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The Stern-Brocot tree

Binary (genealogical) tree which contains each positive
rational number exactly once.
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CONNECTION TO CONTINUED FRACTIONS

The elements of the S-B tree of depth d are exactly those
rational numbers x ∈ Q+ whose continued fraction expansion

x = a0 +
1

a1 + 1

a2 +
1

. . . + 1
an

≡ [a0; a1, . . . , an]

with a0 ≥ 0, ai ≥ 1 (0 < i < n) and an > 1, satisfies

n∑
i=0

ai = d

EXAMPLE: 8
5 has depth d = 5 and 8

5 = 1 + 1

1 +
1

1 +
1
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THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x ,

finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x .

If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



THE SLOW CONTINUED FRACTION ALGORITHM

Given x ∈ R+ there is a unique sequence {xk}k≥1 on the tree,
which starts with x1 = 1 and converges to x , finite if x ∈ Q+,
infinite otherwise:

if x = [a0; a1, a2, . . . ]

and
p−2 = 0, p−1 = 1, pn = an pn−1 + pn−2

q−2 = 1, q−1 = 0, qn = an qn−1 + qn−2

then xk = k if k ≤ a0 + 1, and for k > a0 + 1

xk =
r pn−1 + pn−2

r qn−1 + qn−2
, k =

n−1∑
i=0

ai + r , 1 ≤ r ≤ an

=⇒ xk is called a Farey convergent (FC) of x . If r = an then
xk = pn/qn = [a0; a1, a2, . . . , an−1, an] is the usual continued
fraction convergent (CFC) of x .



GROWTH OF THE DENOMINATORS

For x ∈ (0, 1) the CFC’s denominators qn typically grow
exponentially fast:

log qn

n
→ π2

12 log 2
almost everywhere

Write a FC as xk = tk/sk (note that min{sk} = k and
max{sk} = fk , the k−th Fibonacci number).
If k =

∑n
i=1 ai + r then qn−1 < sk ≤ qn.

Moreover (Khinchin and Lévy):

1
n log n

n∑
i=1

ai →
1

log 2
in measure

Therefore
log sk

k
∼ π2

12 log k
in measure
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BINARY CODING

To the sequence {xk} one can associate a binary sequence
σ ∈ {0, 1}N obtained by coding the jumps along the path:
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0 1 0 1

0           1            0         1          0         1              0         1

   

x
2

x
3

x4

x1

x = [a0; a1, a2, . . . ] ⇐⇒ σ(x) = 1a00a11a2 . . .
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Viceversa, given a (finite or infinite) path σ on the tree, we can
reconstruct each element xk as a matrix product:

for z ∈ C

and X =

(
a b
c d

)
∈ SL(2, Z) set X (z) := (az + b)/(cz + d).

With the identification X ≡ X (1) ∈ Q+ we have

x1 ≡
(

1 0
0 1

)
and xk ≡

∏
1≤i<k

Xi (k ≥ 2)

where

Xi =

{
A , if σi = 0
B , if σi = 1

A =

(
1 0
1 1

)
e B =

(
1 1
0 1

)
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THE FAREY TESSELLATION

H = {z ∈ C : z = x + iy , y > 0} with metric ds2 = dx2+dy2

y2 .

The isometries z 7→ z
z+1 and z 7→ z + 1 associated to A e B

generate a tessellation of H starting from the geodesic triangle

G = {z ∈ H |0 < Re z < 1, |z − 1
2
| > 1

2
}
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finite paths =⇒ geodesics ending at rational points



infinite paths =⇒ geodesics (u, w) with u, w ∈ R \Q



THE PERMUTED S-B TREE

Let
∏d

i=1 Xi ∈ SL(2, Z) represent a number x ∈ Q+ of depth d ,
and let x̂ ∈ Q+ be given by the reversed product

∏d−1
i=0 Xd−i .

The map x 7→ x̂ yields the permuted S-B tree:
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SOME (UNEXPECTED) RULES

I Reading the permuted S-B tree row by row, and each row
from left to right, the i-th element is given by ξ1 = 1

1 and
ξi = b(i − 1)/b(i), i > 1, where b(n) is the number of
hyperbinary representations of n (Calkin and Wilf, 2000),
e.g. 8 = 23 = 22 + 22 = 22 + 2 + 2 = 22 + 2 + 1 + 1 ⇒
b(8) = 4

I We have the recursion ξi+1 = 1
1−{ξi}+[ξi ]

(Newmann, 2003)

I Reading the permuted tree genealogically starting form 1
1 ,

under each vertex p
q there is the set of descendants{

A
(

p
q

)
, B
(

p
q

)}
≡
{

p
p + q

,
p + q

q

}
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Statistical mechanics

1. RANDOM WALKS

Let Z1,Z2, . . . be a sequence of r.v. on Q+ defined recursively
in the following way: set Z1 = 1 and if Zk = p

q then either
Zk+1 = p

p+q or Zk+1 = p+q
q , both with probability 1

2 .

The sequence (Zk )k≥1 can be regarded as a symmetric
random walk on the permuted S-B tree.

THEOREM (Bonanno, I., 2008) The random walk (Zk )k≥1 enters
any non-empty open interval I = (a, b) ⊂ R+ almost surely.

A more quantitative result in a minute ...
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2. KNAUF’ SPIN CHAIN

To each of the 2d elements of depth d + 1 in the permuted S-B
tree one can attach a spin configuration corresponding to its
address σ(a/b) ∈ {0, 1}d and the energy Ed(σ) = log b.
The ground state is σ(d/1) = 11 · · ·1 with energy log 1 = 0,
the most excited state has energy log fd+1.
The (canonical) partition function is

Zd(β) =
∑

depth( a
b )=d+1

b−β

The resulting interaction is ferromagnetic (Knauf, 1993):

jd(τ) := − 1
2d

∑
σ∈{0,1}d

Ed(σ) · (−1)σ·τ ≥ 0 , τ ∈ {0, 1}d \ 0d
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PHASE TRANSITION OF SECOND ORDER AT β = 2

lim
d→∞

Zd(β) =
ζ(β − 1)

ζ(β)
, Reβ > 2 (Knauf , 1993)

Zd(2) ∼ d
2 log d

, d →∞ (I., 2005)

The free energy −β f (β) is real analytic for β < 2 and

−β f (β) ∼ 2− β

− log (2− β)
β → 2− (Prellberg, 1992)
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The free energy −β f (β) is real analytic for β < 2 and

−β f (β) ∼ 2− β

− log (2− β)
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3. Generalized S-B trees and spin chains

In the Farey sum assign "more weight to older parents": given
two neighbours p

q , p′
q′ , of depth d − k (1 ≤ k ≤ d) and d resp.,

set
p′′

q′′
=

p′ + wkp
q′ + wkq

, w ∈ [1, 2]

then
p
q

<
p′′

q′′
<

p′

q′
and p′q − pq′ = wd−k

and the resulting elements are ratios of polynomials in Z[w ]:

0
1

w
w−1

1
1

1
2

w+1
w

1
2+w

1+w
2+w

1+2w
2w

1+w+w2

w2
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THEOREM (Degli Esposti, I., Knauf, 2007)

I The interaction of the spin chain is ferromagnetic for each
w ∈ [1, 2].

I There is a monotonically decreasing function βcr (w), with
βcr (1) = 2 and βcr (2) = 1, such that the partition fct Zd(β)
has a finite limit as d →∞ whenever β > βcr .

I For w = 1 the phase transition at βcr = 2 is of second
order, but for 1 < w ≤ 2 the first derivative of −β f (β) is
discontinuous at βcr (first order transition). Moreover, for all
w ∈ [1, 2] the magnetization jumps at βcr from 1 to 0.
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EXAMPLE: w = 2

Zd(β) =
2β − 1− 2d(1−β)

2β − 2

lim
d→∞

Zd(β) =
2β − 1
2β − 2

, Re β > βcr = 1

−β f (β) =

{
(1− β) log 2 , if β < 1

0 , if β ≥ 1
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Some of the above results can be proved by writing the
partition fct, or more generally, sums like

Z (m)
d (β) :=

∑
depth( a

b )=d+1

e2πi m a
b

bβ
, m ∈ Z

in the form

Z (m)
d (β) =

1
2

(
1 +

d∑
k=0

w−kβ/2 P+
β

ke2πi m x |x=1

)

where P+
β is the transfer operator associated to a map by

which the tree can be dynamically generated, and then using
spectral theory.
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Dynamics

Set Y := R+ ∪ {∞} and let S : Y → Y be the (invertible) map

S : x 7→ 1
1− {x}+ [x ]

=⇒ The forward S-orbit of 1
1 yields the permuted S-B tree row

by row with increasing depth.

Let moreover F : Y → Y be the (non-invertible) map

F : x 7→


x

1− x
if 0 ≤ x < 1

x − 1 if x ≥ 1

=⇒ The permuted S-B tree can be constructed genealogically
from the root 1

1 by writing under each leaf x its descendants
F−1(x).
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We plot the interval maps S̃ := φ ◦ S ◦ φ−1 and F̃ := φ ◦ F ◦ φ−1

where φ(x) := x/(1 + x) (maps the S-B tree to the Farey tree):

S̃(x) =
1

2−
{

x
1−x

}
+
[

x
1−x

] , F̃ =


x

1− x
if 0 ≤ x < 1

2

2− 1
x if 1

2 ≤ x ≤ 1
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CONJUGATIONS AND ERGODIC PROPERTIES

Given x ∈ R+ with c.f.e. x = [a0; a1, a2, . . . ] one may ask what
is the number ρ(x) obtained by interpreting its symbolic
sequence σ(x) on the S-B tree as the binary expansion of a
real number in (0, 1), i.e.

ρ(x) = 0 . 11 . . . 1︸ ︷︷ ︸
a0

00 . . . 0︸ ︷︷ ︸
a1

11 . . . 1︸ ︷︷ ︸
a2

· · ·

We have ρ(x) =? ◦ φ (x) where ? : [0, 1] → [0, 1] is the
Minkowski question mark function:

I ?(x) is strictly increasing from 0 to 1 and Hölder continuous
of order β = log 2/(

√
5 + 1)

I x is rational iff ?(x) is dyadic rational
I x is a quadratic irrational iff ?(x) is a (non-dyadic) rational
I d?(x) vanishes Lebesgue-almost everywhere
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THEOREM (Bonanno, I., 2008) We have the following
conjugations

S = ρ−1 ◦ T ◦ ρ , F = ρ−1 ◦ D ◦ ρ

where T : [0, 1] → [0, 1] is the Von Neumann-Kakutani map
(or dyadic rotation):

T (x) := x +
3
2n − 1 , 1− 1

2n−1 ≤ x < 1− 1
2n , n ≥ 1

and D : [0, 1] → [0, 1] is the doubling map: D(x) := 2x mod 1
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Facts:

I both T and D preserve the Lebesgue measure
I T is strictly ergodic, has rank one and discrete spectrum
I T ◦ D = D ◦ T 2

Consequences:

I S preserves the singular measure dρ, is strictly ergodic,
has rank one and discrete spectrum

I F preserves several measures. Among them: the measure
dρ, which is the measure of maximal entropy (with
entropy log 2), and the infinite a.c. measure dx/x (with
zero entropy)

I the random walk (Zk )k≥1 enters the open interval
I = (a, b) ⊂ R+ with asymptotic frequency ρ(I)

I S ◦ F = F ◦ S2
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F AND S AS POINCARÉ MAPS

Considering geodesics (u, w) with u < 0 < w , the action of F
on w can be regarded as a (factor of) the Poincaré map
associated to the geodesic flow gt : TM → TM on the modular
surface M = SL(2, Z) \H (not compact but of finite hyperbolic
area and gaussian curvature K = −1).
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The action of S can be regarded as a Poincaré map associated
to the horocycle flow ht : TM → TM, with a return time which
depends on the initial point on the section ... joint work in
progress with Bonanno, Degli Esposti and Knauf
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Transfer operators and hyperbolic laplacian

To the inverse branches of F we associate the generalized
transfer operator (β ∈ C)

(Lβf )(x) =
∑

y∈F−1(x)

f (y)

|F ′(y)|β/2 = f (x + 1)+

(
1

x + 1

)β

f
(

x
x + 1

)

In particular L ≡ L2 is called Perron-Frobenius operator and
satisfies ∫

g ◦ F (x) h(x)dx =

∫
g(x)(Lh)(x)dx

A function h is the density of an a.c. F -invariant measure iff
Lh = h. In this case we have h(x) = 1/x . More generally, the
eigenvalue eq. Lβf = λf reads

λ f (x)− f (x + 1) =
1

(x + 1)β
f
(

x
x + 1

)
and, if λ = 1 this is the Lewis-Zagier functional equation,
whose solutions are called period functions.
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A Maass wave form of parameter s ∈ C is a SL(2, Z)-invariant
fct u : H → C, vanishing for y →∞ and satisfying
∆u = s(1− s)u where ∆ = y2(∂2

x + ∂2
y ) is the hyperbolic

Laplacian on H.
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There is a one-to-one correspondence between the space of
Maass wave forms u of parameter s ∈ C with Res = 1/2 and
the space of real analytic solutions on R+ of the Lewis-Zagier
eq. Lβf = f with β = 2s, which satisfy

f (x) = o(1/x) (x → 0), h(x) = o(1) (x →∞)

(Lewis, Zagier, Ann. Math. 153 (2001), 191-258)

What about the rest of the spectrum of Lβ?
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Alternative formulation

Let P±
β be the (signed) transfer operators associated to the

Farey map and acting as

(P±
β f )(x) :=

(
1

x + 1

)β [
f
(

x
x + 1

)
± f
(

1
x + 1

)]
If H(B) denotes the set of fcts holomorphic in B ⊆ C we have

I If f ∈ H({|z − 1| < 1}) then P±
β f ∈ H({Rez > 0})

I If P±
β f = λf with λ 6= 0 then Jβf = ±f , with

(Jβf )(z) :=
1
zβ

f
(

1
z

)
Therefore the eigenvalue eqs. P±

β f = λ f are both
equivalent to Lβf = λf

I If u is a Maass form s.t. u(x + iy) = ±u(−x + iy) then
P±

β f = f with β = 2s
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SOME SPECTRAL PROPERTIES OF P±
β

Let Hβ be the Hilbert space of functions f ∈ H({|z − 1| < 1})
and such that

f (x) = B [ϕ](x) :=
1

xβ

∫ ∞

0
e−

t
x etϕ(t)mβ(dt)

with ϕ ∈ L2(mβ) and mβ(dt) = tβ−1e−tdt .

THEOREM (I., 2003) P±
β B [ϕ] = B [(M + N)ϕ] with

M ϕ(t) = e−tϕ(t) , Nϕ(t) =

∫ ∞

0

Jβ−1

(
2
√

st
)

(st)(β−1)/2 ϕ(s) mβ(ds)

THEOREM (Bonanno, Graffi, I., 2007) For each β ∈ (0,∞) the
operators P±

β : Hβ → Hβ are bounded, self-adjoint and
isospectral. Their spectrum is {0} ∪ (0, 1], with (0, 1] purely a.c.
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Some perspectives

I Generalized eigenfcts of P±
β with β ∈ (0,∞)

I Spectrum of P±
β with β ∈ C

I Tree expansion and analytic continuation of (generalized)
Ruelle and Selberg zeta functions

I Harmonic functions and martingales
I Integrability of spin models
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