;=Q'S
e Similarity H" = Q~"HQ: detailed balance

"
Qi(nisni) = 1(ni)on,my = (nj> Oyt

o Symmetry [Hpuxk, S] = 0: group structure
+ 2j =&
Si=e’ = Si i7i:(
(1) ni—&i
e Combining (™
Di(mi, &) = Q7 (mi, i) Simi, &) = g}
(¢)
@ Follows from a direct computation: LyD = DL]
Remark: Boundaries &y and &y, 1 are absorbing!

)

Conclusions

0

C. Giardina (TU/e-EURANDOM)
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Brownian energy process

Definition
For two sites / and j consider the generator L;; : C>°(R?) — C>°(R?)

B 0 \?
(LijF)(x;, %) = <Xiaxj — Xj&x,-) f(xi, X;)

C. Giardina (TU/e-EURANDOM)



Brownian energy processes

Brownlan energy process

Definition
For two sites / and j consider the generator L;; : C>°(R?) — C>°(R?)

B 0 \?
(LijF)(x;, %) = <Xi8)(j — Xj&x,-) f(xi, X;)

If we think of (x;, x;) as velocities, then

@ polar coordinates L. — 372
I7l - 2

005

j

@ generates a Brownian motion of the angle 6; ; = arctan(x;/x;)

@ conserves the total (kinetic) energy r2 =x2+ x

C. Giardina (TU/e-EURANDOM)



Brownian energy processes
Brownian energy process

State space
Q= Xfi1Q; = ]RN J

C. Giardina (TU/e-EURANDOM)



Brownian energy processes
Brownian energy process

State space J

Q= Xfi1Q;:RN9X:(X1,...,XN)
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Brownian energy process

State space

Q= Xfi1Q;:RN9X:(X1,...,XN)

Generator

N—1

L=Li+) L +Ly
P

C. Giardina -EURANDOM)
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Brownian energy process

State space

Q= Xfi1Q;:RN9X:(X1,...,XN)

Generator
N—1
L="L+ Z Lijit1+ Ly
=1

(Lij1H)(x) = x-i—x- 9 2f(x) Bulk
iyi4-1 — ’8x,-+1 i+1 8x,-

C. Giardina (TU/e-EURANDOM)



Introduction  Set-up  Results  Exclusion pr >s  Brownian energy processes  Con juality  Conclusions

Brownian energy process

State space

Q= Xfi1Q;:RN9X:(X1,...,XN)

Generator

N—1

L=Li+) L +Ly
P

(Lij1H)(x) = x-i—x- 9 2f(x) Bulk
iyi4-1 — ’8x,-+1 i+1 8x,-

(LiH)(x) = (T a—z — X 8) f(x) Reservoir
1 = 18x12 5%,

C. Giardina (TU/e-EURANDOM)
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Brownian energy process

State space
Q= Xfi1Q/:RN > X = (X1,...,XN)
Generator
N—1
L=Li+) L +Ly
i=1
(Lij1H)(x) = x-i — X 9 i f(x) Bulk
iyi4-1 — ’8x,-+1 i+1 6x,-
(LiH)(x) = (T a—z — X 8) f(x) Reservoir
! -\ X2 Yox
Equilibrium
If Ty = Ty = T then the stationary measure is vr =N N(O,T)

C. Giardina (TU/e-EURANDOM)



Brownian energy processes

SU(1,1) structure

Definition
1 1 92
+ _ 2 -
=2 " 20
1 B, )
KO = — | x(—
=g <X’ ox 8X,X’>

C. Giardina (TU/e-EURANDOM)
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Brownian energy processes  Cc

U

2
K-o—1 Xi— + — X
! 4 OX; OX; !

SU(1,1) group

[K°, K1 =K+ [K K] =2K?

C. Giardina (TU/e-EURANDOM)
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<XiaXi + 8)(I'Xi>

[K°, K1 =K+ [K K] =2K?

SU(1,1) group

Representation

L1 o _

K? = E(K,-JFK,- +K K = (KP)? KF |k, kz >i= k(k=1)lk, kz)i
In our case Ke|—i=3 (1)) = k=1

C. Giardina (TU/e-EURANDOM)
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BEP and SU(1,1) ferromagnet

Quantum spin chain
The BEP generator can be read as the SU(1,1) ferromagnet:
N—1

—LT=H= Hi + Z H,",'+1 + Hy
=il




Brownian energy processes

BEP and SU(1 ,1) ferromagnet

Quantum spin chain
The BEP generator can be read as the SU(1,1) ferromagnet:
N—1
—LT=H= Hi + Z H,",'+1 + Hy

i—1
@ Bulk

Lo
Hijt1 = —4 <2Ki e Kip1 + 8)

C. Giardina (TU/e-EURANDOM)
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BEP and SU(1,1) fe

Quantum spin chain
The BEP generator can be read as the SU(1,1) ferromagnet:

N—1
—LT=H= Hi + Z H,",'+1 + Hy

i—1
@ Bulk

Lo
Hijt1 = —4 <2Ki- i+1 + 8)

i+1

— _4 (K,.JFK. 8

_ 1
+ KK —2KPKS + )

C. Giardina (TU/e-EURANDOM)
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BEP and SU(1,1) fe

Quantum spin chain
The BEP generator can be read as the SU(1,1) ferromagnet:
N—1
—LT=H= Hi + Z H,",'+1 + Hy

i—1
@ Bulk

Lo
Hiiy1 = —4 <2Ki- i1+ 8)

_ _ 1
= =4 (K/JFKM + KK — 2K K + 8)
@ Reservoir 1

C. Giardina (TU/e-EURANDOM)
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Origin of duality for BEP

Discrete representation
1
Kley = (& + 5)\5/ +1)
K7 1&) = &il&i — 1)
1
KPIE) = (& + 2)I€)
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Introduc Brownian energy processes

Origin of duality for BEP

Discrete representation
1
Kley = (& + 5)\5/ +1)
K7 1&) = &il&i — 1)
1
KPIE) = (& + 2)I€)

In a base {|0);,[1);,...} we have

FNEN
Mo

Nl
Bl

C. Giardina (TU/e-EURANDOM)



Brownian energy processes
Dual process of BEP

State space
Qauar = <L, Q4 = {0,1,2,.. 3N J

C. Giardina (TU/e-EURANDOM)



Brownian energy processes
Dual process of BEP

State space
Qdual—XN Qdual {07172 }N9§:(£17""£N) J
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Brownian energy processes

Dual process of BEP

State space
Qdua/—XN Qdual {01 2,. ..}NBEZ(&,...,EN)

Hamiltonian

.
Mt =4 (’Cﬂcm + KKy — 2K7K 7 + 8)

C. Giardina (TU/e-EURANDOM)
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ual process of BEP

State space
Qdual—XN Qdual {07172 }N9£:(£17"'7£N)

Hamiltonian

.
Hi = —4 (’Cﬂcm + K Ky — 2KPKP 4 + 8)

Generator
(L) = 26i(28i11 + DIFE) = £(€)]
+ (¢ + 1)2€ 4 [f(ET) = £(€)]

C. Giardina (TU/e-EURANDOM)
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Duality for BEP

Theorem

@ The bulk BEP (x(t))¢>0 with generator L = —H? is dual to to the
process (£(t))t=o with generator Lqya = —H},, with duality fct.

2¢;

X
00 = I g =y

i=1

C. Giardina (TU/e-EURANDOM)
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Duality for BEP

Theorem

@ The bulk BEP (x(t))¢>0 with generator L = —H? is dual to to the
process (£(t))t=o with generator Lqya = —H},, with duality fct.

X2§i

N .
:H(zg,l—nu

i=1

© The boundary driven BEP is dual to the process

£(t) = (£o(1), (1), Ensr (1)) with generator
Laual = L1+ Lijiy1 + Ly

—

(L1£)(€) = 264 (F(€1°) — £(€)) D(x,&) = T D(x, &) Ty

C. Giardina (TU/e-EURANDOM)
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Proof.
@ Bytheorem(Il), D=Q 'CS
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Proof.

@ Bytheorem(Il), D=Q 'CS
o Similarity Hf = Q-'HQ: H is self-adjoint = Q = Id

C. Giardina -EURANDOM)
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Proof.
@ Bytheorem(ll), D=Q 'CS
o Similarity Hf = Q-'HQ: H is self-adjoint = Q = Id
e Conjugancy HC = CHqya
It is enough conjugancy of the K? and K7 with a € {+,—, 0}

C. Giardina -EURANDOM)



Introduction  Set-up  Results xclusio Brownian energy processes  Consequences of duality ~ Concl

Proof.
@ Bytheorem(ll), D=Q 'CS
o Similarity Hf = Q-'HQ: H is self-adjoint = Q = Id
e Conjugancy HC = CHqya
It is enough conjugancy of the K? and K7 with a € {+,—, 0}

(X|K* Cilgiy = (x| CiKT|€)

/dy(x,-|K,+|y,-><y,-\C,-|§,-> = (xICIENEICTIE)
&
2 X2§i

. 1 :
FCNE) = (EHg)C0E+) = Cln&) =

C. Giardina (TU/e-EURANDOM)
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Proof.
@ Bytheorem(ll), D=Q 'CS
o Similarity Hf = Q-'HQ: H is self-adjoint = Q = Id
e Conjugancy HC = CHqya
It is enough conjugancy of the K? and K7 with a € {+,—, 0}

(X|K* Cilgiy = (x| CiKT|€)

/dy(x,-|K,+|y,-><y,-\C,-|§,-> = (xICIENEICTIE)
&
2 X2§i

. 1 :
FCNE) = (EHg)C0E+) = Cln&) =

e Symmetry: S = Id

C. Giardina (TU/e-EURANDOM)
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Proof.
@ Bytheorem(ll), D=Q 'CS
o Similarity Hf = Q-'HQ: H is self-adjoint = Q = Id
e Conjugancy HC = CHqya
It is enough conjugancy of the K? and K7 with a € {+,—, 0}

(X|K* Cilgiy = (x| CiKT|€)

/dy(x,-|K,-+|y,-><y,-\C,-|§,-> =Y (xilCilgh gkt 1€)
&
x? 1 X2
5 66, &) = (&+3)C0x. &+1) - = C(6.&) = @5 -1
e Symmetry: S = Id
e Combining: Dj(x;, &) = Ci(X;, &)

O

C. Giardina (TU/e-EURANDOM)
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Generallzatlon of BEP

For k € N/4 we consider the BEP on a ladder lattice with 4k levels
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Generalization of BEP

For k € N/4 we consider the BEP on a ladder lattice with 4k levels
@ Generator

N—1 1 4k
L=Li+) 22 > Liayi+e +Lu
i=1 a,B=1

C. Giardina (TU/e-EURANDOM)



Brownian energy processes

Generallzatlon of BEP

For k € N/4 we consider the BEP on a ladder lattice with 4k levels
@ Generator

N-1 g ak
L=1L +Z4k > Liays.8) +Ln
i=1 a,B=1

9 0\
L. X = (xa—2 —xi15=2") f(x) Buk
(L) (i+1,8)F)(X) = (:, OXis1 ’+1’58x,-a> )

C. Giardina (TU/e-EURANDOM)
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Generalization of BEP

For k € N/4 we consider the BEP on a ladder lattice with 4k levels

@ Generator . o

1
L=Li+) 20 D Liani+1m LN
i=1 a,B=1

(Lijay (i f)(x)= (X _9 X 9 ° f(x) Bulk
(i,a),(i4+1,58) = i 18 i+1,8 OX; o

4k 82 9
(Lifx) = <T1 52~ e 8)(17&) f(x) Reservoir

()!:1 1,&

C. Giardina (TU/e-EURANDOM)
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Generalization of BEP

For k € N/4 we consider the BEP on a ladder lattice with 4k levels

@ Generator . i

1
L =L, +Z4k > Lia)i+1,8) T Ly
i=1 a,f=1

9 0\
L. X = (xa—2 —xi15=2") f(x) Buk
(L) (i+1,8)F)(X) = (:, OXis1 ’+1ﬁ8x,-a> )

4k 82 9
(Lifx) = <T1 52~ e 8)(17&) f(x) Reservoir

()!:1 1,&

o Define new process (2(t))r=0 as z(t) = 32K, x2 (1)

« I,

C. Giardina (TU/e-EURANDOM)
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Generalization of BEP

For k € N/4 we consider the BEP on a ladder lattice with 4k levels

@ Generator . i

1
L =L, +Z4k > Lia)i+1,8) T Ly
i=1 a,f=1

9 0\
L. X = (xa—2 —xi15=2") f(x) Buk
(L) (i+1,8)F)(X) = (:, OXis1 ’+1ﬁ8x,-a> )

4k 82 9
(Lifx) = <T1 52~ e 8)(17&) f(x) Reservoir

()!:1 1,&

@ Define new process (2(t))s=0 as zi(t) = Y acy X2, (1)

e If T; = Ty = T then invariant measure is vy r = ®,-:1X§,k(7')

C. Giardina (TU/e-EURANDOM)



Brownian energy processes
Brownian energy processes k-BEP

State space
Q=N ,Q =RY J
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Brownian energy processes
Brownian energy processes k-BEP

State space
Q:®I/-i1Qi:RﬁBZ:(Z1,...,ZN) J
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Introduction D lesults Brownian energy processes

Brownian energy processes k-BEP

State space
Q:®ﬁ1Q,’:Rﬁ BZ:(Z1,...,ZN)

Generator
N—1
L=1L4+ E Li,i+1 + Ly

i=1




ction Set-up Res DI Brownian energy processes

Brownlan energy processes k-BEP

State space
Q:®ﬁ1Q,’:Rﬁ BZ:(Z1,...,ZN)

Generator
N—1
L=1"Ly+ Z Lijy1+ Ly

i=1

1 ) 9 \? ) )
Lijy = kz,zj <02, 82,~+1> —2(zi — zj41) (62, — 82,-+1> Bulk

C. Giardina (TU/e-EURANDOM)
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Brownian energy processes k-BEP

State space

Q:®ﬁ1Q,’:Rﬁ > Z= (Z1,...,ZN)
Generator
N—1
L=Li+ Y Lip1+Ln
=1
1 B 9 \? ) )
Lijv1 = Ezizj <(9Z, — 32i+1> —2(zi — zj41) (62, — 8Z/+1> Bulk
0 5?2 0
L4 =2Ty | k— + 22— | — 22— R i
i 1 ( a7, + 224 82?) Z4 oz, eservoir

C. Giardina (TU/e-EURANDOM)



Brownian energy processes Co

Hamlltonlan k- BEP

H=3" % (K"K + KKy — 2KPKE +2K2)
I

C. Giardi /e-EURANDOM)
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Hamiltonian k-BEP

Ly - 2
H—Zk(K Kipy + KKy — 2KPKE, + 2K2)
+:ZK’+_
Ko =3 Ko = 2y + 4

0
K° = g K° =z — +4k
) — I,o 'az,-

C. Giardi /e-EURANDOM)
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Hamiltonian k-BEP

1
— + + o 2
HfZE<K Kipy + KKy — 2KPKE, + 2K2)
]
+:ZK+_
_ _ 02 0
:g,(’ﬁa:zlaizlz+4k872l
Klo:ZKfa:z,-a%iJrM

1
Hasar = 3 3 (K774 + K7 Ky — 2KC7KCE, 4 +2K2)

i

C. Giardi /e-EURANDOM)
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Hamiltonian k-BEP

1
— + + o 2
HfZE<K Kipy + KKy — 2KPKE, + 2K2)
]
+:ZK+_
_ _ 02 0
:g,(’ﬁa:zlaizlz+4k872l
Klozz;g?a:z,-a%iJrM

1
Hasar = 3 3 (K774 + K7 Ky — 2KC7KCE, 4 +2K2)
i
KFlg) = (& + 2k)|& + 1)
K71 = &ilgi — 1)
KY€ = (& + k)I€)

C. Giardina -EURANDOM)
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Duality for k-BEP

Theorem

@ The bulk k-BEP (z(t))s>0 with generator L = —H? is dual to to
the process (£(t))t>0 with generator Lyyq = —H ;ua, with duality

fct. N
- T(2k)
_ &i
D(z,¢) = 11 % etk &)

C. Giardina (TU/e-EURANDOM)
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Duality for k-BEP

Theorem

@ The bulk k-BEP (z(t))s>0 with generator L = —H? is dual to to
the process (£(t))t>0 with generator L g,z = —nga, with duality

fet.
N

_ &i r(2k)
P8 =115 5rarr g

© The boundary driven k-BEP is dual to the process

£(t) = (&o(1), £(1), En1(t)) with generator
Loual = L1+ 2 Lijiy1 + Ly

— —

(L1F)(E) = Bke(F(€"0) — £(€)) D(x,&) = T{D(x, &) Ty

C. Giardina (TU/e-EURANDOM)



Brownian energy processes
The KMP limit

KMP model

Observables: Energies at each site e = (e1,...,¢epN) € Rﬂ
Dynamics: Select a pair of lattices (/, ) and uniformly redistribute the

energy under the constraint of conserving ¢; + ;.

C. Giardina (TU/e-EURANDOM)
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The KMP limit

KMP model

Observables: Energies at each site e = (e1,...,¢epN) € Rﬂ
Dynamics: Select a pair of lattices (/, ) and uniformly redistribute the
energy under the constraint of conserving ¢; + ;.

Instantaneous thermalization limit
Let (zi(t), z(t)) be the process with generator

L,'J' = ZjZj (8,- = 8/')2 = 2k(Z,' = Z/') (8,‘ — 8,-)
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The KMP limit

KMP model

Observables: Energies at each site e = (e1,...,¢epN) € Rﬂ
Dynamics: Select a pair of lattices (/, ) and uniformly redistribute the
energy under the constraint of conserving ¢; + ;.

Instantaneous thermalization limit
Let (zi(t), z(t)) be the process with generator

L,'J' = ZjZj (8,- = 8/')2 = 2k(Z,' = Z/') (8,‘ — 8,-)

Define  (L[%f)(z;,z) = Jim (e'tif)(z, z) — f(zi, ;)
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The KMP limit

KMP model

Observables: Energies at each site e = (e1,...,¢epN) € Rﬂ
Dynamics: Select a pair of lattices (/, ) and uniformly redistribute the
energy under the constraint of conserving ¢; + ;.

Instantaneous thermalization limit
Let (zi(t), z(t)) be the process with generator

L,'J' = ZjZj (8,- = 8/')2 = 2k(Z,' = Z/') (8,‘ — 8,-)

Define  (L[%f)(z;,z) = Jim (e'tif)(z, z) — f(zi, ;)

= lim B, o) (f(xi(6), %(1))) — £(zi, Z))
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The KMP limit

KMP model

Observables: Energies at each site e = (e1,...,¢epN) € Rﬂ
Dynamics: Select a pair of lattices (/, ) and uniformly redistribute the
energy under the constraint of conserving ¢; + ;.

Instantaneous thermalization limit
Let (zi(t), z(t)) be the process with generator

L,'J' = ZjZj (8,- = 8/')2 = 2k(Z,' = Z/') (8,‘ — 8,-)

Define  (L[%f)(z;,z) = Jim (e'tif)(z, z) — f(zi, ;)

= lim B, o) (f(xi(6), %(1))) — £(zi, Z))

Claim:  L{7 = LM for k = 1/2
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The KMP limit

Lemma (stationary measure)
Let (zi(t), z(t)) be the Markov process with generator

L,'J = ZjZj (8,- = 8/-)2 = 2k(Z,' = Zj) (8,' — 8/')

and initial condition 7i(0) + z;(0) = E. Then in the limit t — oo we
have (zi(t), (1)) 2 (Ee, E5¢) where

fe) = Ck(E? — e®)?~' for —E<e<E
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The KMP limit

Lemma (stationary measure)
Let (zi(t), z(t)) be the Markov process with generator

L,'J' = ZjZj (8,- = 8/-)2 = ZK(Z,' = Z/') (8,‘ — 8,-)

and initial condition 7i(0) + z;(0) = E. Then in the limit t — oo we
have (zi(t), (1)) 2 (Ee, E5¢) where

fe) = Ck(E? — e®)?~' for —E<e<E

Proof.
Define (E(t), e(1)) = (zi() + z(1), zi(t) — z(1).
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The KMP I|m|t

Lemma (stationary measure)
Let (zi(t), z(t)) be the Markov process with generator

L,'J' = ZjZj (8,- = 8/-)2 = ZK(Z,' = Z/') (8,‘ — 8,-)

and initial condition 7i(0) + z;(0) = E. Then in the limit t — oo we
have (zi(t), (1)) 2 (Ee, E5¢) where

fe) = Ck(E? — e®)?~' for —E<e<E

Proof.
Define (E(t), e(t)) = (z;(t) + z(t), zi(t) — z;(t)). Then

0 9
= (E%2— &2 -
Lij=(E“—e )862 4k €6
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Consequences of duality
How to use duality

Duality reduces the computation of n-point correlation functions for a
boundary driven process to the computation of absorbtion probabilities
for n (interacting) dual random walkers.
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How to use duality

Duality reduces the computation of n-point correlation functions for a
boundary driven process to the computation of absorbtion probabilities
for n (interacting) dual random walkers.

Proposition

Let €| = Zf\; &; be the total number of dual walkers.
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How to use duality

Duality reduces the computation of n-point correlation functions for a
boundary driven process to the computation of absorbtion probabilities
for n (interacting) dual random walkers.

Proposition

Let €| = Zf\; &; be the total number of dual walkers.
@ For the boundary driven j-SEP

E(D(n,€))= Y ik P(éo(o0) = @ Enri(o0) = b)

a,b:a+b=|¢|
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How to use duality

Duality reduces the computation of n-point correlation functions for a
boundary driven process to the computation of absorbtion probabilities
for n (interacting) dual random walkers.

Proposition
Let €| = Zf\; &; be the total number of dual walkers.
@ For the boundary driven j-SEP

E(Dm,E)= Y. iR Péo(o0) = & Eny1(o0) = b)
a,b:a+b=|¢|

@ For the boundary driven k-BEP

E(D(x,€)= Y TiT{P(G(c0) = a&nri(o0) = b)
a,b:a+b=|¢|
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Proof.
Let v,, ,, = v the stationary measure of the j-SEP (1¢)¢>o.

—

E(D(n,€))
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Proof.
Let v,, ,, = v the stationary measure of the j-SEP (1¢)¢>o.

— —

E(D(n,£)) = lim »  E,(D(nt,)) v(n)

t—o0

nes2
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Proof.
Let v,, ,, = v the stationary measure of the j-SEP (1¢)¢>o.

—

E(D(n,€)) = lim > Ey(D(m,£)) v(n)

t—o0

nes2

= lim Ee(D(n.£)) v(n)

neQ
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Proof.
Let v,, ,, = v the stationary measure of the j-SEP (1¢)¢>o.

E(D(n,€)) = lim > Ey(D(m.£)) v(n)

neR
= " Jim E¢(D(n.&) v(n)
neQ
ni(ni — (i =&+ 1) EN+1
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Proof.
Let v,, ,, = v the stationary measure of the j-SEP (1¢)¢>o.

E(D(n,€)) = lim > Ey(D(m.£)) v(n)

= lim Ee(D(n.£)) v(n)

neQ
77/771_ (ni_§i+1) £N1>
Use = - &
< “IIaaf1 @—g+1) N

=> " ) PR P(éo(o0) = @ Engr(00) = b) v(n)

ne a,b:a+b=|¢]

= > PR P(¢o(o0) = & Ens1(00) = b)

a,b:a+b=|¢|
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DenS|ty/Energy proflle

If € = 0,...,0,1,0,...,0) = 1 walker (X;)t>o with Xo =i
site i
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Density/Energy profile

f€=(0,...,0,1,0,...,0) = 1 walker (X;)so With Xo = i

site i
@ Forj-SEP  D(n,&) =%
E(Z} = p1 Pi(Xoo = 0) + pn Pi(Xoo = N+ 1)

P
— 1_¥ + #
= N+1)  PNANTT
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Density/Energy profile

f€=(0,...,0,1,0,...,0) = 1 walker (X;)so With Xo = i

site i
@ Forj-SEP  D(n,&) =%
E(Z} — 1 Pi(Xoo = 0) 4 oy Bi(Xoo = N+ 1)

P
- N+1) PNANTT

x2

@ For k-BEP  D(x,¢) = 5

E(5) (1o e (o
4k | — ! N + 1 NAN+1
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Density/Energy correlation

If€=(0,...,0,1,0,...,0,1,0,...,0) = 2 walkers (X, Yt)r>0 With (Xo, Yo) = (/,/)
sitei  site! /
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Density/Energy correlation

If€=(0,...,0,1,0,...,0,1,0,...,0) = 2walkers (X;, Y;)=0 With (Xo, Yo) = (i, /)
sitei  site! /

@ For j-SEP D(n,§):g—}g—}

E(%%):P$Pi,/(Xoo:O,Yoozo)'*'P?vPi,/(X = (AR ET AR

= p1pN (P i(Xoo =0, Yoo = N+ 1) + P j(Xoo = N+ 1, Yoo =0))

C. Giardi /e-EURANDOM)



Introduction  Set-up  Results  Exclusion proc s Brownian energy pi Consequences of duality ~ Conclusions

Density/Energy correlation

If€=(0,...,0,1,0,...,0,1,0,...,0) = 2walkers (X, Y;);>0 With (Xo, Yo) = (i, )
sitei  site! /
Q Forj-SEP  D(n,&) = 4%

E(%%) =2 P (Xoo =0, Yoo = 0) + o5 P; /(Koo = N+ 1, Yoo = N+ 1)

= p1AN (Pii(Xoo =0, Yoo = N+ 1) + P j(Xoo = N+ 1, Yoo = 0))

mom\ _ 2N=0,
E <21Y 2/) — N3 (p1 pN)
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If€=(0,...,0,1,0,...,0,1,0,...,0) = 2walkers (X, Y;);>0 With (Xo, Yo) = (i, )
sitei  site! /
Q Forj-SEP  D(n,&) = 4%

E(%%) =2 P (Xoo =0, Yoo = 0) + o5 P; /(Koo = N+ 1, Yoo = N+ 1)

=pipN (Pij(Xoo =0, Yoo = N+ 1)+ P j(Xoo = N+ 1, Yoo =0))

ni om\ _ 2i(N—1)
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@ Duality Theorems
e Relation to symmetry
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e Relation to symmetry

@ Application to transport model

e “Fermionic” model: j-SEP
@ “Bosonic” model: k-BEP
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Conclu3|ons

@ Duality Theorems
e Relation to symmetry

@ Application to transport model

e “Fermionic” model: j-SEP
@ “Bosonic” model: k-BEP

© Long-range correlations
With0<y,'<y/<1, y,-:limNi/N,y,:IimN//N

Mi/N _TI/N . .
N'Tlo NIE< T ) —2y;,(1 = y))(p1 — pn)?

. Xi2/N XIZ/N 2
A NE i gk | = i =T = Tw)
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