Aspects of Kicked Quantum Dynamics

Italo Guarneri

August 28, 2008

Center for Nonlinear and Complex Systems - Universita' dell'Insubria a Como

Kicked Hamiltonians

$$e^{-\frac{i}{\hbar}t(\hat{T}+\hat{V})} = \lim_{N \to \infty, \tau \to 0, N\tau = t} \left(e^{-\frac{i}{\hbar}\tau\hat{T}} e^{-\frac{i}{\hbar}\tau\hat{V}} \right)^{\Lambda}$$

For fixed N, τ , the rhs is the propagator from time $t = 0_{-}$ to time $t = N\tau_{-}$ of the Kicked Hamiltonian :

$$\hat{H}(t) = \hat{T} + \tau \hat{V} \sum_{n \in \mathbb{Z}} \delta(t - n\tau)$$

The kicked dynamics may be drastically different from the dynamics which are generated by $\hat{T} + \hat{V}$. In the 1-freedom case, the latter are classically integrable , but the former have , generically, a mixed phase space.

Path integrals for kicked dynamics are ordinary N-fold integrals.

Instances of Kicked Dynamics

 $(\hat{X}, \hat{P}:$ canonical position & momentum operators for a point particle moving in a line)

 $Pendulum \rightarrow Kicked \ Rotor$

$$\hat{\mathcal{T}}=rac{1}{2}\hat{\mathcal{P}}^2\;,\;\hat{\mathcal{V}}=\mu\cos(\hat{X})$$

Harper \rightarrow "Kicked Harper"

$$\hat{T} = \lambda \cos(\hat{P}) , \ \hat{V} = \mu \cos(\hat{X})$$

Wannier-Stark \rightarrow Kicked Accelerator

$$\hat{T} = rac{1}{2}\hat{P}^2 + \eta\hat{X} \;,\; \hat{V} = \mu\cos(\hat{X})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

From Atoms to Rotors

In experiments, atoms move in (approximately) straight lines. However, the kicking potential is periodic in space. Quasi-momentum is then conserved. If the spatial period is 2π , then q.mom. = fractional part of momentum := β and the Brillouin zone is $\mathbb{B}^{(\mathrm{P})} = [0, 1[$.

Bloch theory

$$L^2(\mathbb{R})\simeq L^2(\mathbb{B}^{(\mathrm{P})})\otimes L^2(\mathbb{T}) \ , \ \hat{U}\ =\ \int_{\mathbb{B}^{(\mathrm{P})}}^\oplus deta\ \hat{U}_{\mu}$$

Each \hat{U}_{β} formally defines a rotor's dynamics. It is obtained by the replacement $X \rightarrow \theta := X \mod(2\pi)$, $\hat{P} \rightarrow -i\partial_{\vartheta} + \beta$

Example

Kicked Atom :
$$\hat{U} = e^{-i\mu\cos(\hat{X})}e^{-i\tau\hat{P}^2/2}$$

Kicked Rotor $\hat{U}_{\beta} = e^{-i\mu\cos(\theta)}e^{-i\tau(-i\partial_{\theta}+\beta)^2/2}$

KR Resonances

A KR resonance is said to occur whenever \hat{U}_{β} commutes with a momentum translation \hat{T}^{ℓ} (ℓ a strictly positive integer), where $\hat{T}: \psi(\theta) \rightarrow e^{i\theta}\psi(\theta)$. This happens if β is rational and τ is commensurate to 2π ; the order of a resonance is the least $\ell > 0$ such that \hat{T}^{ℓ} commutes with \hat{U}_{β} .

Proposition

(Izrailev, Shepelyansky 1980; Dana, Dorofeev 06) \hat{U}_{β} commutes with \hat{T}^{ℓ} if, and only if, (i) $\tau = 2\pi p/q$ with p, q coprime integers, (ii) $\ell = mq$ for some integer m, (iii) $\beta = \nu/mp + mq/2 \mod(1)$, with ν an arbitrary integer.

Resonances with m = 1 and $\ell = q$ are termed primary . At resonances, "Quasi-Position" ϑ is conserved: for primary resonances, $\vartheta \equiv \theta \mod 2\pi/q$ and $\vartheta \in \mathbb{B}_q^{(\mathrm{X})} \equiv [0, 2\pi/q]$.

"heta changes by multiples of $2\pi/q$ "

Theorem

(Izrailev, Shepelyansky 1980) Identify $L^2(\mathbb{T})$ and $L^2(\mathbb{B}_q^{(\mathrm{X})}) \otimes \mathbb{C}^q$ through $\psi(\theta) \rightleftharpoons \{\psi(\vartheta + 2\pi n/q)\}_{n=1,...,q}$. Then at a primary resonance with $\tau = 2\pi p/q$ and $\beta = \beta_r$,

$$\hat{U}_{eta_r} \;=\; \int_{\mathbb{B}_q^{(\mathrm{X})}}^\oplus dartheta \; \hat{\mathfrak{X}}(eta_r,\mu,artheta) \;,$$

where $\hat{\mathfrak{X}}(eta_r,\mu):[0,2\pi]
ightarrow \mathbb{U}(q)$ is defined by :

$$\mathfrak{X}_{jk}(\beta_r,\mu,\vartheta) = e^{-i\mu\cos(\vartheta+2\pi j/q)} \mathcal{G}_{jk}(p,q,\beta_r) , \qquad (1)$$

$$G_{jk}(p,q,\beta_r) = \frac{1}{q} \sum_{l=0}^{q-1} e^{-\pi i p (l+\beta_r)^2/q} e^{2\pi i (j-k)l/q} .$$
 (2)

Kicked Dynamics	KK Resonances	Accelerator Modes.	r seudo-quasi-classics.
Bands			
	3		

Figure: Eigenangles vs $\theta = q\vartheta$; q = 7, p = 2, $\mu = 3$.

Proposition

(IG 08) If $\mu > 0$ then at primary resonances each eigenvalue w_j (j = 1, ..., q) of $\hat{\mathfrak{X}}(\beta, \mu, \vartheta)$ is a nonconstant analytic function of $\exp(i\vartheta)$. Hence, \hat{U}_{β} has a pure AC spectrum, and the rotor's energy increases quadratically in time (ballistic transport).

Kicked Dynamics	KR Resonances	Accelerator Modes.	Pseudo-quasi-classics.
Bandwidths I			

Eigenvalues of free resonant rotation ($\mu = 0$, $\tau = 2\pi p/q$, $\beta = \beta_r$)

$$a_j = e^{-i\pi p(j+\beta_r)^2/q}$$
, $j = 1, ..., q$.

always degenerate to various extent. Easiest case: $\beta_r = 1/2$, and $q \text{ odd} \Rightarrow a_j = a_{q-j+1}$ for all $1 \le j \le q$. All eigenvalues a_j are degenerate, except one.

q odd and prime \Rightarrow multiplicity = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bandwidths II

Theorem

(IG 08) If q > 2 is prime, p is prime to q, and $\beta = 1/2$, then, asymptotically as $\mu \rightarrow 0$,

$$\frac{dw_j}{d\vartheta} \sim \mu^{\alpha_j} s_j(p,q) \sin(\vartheta) \quad , \quad \alpha_j = \max\{2j-1, q-2j+1\} \; , \; (3)$$

The coefficients s_j are exponentially small at large q:

$$|s_j(p,q)| \lesssim e^{-qA_j}$$
 where $A_j = \gamma_j + O(q^{-1/2}\log^{3/2}(q))$. (4)
The numbers γ_j increase with j from $\gamma_1 \ge 0.001$ to
 $\gamma_{(q+1)/2} \ge 0.01$.

Kicked Accelerator.

$$\hat{U} = e^{-i\mu\cos(\hat{X})}e^{-i(\tau\hat{P}^2/2+\eta\hat{X})}$$

translation invariance recovered via $\psi(X, t) \rightarrow \psi(X, t)e^{-it\eta X}$ ("Falling frame"). Rotor Evolution from *t*-th kick to t + 1-th kick at quasi-momentum β :

$$\hat{U}_{\beta,t} = e^{-i\mu\cos(\theta)}e^{-i\frac{\tau}{2}(-i\partial_{\theta}+\phi_{t})^{2}}$$

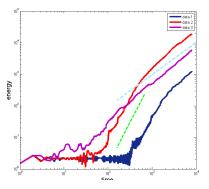
$$\phi_{t} = \beta + \frac{\eta}{2} + \eta t .$$
(5)

The Problem of Dynamical Localization For $\psi \in \mathcal{H}_1$ denote $\psi(t) = \hat{U}_{\beta,t} \hat{U}_{\beta,t-1} \dots \hat{U}_{\beta,0} \psi$. Is $||\psi(t)||_{\mathcal{H}_1}$ bounded in time?

Destruction of localization

 $(\eta \tau/2\pi \text{ irrational})$

 η increases through \blacksquare \blacksquare . Dashed lines: linear and quadratic growth.



Ballistic growth at intermediate times is due to Quantum Accelerator modes

Accelerator Modes.

Pseudo-quasi-classics.

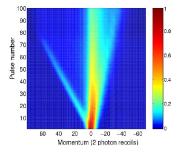
Quantum Accelerator Modes

QAMs were first discovered in experiments at Oxford. There, η is gravity.

M.K. Oberthaler, R.M. Godun, M.B.

d'Arcy, G.S. Summy and K. Burnett, PRL

83, 4447, (1999)



Pseudo-quasi-classics.

Pseudoclassical Action

Near Resonance: $\tau = 2\pi \frac{p}{q} + \epsilon$

$$\hat{U}_{t}\psi(\theta) = \sum_{s=0}^{q-1} G_{s} e^{-i\frac{\epsilon}{2}(-i\partial_{\theta}+\beta)^{2}}\psi(\theta-2\pi s/q-\tau\phi_{t}) = \frac{1}{\sqrt{2\pi i\epsilon}} \sum_{m\in\mathbb{Z}} \sum_{s=0}^{q-1} G_{s} \int_{0}^{2\pi} d\theta' e^{-\frac{i}{\epsilon}S(\theta,\theta',s,m,t)}\psi(\theta')$$

Action $(\tilde{k} := \epsilon k)$:

$$S(\theta,\theta',s,m,t) = -\tilde{k}\cos(\theta) + \frac{1}{2}(\theta-\theta'-2\pi s/q-2\pi m-\tau\phi_t)^2$$

Propagation over t kicks: sum over paths. Each path is specified by $(\theta_0, \theta_1, \ldots, \theta_t)$, (m_0, \ldots, m_t) , (s_0, \ldots, s_t) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Accelerator Modes.

Pseudo-quasi-classics.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Pseudoclassical Asymptotics

$$\epsilon \rightarrow 0$$
 ; $k \rightarrow \infty$; $\tilde{k} = k\epsilon = const.$

Stationary Phase selects paths with (m_0, \ldots, m_t) and (s_0, \ldots, s_t) arbitrary, and rays $(\theta_0, \theta_1, \ldots, \theta_t)$ that obey:

$$\begin{aligned} \theta_{t+1} &= \theta_t + I_t + \tau \phi_t + 2\pi s_t/q \mod 2\pi , \\ I_{t+1} &= I_t + \tilde{k} \sin(\theta_{t+1}) . \end{aligned}$$

q = 1: the Pseudoclassical Limit

S Fishman , IG, L Rebuzzini PRL 89 (2002) 0841011; J Stat Phys 110 (2003) 911; A

Buchleitner, MB d'Arcy, S Fishman, SA Gardiner, IG, ZY Ma, L Rebuzzini and GS Summy,

PRL 96 (2006) 164101

Multiples of $2\pi/q$ drop out. Time dependence is removed by changing variable to:

$$J_t = I_t + \frac{\eta}{2} + \delta\beta + \tau\eta t$$

(Difference linearly grows with time)

$$J_{t+1} = J_t + \tau \eta + \tilde{k} \sin(\theta_{t+1}),$$

$$\theta_{t+1} = \theta_t + J_t.$$

Rays are trajectories of a classical dynamical system on $\mathbb{T} \times \mathbb{R}$. Stable Periodic Orbits of the map on $\mathbb{T} \times \mathbb{T} \rightsquigarrow$ Stable Accelerating Rays \rightsquigarrow Quantum Accelerator Modes.

q > 1: Near Higher-Order Resonances

IG, L Rebuzzini PRL 100 (2008) 234103

$$J_{t+1} = J_t + \tau \eta + \tilde{k} \sin(\theta_{t+1}) + \delta_t ,$$

$$\theta_{t+1} = \theta_t + J_t ,$$

$$\delta_t = \frac{2\pi}{q} (s_{t+1} - s_t) .$$

Rays are not trajectories of a unique classical system anymore. There is a ray for each choice of an integer string $\mathbf{s} := (s_0, \ldots, s_t)$: so rays exponentially proliferate with the number t of kicks. Each ray contributes an amplitude:

$$rac{1}{\sqrt{q^t\epsilon|\mathrm{det}(\mathfrak{M}_t)|}}\;e^{rac{i}{\epsilon}S_{\mathsf{s},\mathsf{m}}+i\Phi_{\mathsf{s},\mathsf{m}}}$$

Stable Rays?

\mathfrak{M}_t is the stability matrix :

$$\mathfrak{M}_{t} = \begin{vmatrix} 2+\tilde{k}\cos(\theta_{0}) & -1 & 0 & \dots & \dots & 0 \\ -1 & 2+\tilde{k}\cos(\theta_{1}) & -1 & 0 & \dots & 0 \\ 0 & -1 & 2+\tilde{k}\cos(\theta_{2}) & -1 & \dots & 0 \\ 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & \dots & -1 & 2+\tilde{k}\cos(\theta_{t-1}) & -1 \\ 0 & 0 & \dots & \dots & -1 & 2+\tilde{k}\cos(\theta_{t}) \end{vmatrix}$$

Herbert-Jones-Thouless formula:

$$\log(|\det(\mathfrak{M})|) = t \int dn(E) \log(|E|) = t \times \text{Lyapunov exponent}$$

As t increases, most sequences δ_t are random and so are $\theta_t : \Rightarrow$ LE positive (localization) \Rightarrow Each such ray yields an exponentially small contribution.

Stable Rays

Distinguished individual contributions from rays, whose matrices ${\mathfrak M}$ have extended states.

How to find stable rays

IG, L Rebuzzini PRL 100 (2008) 234103

$$J_{t+1} = J_t + \tau \eta + \tilde{k} \sin(\theta_{t+1}) + \delta_t ,$$

$$\theta_{t+1} = \theta_t + J_t ,$$

$$\delta_t = \frac{2\pi}{q} (s_{t+1} - s_t) .$$

whenever δ_t is a periodic sequence of period T, T-fold iteration of the above equations defines a dynamical system on the 2-torus. Each stable periodic orbit of that system defines a stable ray that gives rise to an accelerator mode.

Acceleration

$$\frac{1}{\epsilon} \left\{ \frac{2\pi}{T} \frac{\mathfrak{j}}{\mathfrak{p}} - \tau \eta - \frac{1}{T} \sum_{t=0}^{T-1} \delta_t \right\}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Summary

Kicked dynamics in gravity:

- Quantum Accelerator Modes exist near resonances of arbitrary order;
- they are exposed by small- ε-asymptotics, which is similar in nature to quasi-classical approximation (short-wave asymptotics);
- They are associated with stable periodic orbits of :
 a single classical dynamical system ("pseudoclassical limit") in the "spinless" case q = 1;
 - a infinite hierarchy of classical dynamical systems in the case
 - q > 1. No pseudoclassical limit proper exists in this case .

Partial similarity to the case of multi-component wave equations : Littlejohn & Flynn 1991.

