Aspects of Kicked Quantum Dynamics

Italo Guarneri

August 28, 2008

Kicked Hamiltonians

$$
e^{-\frac{i}{\hbar} t(\hat{T}+\hat{V})}=\lim _{N \rightarrow \infty, \tau \rightarrow 0, N \tau=t}\left(e^{-\frac{i}{\hbar} \tau \hat{T}} e^{-\frac{i}{\hbar} \tau \hat{V}}\right)^{N}
$$

For fixed N, τ, the rhs is the propagator from time $t=0_{-}$to time $t=N \tau_{-}$of the Kicked Hamiltonian :

$$
\hat{H}(t)=\hat{T}+\tau \hat{V} \sum_{n \in \mathbb{Z}} \delta(t-n \tau)
$$

The kicked dynamics may be drastically different from the dynamics which are generated by $\hat{T}+\hat{V}$. In the 1-freedom case, the latter are classically integrable, but the former have, generically, a mixed phase space.
Path integrals for kicked dynamics are ordinary N -fold integrals.

Instances of Kicked Dynamics

$(\hat{X}, \hat{P}$: canonical position \& momentum operators for a point particle moving in a line)

Pendulum \rightarrow Kicked Rotor

$$
\hat{T}=\frac{1}{2} \hat{P}^{2}, \hat{V}=\mu \cos (\hat{X})
$$

Harper \rightarrow "Kicked Harper"

$$
\hat{T}=\lambda \cos (\hat{P}), \hat{V}=\mu \cos (\hat{X})
$$

Wannier-Stark \rightarrow Kicked Accelerator

$$
\hat{T}=\frac{1}{2} \hat{P}^{2}+\eta \hat{X}, \hat{V}=\mu \cos (\hat{X})
$$

From Atoms to Rotors

In experiments, atoms move in (approximately) straight lines. However, the kicking potential is periodic in space.
Quasi-momentum is then conserved. If the spatial period is 2π, then q.mom. $=$ fractional part of momentum $:=\beta$ and the Brillouin zone is $\mathbb{B}^{(\mathrm{P})}=[0,1[$.

Bloch theory

$$
L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{B}^{(\mathrm{P})}\right) \otimes L^{2}(\mathbb{T}) \quad, \quad \hat{U}=\int_{\mathbb{B}^{(P)}}^{\oplus} d \beta \hat{U}_{\beta}
$$

Each \hat{U}_{β} formally defines a rotor's dynamics. It is obtained by the replacement $X \rightarrow \theta:=X \bmod (2 \pi), \hat{P} \rightarrow-i \partial_{\vartheta}+\beta$

Example

Kicked Atom : $\hat{U}=e^{-i \mu \cos (\hat{X})} e^{-i \tau \hat{P}^{2} / 2}$
Kicked Rotor $\hat{U}_{\beta}=e^{-i \mu \cos (\theta)} e^{-i \tau\left(-i \partial_{\theta}+\beta\right)^{2} / 2}$

KR Resonances

A KR resonance is said to occur whenever \hat{U}_{β} commutes with a momentum translation \hat{T}^{ℓ} (ℓ a strictly positive integer), where $\hat{T}: \psi(\theta) \rightarrow e^{i \theta} \psi(\theta)$. This happens if β is rational and τ is commensurate to 2π; the order of a resonance is the least $\ell>0$ such that \hat{T}^{ℓ} commutes with \hat{U}_{β}.

Proposition

(Izrailev, Shepelyansky 1980; Dana, Dorofeev 06) \hat{U}_{β} commutes with \hat{T}^{ℓ} if, and only if, (i) $\tau=2 \pi p / q$ with p, q coprime integers, (ii) $\ell=m q$ for some integer m, (iii) $\beta=\nu / m p+m q / 2 \bmod (1)$, with ν an arbitrary integer.

Resonances with $m=1$ and $\ell=q$ are termed primary . At resonances, "Quasi-Position" ϑ is conserved: for primary resonances, $\vartheta \equiv \theta \bmod 2 \pi / q$ and $\vartheta \in \mathbb{B}_{q}^{(\mathrm{x})} \equiv[0,2 \pi / q[$.

" θ changes by multiples of $2 \pi / q$ "

Theorem

(Izrailev, Shepelyansky 1980) Identify $L^{2}(\mathbb{T})$ and $L^{2}\left(\mathbb{B}_{q}^{(\mathrm{x})}\right) \otimes \mathbb{C}^{q}$ through $\psi(\theta) \rightleftarrows\{\psi(\vartheta+2 \pi n / q)\}_{n=1, \ldots, q}$. Then at a primary resonance with $\tau=2 \pi p / q$ and $\beta=\beta_{r}$,

$$
\hat{U}_{\beta_{r}}=\int_{\mathbb{B}_{q}^{(X)}}^{\oplus} d \vartheta \hat{\mathfrak{X}}\left(\beta_{r}, \mu, \vartheta\right)
$$

where $\hat{\mathfrak{X}}\left(\beta_{r}, \mu\right):[0,2 \pi] \rightarrow \mathbb{U}(q)$ is defined by :

$$
\begin{gather*}
\mathfrak{X}_{j k}\left(\beta_{r}, \mu, \vartheta\right)=e^{-i \mu \cos (\vartheta+2 \pi j / q)} G_{j k}\left(p, q, \beta_{r}\right) \tag{1}\\
G_{j k}\left(p, q, \beta_{r}\right)=\frac{1}{q} \sum_{l=0}^{q-1} e^{-\pi i p\left(I+\beta_{r}\right)^{2} / q} e^{2 \pi i(j-k) / / q} . \tag{2}
\end{gather*}
$$

Bands

Figure: Eigenangles vs $\theta=q \vartheta ; q=7, p=2, \mu=3$.

Proposition

(IG 08) If $\mu>0$ then at primary resonances each eigenvalue w_{j} $(j=1, \ldots, q)$ of $\hat{\mathfrak{X}}(\beta, \mu, \vartheta)$ is a nonconstant analytic function of $\exp (i \vartheta)$. Hence, \hat{U}_{β} has a pure AC spectrum, and the rotor's energy increases quadratically in time (ballistic transport).

Bandwidths I

Eigenvalues of free resonant rotation ($\mu=0, \tau=2 \pi p / q, \beta=\beta_{r}$)

$$
a_{j}=e^{-i \pi p\left(j+\beta_{r}\right)^{2} / q}, j=1, \ldots, q .
$$

always degenerate to various extent. Easiest case: $\beta_{r}=1 / 2$, and q odd $\Rightarrow a_{j}=a_{q-j+1}$ for all $1 \leq j \leq q$. All eigenvalues a_{j} are degenerate, except one. q odd and prime \Rightarrow multiplicity $=2$.

Bandwidths II

Theorem

(IG 08) If $q>2$ is prime, p is prime to q, and $\beta=1 / 2$, then, asymptotically as $\mu \rightarrow 0$,

$$
\begin{equation*}
\frac{d w_{j}}{d \vartheta} \sim \mu^{\alpha_{j}} s_{j}(p, q) \sin (\vartheta) \quad, \quad \alpha_{j}=\max \{2 j-1, q-2 j+1\} \tag{3}
\end{equation*}
$$

The coefficients s_{j} are exponentially small at large q :

$$
\begin{equation*}
\left|s_{j}(p, q)\right| \lesssim e^{-q A_{j}} \quad \text { where } A_{j}=\gamma_{j}+O\left(q^{-1 / 2} \log ^{3 / 2}(q)\right) \tag{4}
\end{equation*}
$$

The numbers γ_{j} increase with j from $\gamma_{1} \geq 0.001$ to $\gamma_{(q+1) / 2} \geq 0.01$.

Kicked Accelerator.

$$
\hat{U}=e^{-i \mu \cos (\hat{X})} e^{-i\left(\tau \hat{P}^{2} / 2+\eta \hat{X}\right)}
$$

translation invariance recovered via $\psi(X, t) \rightarrow \psi(X, t) e^{-i t \eta X}$ ("Falling frame"). Rotor Evolution from t-th kick to $t+1$-th kick at quasi-momentum β :

$$
\begin{gather*}
\hat{U}_{\beta, t}=e^{-i \mu \cos (\theta)} e^{-i \frac{\tau}{2}\left(-i \partial_{\theta}+\phi_{t}\right)^{2}} \\
\phi_{t}=\beta+\frac{\eta}{2}+\eta t \tag{5}
\end{gather*}
$$

The Problem of Dynamical Localization
For $\psi \in \mathcal{H}_{1}$ denote $\psi(t)=\hat{U}_{\beta, t} \hat{U}_{\beta, t-1} \ldots \hat{U}_{\beta, 0} \psi$. Is $\|\psi(t)\|_{\mathcal{H}_{1}}$ bounded in time?

Destruction of localization

($\eta \tau / 2 \pi$ irrational)

η increases through ■ ■. Dashed lines: linear and quadratic growth.

Ballistic growth at intermediate times is due to Quantum Accelerator modes

Quantum Accelerator Modes

QAMs were first discovered in experiments at Oxford. There, η is gravity.
M.K. Oberthaler, R.M. Godun, M.B.
d'Arcy, G.S. Summy and K. Burnett, PRL
83, 4447, (1999)

Pseudoclassical Action

Near Resonance: $\tau=2 \pi \frac{p}{q}+\epsilon$

$$
\begin{array}{r}
\hat{U}_{t} \psi(\theta)=\sum_{s=0}^{q-1} G_{s} e^{-i \frac{\epsilon}{2}\left(-i \partial_{\theta}+\beta\right)^{2}} \psi\left(\theta-2 \pi s / q-\tau \phi_{t}\right)= \\
\frac{1}{\sqrt{2 \pi i \epsilon}} \sum_{m \in \mathbb{Z}} \sum_{s=0}^{q-1} G_{s} \int_{0}^{2 \pi} d \theta^{\prime} e^{-\frac{i}{\epsilon} S\left(\theta, \theta^{\prime}, s, m, t\right)} \psi\left(\theta^{\prime}\right)
\end{array}
$$

Action $(\tilde{k}:=\epsilon k)$:

$$
S\left(\theta, \theta^{\prime}, s, m, t\right)=-\tilde{k} \cos (\theta)+\frac{1}{2}\left(\theta-\theta^{\prime}-2 \pi s / q-2 \pi m-\tau \phi_{t}\right)^{2}
$$

Propagation over t kicks: sum over paths. Each path is specified by $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{t}\right),\left(m_{0}, \ldots, m_{t}\right),\left(s_{0}, \ldots, s_{t}\right)$.

Pseudoclassical Asymptotics

$$
\epsilon \rightarrow 0 ; k \rightarrow \infty ; \tilde{k}=k \epsilon=\text { const. }
$$

Stationary Phase selects paths with $\left(m_{0}, \ldots, m_{t}\right)$ and $\left(s_{0}, \ldots, s_{t}\right)$ arbitrary, and rays $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{t}\right)$ that obey:

$$
\begin{gathered}
\theta_{t+1}=\theta_{t}+I_{t}+\tau \phi_{t}+2 \pi s_{t} / q \bmod 2 \pi, \\
I_{t+1}=I_{t}+\tilde{k} \sin \left(\theta_{t+1}\right) .
\end{gathered}
$$

$q=1$: the Pseudoclassical Limit

S Fishman, IG, L Rebuzzini PRL 89 (2002) 0841011; J Stat Phys 110 (2003) 911; A
Buchleitner, MB d'Arcy, S Fishman, SA Gardiner, IG, ZY Ma, L Rebuzzini and GS Summy,
PRL 96 (2006) 164101
Multiples of $2 \pi / q$ drop out. Time dependence is removed by changing variable to:

$$
J_{t}=I_{t}+\frac{\eta}{2}+\delta \beta+\tau \eta t
$$

(Difference linearly grows with time)

$$
\begin{gathered}
J_{t+1}=J_{t}+\tau \eta+\tilde{k} \sin \left(\theta_{t+1}\right) \\
\theta_{t+1}=\theta_{t}+J_{t}
\end{gathered}
$$

Rays are trajectories of a classical dynamical system on $\mathbb{T} \times \mathbb{R}$. Stable Periodic Orbits of the map on $\mathbb{T} \times \mathbb{T} \leadsto$ Stable Accelerating Rays \rightsquigarrow Quantum Accelerator Modes.

$q>1$: Near Higher-Order Resonances

IG, L Rebuzzini PRL 100 (2008) 234103

$$
\begin{gathered}
J_{t+1}=J_{t}+\tau \eta+\tilde{k} \sin \left(\theta_{t+1}\right)+\delta_{t} \\
\theta_{t+1}=\theta_{t}+J_{t} \\
\delta_{t}=\frac{2 \pi}{q}\left(s_{t+1}-s_{t}\right) .
\end{gathered}
$$

Rays are not trajectories of a unique classical system anymore.
There is a ray for each choice of an integer string $\mathbf{s}:=\left(s_{0}, \ldots, s_{t}\right)$: so rays exponentially proliferate with the number t of kicks. Each ray contributes an amplitude:

$$
\frac{1}{\sqrt{q^{t} \epsilon\left|\operatorname{det}\left(\mathfrak{M}_{t}\right)\right|}} e^{\frac{i}{\epsilon} s_{\mathrm{s}, \mathrm{~m}}+i \Phi_{\mathrm{s}, \mathrm{~m}}} .
$$

Stable Rays?

\mathfrak{M}_{t} is the stability matrix :

$$
\mathfrak{M}_{t}=\left|\begin{array}{cccccc}
2+\tilde{k} \cos \left(\theta_{0}\right) & -1 & 0 & \ldots & \ldots & 0 \\
-1 & 2+\tilde{k} \cos \left(\theta_{1}\right) & -1 & 0 & \cdots & 0 \\
0 & -1 & 2+\tilde{k} \cos \left(\theta_{2}\right) & -1 & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & -1 & 2+\tilde{k} \cos \left(\theta_{t-1}\right) & -1 \\
0 & 0 & \cdots & \cdots & -1 & 2+\tilde{k} \cos \left(\theta_{t}\right)
\end{array}\right|
$$

Herbert-Jones-Thouless formula:

$$
\log (|\operatorname{det}(\mathfrak{M})|)=t \int d n(E) \log (|E|)=t \times \text { Lyapunov exponent }
$$

As t increases, most sequences δ_{t} are random and so are $\theta_{t}: \Rightarrow$ LE positive (localization) \Rightarrow Each such ray yields an exponentially small contribution.

Stable Rays

Distinguished individual contributions from rays, whose matrices \mathfrak{M} have extended states.

How to find stable rays

IG, L Rebuzzini PRL 100 (2008) 234103

$$
\begin{gathered}
J_{t+1}=J_{t}+\tau \eta+\tilde{k} \sin \left(\theta_{t+1}\right)+\delta_{t} \\
\theta_{t+1}=\theta_{t}+J_{t} \\
\delta_{t}=\frac{2 \pi}{q}\left(s_{t+1}-s_{t}\right)
\end{gathered}
$$

whenever δ_{t} is a periodic sequence of period T, T-fold iteration of the above equations defines a dynamical system on the 2-torus.
Each stable periodic orbit of that system defines a stable ray that gives rise to an accelerator mode.

Acceleration

$$
\frac{1}{\epsilon}\left\{\frac{2 \pi}{T} \frac{\mathfrak{j}}{\mathfrak{p}}-\tau \eta-\frac{1}{T} \sum_{t=0}^{T-1} \delta_{t}\right\}
$$

Summary

Kicked dynamics in gravity:

- Quantum Accelerator Modes exist near resonances of arbitrary order;
- they are exposed by small- ϵ-asymptotics, which is similar in nature to quasi-classical approximation (short-wave asymptotics);
- They are associated with stable periodic orbits of :
- a single classical dynamical system ("pseudoclassical limit") in the "spinless" case $q=1$;
- a infinite hierarchy of classical dynamical systems in the case $q>1$. No pseudoclassical limit proper exists in this case.
Partial similarity to the case of multi-component wave equations : Littlejohn \& Flynn 1991.

