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Kicked Hamiltonians

e−
i
~ t(T̂+V̂ ) = lim

N→∞,τ→0,Nτ=t

(
e−

i
~ τ T̂ e−

i
~ τ V̂

)N

For fixed N, τ , the rhs is the propagator from time t = 0− to time
t = Nτ− of the Kicked Hamiltonian :

Ĥ(t) = T̂ + τ V̂
∑
n∈Z

δ(t − nτ)

The kicked dynamics may be drastically different from the
dynamics which are generated by T̂ + V̂ . In the 1-freedom case,
the latter are classically integrable , but the former have ,
generically, a mixed phase space.
Path integrals for kicked dynamics are ordinary N-fold integrals.
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Instances of Kicked Dynamics

(X̂ , P̂: canonical position & momentum operators for a point
particle moving in a line)

Pendulum → Kicked Rotor

T̂ =
1

2
P̂2 , V̂ = µ cos(X̂ )

Harper → ”Kicked Harper”

T̂ = λ cos(P̂) , V̂ = µ cos(X̂ )

Wannier-Stark → Kicked Accelerator

T̂ =
1

2
P̂2 + ηX̂ , V̂ = µ cos(X̂ )
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From Atoms to Rotors

In experiments, atoms move in (approximately) straight lines.
However, the kicking potential is periodic in space.
Quasi-momentum is then conserved. If the spatial period is 2π,
then q.mom. = fractional part of momentum := β and the
Brillouin zone is B(P) = [0, 1[.

Bloch theory

L2(R) ' L2(B(P))⊗ L2(T) , Û =

∫ ⊕

B(P)
dβ Ûβ

Each Ûβ formally defines a rotor’s dynamics. It is obtained by the

replacement X → θ := Xmod(2π), P̂ → −i∂ϑ + β

Example

Kicked Atom : Û = e−iµ cos(X̂ )e−iτ P̂2/2

Kicked Rotor Ûβ = e−iµ cos(θ)e−iτ(−i∂θ+β)2/2
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KR Resonances

A KR resonance is said to occur whenever Ûβ commutes with a

momentum translation T̂ ` (` a strictly positive integer), where
T̂ : ψ(θ) → e iθψ(θ). This happens if β is rational and τ is
commensurate to 2π; the order of a resonance is the least ` > 0
such that T̂ ` commutes with Ûβ .

Proposition

(Izrailev, Shepelyansky 1980; Dana, Dorofeev 06) Ûβ commutes

with T̂ ` if, and only if, (i) τ = 2πp/q with p, q coprime integers,
(ii) ` = mq for some integer m, (iii) β = ν/mp + mq/2 mod(1),
with ν an arbitrary integer.

Resonances with m = 1 and ` = q are termed primary .
At resonances, ”Quasi-Position” ϑ is conserved: for primary

resonances, ϑ ≡ θ mod 2π/q and ϑ ∈ B(X)
q ≡ [0, 2π/q[.
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”θ changes by multiples of 2π/q”

Theorem

(Izrailev , Shepelyansky 1980) Identify L2(T) and L2(B(X)
q )⊗ Cq

through ψ(θ)� {ψ(ϑ+ 2πn/q)}n=1,...,q. Then at a primary
resonance with τ = 2πp/q and β = βr ,

Ûβr =

∫ ⊕

B(X)
q

dϑ X̂(βr , µ, ϑ) ,

where X̂(βr , µ) : [0, 2π] → U(q) is defined by :

Xjk(βr , µ, ϑ) = e−iµ cos(ϑ+2πj/q)Gjk(p, q, βr ) , (1)

Gjk(p, q, βr ) =
1

q

q−1∑
l=0

e−πip(l+βr )2/q e2πi(j−k)l/q . (2)
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Bands

Figure: Eigenangles vs θ = qϑ; q = 7, p = 2, µ = 3.

Proposition

(IG 08) If µ > 0 then at primary resonances each eigenvalue wj

(j = 1, . . . , q) of X̂(β, µ, ϑ) is a nonconstant analytic function of
exp(iϑ). Hence, Ûβ has a pure AC spectrum, and the rotor’s
energy increases quadratically in time (ballistic transport).
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Bandwidths I

Eigenvalues of free resonant rotation (µ = 0, τ = 2πp/q, β = βr )

aj = e−iπp(j+βr )2/q , j = 1, . . . , q .

always degenerate to various extent. Easiest case: βr = 1/2, and
q odd ⇒ aj = aq−j+1 for all 1 ≤ j ≤ q. All eigenvalues aj are
degenerate, except one.
q odd and prime ⇒ multiplicity = 2.
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Bandwidths II

Theorem

(IG 08) If q > 2 is prime, p is prime to q, and β = 1/2, then,
asymptotically as µ→ 0,

dwj

dϑ
∼ µαj sj(p, q) sin(ϑ) , αj = max{2j −1, q−2j +1} , (3)

The coefficients sj are exponentially small at large q:

|sj(p, q)| . e−qAj where Aj = γj + O(q−1/2 log3/2(q)) . (4)

The numbers γj increase with j from γ1 ≥ 0.001 to
γ(q+1)/2 ≥ 0.01.
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Kicked Accelerator.

Û = e−iµ cos(X̂ )e−i(τ P̂2/2+ηX̂ )

translation invariance recovered via ψ(X , t) → ψ(X , t)e−itηX

(”Falling frame”). Rotor Evolution from t-th kick to t + 1-th kick
at quasi-momentum β:

Ûβ,t = e−iµ cos(θ)e−i τ
2
(−i∂θ+φt)2

φt = β +
η

2
+ ηt . (5)

The Problem of Dynamical Localization

For ψ ∈ H1 denote ψ(t) = Ûβ,tÛβ,t−1 . . . Ûβ,0ψ. Is ||ψ(t)||H1

bounded in time?
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Destruction of localization

(ητ/2π irrational)

η increases through � � �. Dashed lines: linear and quadratic growth.

Ballistic growth at intermediate times is due to Quantum Accelerator modes
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Quantum Accelerator Modes

QAMs were first discovered in
experiments at Oxford. There,
η is gravity.
M.K. Oberthaler, R.M. Godun, M.B.

d’Arcy, G.S. Summy and K. Burnett, PRL

83, 4447, (1999)
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Pseudoclassical Action

Near Resonance: τ = 2π p
q + ε

Ûtψ(θ) =

q−1∑
s=0

Gs e−i ε
2
(−i∂θ+β)2ψ(θ − 2πs/q−τφt) =

1√
2πiε

∑
m∈Z

q−1∑
s=0

Gs

∫ 2π

0
dθ′ e−

i
ε
S(θ,θ′,s,m,t)ψ(θ′)

Action (k̃ := εk):

S(θ, θ′, s,m, t) = −k̃ cos(θ) +
1

2
(θ − θ′ − 2πs/q − 2πm − τφt)

2

Propagation over t kicks: sum over paths. Each path is specified
by (θ0, θ1, . . . , θt), (m0, . . . ,mt), (s0, . . . , st).
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Pseudoclassical Asymptotics

ε → 0 ; k → ∞ ; k̃ = kε = const.

Stationary Phase selects paths with (m0, . . . ,mt) and (s0, . . . , st)
arbitrary, and rays (θ0, θ1, . . . , θt) that obey:

θt+1 = θt + It + τφt + 2πst/q mod 2π ,

It+1 = It + k̃ sin(θt+1) .
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q = 1: the Pseudoclassical Limit

S Fishman , IG, L Rebuzzini PRL 89 (2002) 0841011; J Stat Phys 110 (2003) 911; A

Buchleitner, MB d’Arcy, S Fishman, SA Gardiner, IG, ZY Ma, L Rebuzzini and GS Summy,

PRL 96 (2006) 164101

Multiples of 2π/q drop out. Time dependence is removed by
changing variable to:

Jt = It +
η

2
+ δβ + τηt

(Difference linearly grows with time)

Jt+1 = Jt + τη + k̃ sin(θt+1) ,

θt+1 = θt + Jt .

Rays are trajectories of a classical dynamical system on T× R.
Stable Periodic Orbits of the map on T× T   Stable Accelerating
Rays   Quantum Accelerator Modes.
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q > 1 : Near Higher-Order Resonances

IG, L Rebuzzini PRL 100 (2008) 234103

Jt+1 = Jt + τη + k̃ sin(θt+1) + δt ,

θt+1 = θt + Jt ,

δt =
2π

q
(st+1 − st) .

Rays are not trajectories of a unique classical system anymore.
There is a ray for each choice of an integer string s := (s0, . . . , st):
so rays exponentially proliferate with the number t of kicks. Each
ray contributes an amplitude:

1√
qtε|det(Mt)|

e
i
ε
Ss,m+iΦs,m .
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Stable Rays?

Mt is the stability matrix :

Mt =

∣∣∣∣∣∣∣
2 + k̃ cos(θ0) −1 0 ... ... 0

−1 2 + k̃ cos(θ1) −1 0 ... 0

0 −1 2 + k̃ cos(θ2) −1 ... 0
0 0 ... ... ... 0

0 0 ... −1 2 + k̃ cos(θt−1) −1

0 0 ... ... −1 2 + k̃ cos(θt )

∣∣∣∣∣∣∣
Herbert-Jones-Thouless formula:

log(|det(M)|) = t

∫
dn(E ) log(|E |) = t × Lyapunov exponent

As t increases, most sequences δt are random and so are θt : ⇒⇒⇒
LE positive (localization) ⇒⇒⇒ Each such ray yields an exponentially
small contribution.

Stable Rays

Distinguished individual contributions from rays, whose matrices
M have extended states.



Kicked Dynamics KR Resonances Accelerator Modes. Pseudo-quasi-classics.

How to find stable rays

IG, L Rebuzzini PRL 100 (2008) 234103

Jt+1 = Jt + τη + k̃ sin(θt+1) + δt ,

θt+1 = θt + Jt ,

δt =
2π

q
(st+1 − st) .

whenever δt is a periodic sequence of period T , T-fold iteration of
the above equations defines a dynamical system on the 2-torus.
Each stable periodic orbit of that system defines a stable ray that
gives rise to an accelerator mode.

Acceleration

1

ε

{
2π

T

j

p
− τη − 1

T

T−1∑
t=0

δt

}
.
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Summary

Kicked dynamics in gravity:

Quantum Accelerator Modes exist near resonances of arbitrary
order;

they are exposed by small- ε-asymptotics, which is similar in
nature to quasi-classical approximation (short-wave
asymptotics);

They are associated with stable periodic orbits of :
- a single classical dynamical system (”pseudoclassical limit”)
in the ”spinless” case q = 1;
- a infinite hierarchy of classical dynamical systems in the case
q > 1. No pseudoclassical limit proper exists in this case .

Partial similarity to the case of multi-component wave equations :
Littlejohn & Flynn 1991.
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