Long-range correlations in diffusive systems
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Introduction

One of the main differences between equilibrium
and non equilibrium systems, Is that out of
equilibrium the free energy iIs, In general, a non
local functional of the thermodynamic variables. This
iImplies the existence of correlations at the
macroscopic scale which have been observed
experimentally.

This phenomenon can be demonstrated In
microscopic models but can also be derived from
simple postulates characterizing the macroscopic
behaviour of diffusive systems.



Postulates

L. The macroscopic state is completely described by the local density p =
" L L {
p(t,r) and the associated current j = j(t,x).

2. The macroscopic evolution is given by the continuity equation
Dp+V-73=10 (2.1)
together with the constitutive equation
J=Jp)=—=D(p)Vp+x(p)E (2.2)

where the diffusion coefficient D(p) and the mobility y(p) are d x d
positive matrices.



The transport coefficients D and x satisfy the local Einstein relation

2D(p) = x(p) fo(p) (2.3)

where fo 1s the equilibrium free energy of the homogencous system.

folp(x)) = Xo(x) r € 0N (2.4)

We denote by p = p(x), © € A, the stationary solution, assumed to be

P T
unique, of (2.1)+(2.4).



To state the third postulate, we need some preliminaries. Consider a
time dependent variation F' = F(t, z) of the external field so that the total
applied field is £+ F. The current then becomes j = J(p) = J(p) + v(p)F.

Given a time interval |0, 7', we then introduce the total power dissipated
by the extra current

1 1

T T
L) (F) = 5/0 dt ([T (p") = J(p")] - F) = 5/0 dt (F-x(p")F) (2.5)

where (-) denotes the integration over A and p! is the solution of the conti-
nuity equation with current j = J*(p).

The argument behind (2.5) is the following. Fix a point (¢,2) and let
p(t,x) be the local density. A local variation dF of the external field induces
the variation of current dj = )((,o(t, r))a’F . The infinitesimal power dissipated
locally is therefore F'-dj = F'- X(p(t_, -:.-:))dF . By integrating firstly over dF,
keeping the value of p(t, z) constant and then over dz and dt we get (2.5).



We define a cost functional on the set of space time trajectories as follows.
Given a trajectory p = p(t, r) we set

lor(p) = inf  Lpr(F) (2.6)
F:pF=p

namely we minimize over all the variation of the applied field F' which pro-

duce the trajectory p. If p solves the hydrodynamic equation (2.1)—(2.4) its

cost vanishes. In view of (2.5), a computation shows that

1

T
Ton() =5 [ @t ([05+V TG K@ op+V - Tp)]) @D

where the positive operator K (p) is defined on functions u : A — R vanishing
at the boundary dA by K(p)u = —V - (x(p)Vu).

Owur third postulate 1s then stated as follows.

3. The nonequilibrium free energy of the system 1s

Flp)= _mf Tjp(p) (2.8)
g p(0)=p
pl+oc)=p



the functional F 1s the maximal solution of the infinite
dimensional Hamilton-Jacobi equation

<v 5’:) <gv T(p )>:o (2.9)

where, for p that satisfies (2.4), 6F /dp vanishes at the boundary of A. The
arbitrary additive constant on such solution 1s determined by the condi-
tion F(p) = 0. Indeed, by considering the functional in (2.7) as an action
functional in variables p and d;p and performing a Legendre transform, the
associated Hamiltonian is

H(p.TI) %(vn XV + (VI J(p) (2.10)

The optimal trajectory p* for the variational prc-b]ém (2.8) is character-

1zed as follows. Let
oF

J*(p) = —x(p )V—p—J( p) (2.11)

then p* is the time reversal of the solution to

Bip+V - J(p) = Bip—V - {D(p)v,o—"s(( )[E+V%H —0  (212)

with the boundary condition (2.4).



The previous claim 1s proven as follows. Let F be the maximal solution
of the Hamilton-Jacobi equation and J* as defined in (2.11). Fix a time
interval [0, 7] and a path p(t), t € [0,7]. We claim that

Loz (p) = F(p(T)) = F (P(O))

T
%fﬂ dt <[a¢,a—v-J*(m] I{(ﬁ)‘l[ag,é—V~J*(ﬁ)]> (2.13)

as can be shown by a direct computation using (2.7), the Hamilton-Jacobi
equation (2.9) and the definition (2.11) of J*. From the identity (2.13) we
immediately deduce that the optimal path for the variational problem (2.8)
is the time reversal of the solution to (2.12).

Since the optimal trajectory is the time reversal of the solution to (2.12),
the applied field 1s

F=-v2
dp

On the other hand, by (2.11) and the Hamilton-Jacobi equation (2.9),

oF oF
9.5 — —{ 7(5) - v >: J(5) - F
(5520) ==(J0) xD)V5-) =) F)
which 1s the power given to system by the applied field F. Hence

oOF

F(p)—f(,ﬁ)z/ﬂ dt<—d¢p> /Dmdt(J(f})-F>

1s the total work done by the external field.



Correlation functions

We introduce the pressure functional as the Legendre transform of free
energy F

G(h) =sup {(hp) — F(p)}
Ii

By Legendre duality, the Hamilton-Jacobi equation (2.9) can then be rewrit-
ten 1 terms of G as

1 oG oGy _ oG oG
A v A A L v/ AN A vi A ~Z\v= — = 3.1

3 {(Vhx(55)vh) (VD () Ve +x(5p) By =0 GD
where h vanishes at the boundary of A.

The functional G is the generating functional of the correlation functions:;
in particular by defining

C(:vj y) =
we have, since F has a minimum at p,
1

G(h) = (h, 7) + 5 (b, Ch) + of1?)

or equivalently

1
F(p)=5{(p=p),C7(p = p)) +ol(p = p)*)



By expanding the Hamilton-Jacobi equation (3.1) to the second order in
h, and we using that §G/5h(x) = p(z) + Ch(z) + o(h?), we get the following
equation for C'

1
(Vh-[3x(p)Vh=V(D(GECH) +X(E)CHE]) =0 (32)
We now make the change of variable
C(z,y) = Cey(z)0(z — y) + B(z,y)

where C, () is the equilibrium covariance, given by C.,(z) = (1/2)D~Y(p(x))x(p(x)).
Equation (3.2) for the correlation function then gives the following equation
for B

L'B(z,y) = a(z)d(z — y) (3.3)

where £ is the formal adjoint of the elliptic operator £ = L, + L,, where
L, = Di;(p(2))0,,0:, + xi;(p(x)) E; ()0,
and )
a(x) = 0., [xi;(A(x)) Dy (p(x)) Ju(z)]
where we racall J = J(p) = —D(p(2))Vp(x) + x(p(x))E(x) is the macro-

scopic current in the stationary profile.



We next derive, using the Hamilton-Jacobi equation (3.1), a recursive
formula for the n-point correlation function C,(xq,...,z,). This is defined
in terms of the pressure functional G as

Cu(z n) = -
(T, Tn) = dh(xy) - o0h(x,) 1h=0

so that Ci(x) = p(z) and Cy is the two-point correlation function dis-
cussed above,

By expanding the functional derivative of G we get

oG (h)
oh(xy)

1
= ﬁ{ilfl) + Z Egn{h;xl)

n=1

where

Gnlh:xy) = [ dry...drgih(xo) .. h(z,)Crir(z, 20,00, Togt)



-------




Equilibrium states

We define the system to be in equilibrium 1f and only if the current in the
stationary profile p vanishes, 1.e. J(p) = 0. A particular case 1s that of a
homogeneous equilibrium state, obtained by setting the external field E' = 0
and chosing a constant chemical potential potential at the boundary, 1.e.
Mo(x) = A. Let p = const. be the equilibrium density, i.e. p solves A = f4(p).
[t is then readily seen that the functional F defined in (2.8) is given by

Flp) = [ dr {fo(p(a)) = fo(?) = i) ol@) = 7])

in which the first difference is the variation of the free energy fy while the
second term 1s due the interaction with the reservoirs.

We next show that also for a non homogenous equilibrium, characterized
bv a non constant stationarv nrofile a(2) such that .J(a) = 0 the free enerov

functional F can be explicitly computed. Let

flp,z) = /ﬁ;d?‘ /ﬁ;}ds 13 (s) = folp) = fo(p(z)) = fo(p()) |p — A(z)]

we claim that the maximal solution of the Hamilton-Jacobi equation (2.9) is

Fip) = [ dr 1 (o). (4.1)



Indeed from the previous expression we get

oF
= folp(z)) = fo(p(x))
op(x) " ’
so that, by an mtegration by parts,

1

(V) = D] X0 [Fe) - (D))

+{[f(o) = PV - | D(0)Vp — X(DE|)
= LU0~ K@) A0 [VHai) 28] ) = 0

where we used (2.3) and (1/2)Vf(p) — E = x(p)~tJ(p) = 0.

In remains to show that F, as defined in (4.1), 1s the maximal solution
to the Hamilton-Jacobi equation (2.9). Recalling (2.7), simple computations
show that

Iom(p) = F(H(T)) - F(p(0))

T
. /D at ([0p V- T()) KG) M o~V 7)) 42

which clearly implies the maximahty of F.



the condition J(p) = 0 is equivalent to either one of
the following statements.

— There exists a function A : A — R such that

2F(r)=VA(xr), <A Alr) = No(z), zeEIA (4.3)

— The system 1s macroscpically reversible in the sense that for each profile

p we have J*(p) = J(p).

We emphasize that the notion of macroscopic reversibility does not imply
that an underlying microscopic model satisfies the detailed balance condition.

We also note that macroscopic reversibility J(p) = J*(p) implies the in-
variance of the Hamiltonian H in (2.10) under the time reversal symmetry,

(p,II) +— (p, OF [op — H), where JF is the maximal solution of the
Hamilton-Jacobi equation (2.9).



So far we have assumed the Einstein relation and we have shown that
-for equilibrium systems- it 1implies (4.1). Conversely, we now show that
macroscopic reversibility and (4.1) implies the Einstein relation (2.3). By
writing explicitely J(p) = J*(p) we obtain

~[x(p)R(p) = 2D(p)|Vp+ x(p) [R(p) —2x""(P)D(p)|Vi=0 (4.4

where R 1s the second derivative of f; in the case of one-component systems
while Rij = 0,,0,, fo for multi-component systems. In (4.4) we used, be-
sides (4.1) J(p) = 0 to eliminate E. Note that J(p) = 0 follows from the
Hamilton-Jacobi equation and J(p) = J*(p) without further assumptions.

Since Vp and Vp are arbitrary the Einstein relation 20 = v R follows from
(4.4).



We have defined the macroscopic reversibility as the identity between the
currents J(p) and J*(p). We emphasize that this is not equivalent to the
identity between V - J(p) and V - J*(p). Indeed, we next show that there
exists a non reversible system, i.e. satisfying .J(p) % 0, such that the optimal
trajectory for the variational problem (2.8) is the time reversal of the solution
to the hydrodynamic equation (2.1)—(2.5).

Let A = [0,1], D(p) = x(p) = 1, A(0) = Ay(1) = A, and a constant
external field £ #£ 0. In this case hydrodynamic evolution of the density
1s given by the heat equation independently of the field E. The stationary
profile is p = A, the associated current is J(p) = E # 0. By a computation
analogous to the one leading to (3.2), we easily get that

1
Fip) = [ do [otx) =71’

and the optimal trajectory for the variational problem (2.8) is the time rever-
sal of the solution to the heat equation. On the other hand J(p) = —-Vp+ FE
while J*(p) = -Vp - FE



The ABC Model

We here consider - both from a microscopic and macroscopic point of view
- a model with two conservation laws. Given an mnteger N > 1 let Zy =
{1,..., N} be the discrete ring with N sites so that N + 1 = 1. The micro-
scopic space state 1s given by Qy = {A, B, CT}E*“’ so that at each site ©r € Zy
the occupation variable, denoted by 7., take values in the set {A, B, C'}; one
may think that A, 5 stand for two different species of particles and C' for
an empty site. Note that this state space takes mto account an exclusion
condition: at each site there 1s at most one specie of particles,

We first consider a weakly asymmetric dynamics that fits i the frame-
work discussed in Section 2 that is defined by choosing the following transi-
tion rates. If the occupation variables across the bond {z, r + 1} are (&, (),
they are exchanged to (¢, §) with rate (1/2) exp{(E; — E;)/N} for fixed con-
stant external fields E 4, Er, Ec.



the hydrodynamic equations for the densities of A
and B particles are given by

o ( PaY_Ia(Pa\_g.( Pall=pa) —paps E,s — Ec
; PR 2 PB —pAPB pe(1 — pB) Ep— E‘:’

(5.1)

of course the density of C' particles is then po =1 — py — pp.
The functional Iz, 7, in (2.7) with D = (1/2)1 and mobility

_( pall—pa)  —papB
X(pa; p5) = ( —pape  pe(l—pp) ) (5.2)

1s the dynamical large functional associated to this model. The free energy
1s the maximal solution of the Hamilton-Jacobi equation (2.9) which can be
easily computed. Namely,

‘E?!A:ﬂlﬁ {PA; JOB) — '/dI [PA log PA + PB log P—B
ma mpg
1— pa—
+ (1 — pa — pp)log i (5.3)

=
1 —my —mp

where [drpy = my and [depp =mp. If B4, Ep and Eq are not all equal,
this model 1s a nonequilibrium model nevertheless, in view of the periodic
boundary conditions, its free energy 1s independent of the external field;



We next discuss a different choice of the weakly asymmetric perturba-
tion which, as we shall see, does not satisfy the Einstein relation (2.3).
This choice 1s the one referred to i the hterature as the ABC
model. The transition rates are the following. If the occupation variables
across the bond {z,» + 1} are (£ (), they are exchanged to (¢,£) with
rate (1/2)exp{V (&, n)/N} where V(A B) = V(B,C') = V(C,A) = -3
and V(B,A) = V(C,B) = V(A,C) = 3 for some 3 = 0. Therefore the
A-particles prefer to jump to the left of the B-particles but to the right of
the C-particles while the B-particles prefer to jump to the the left of the
C-particles, 1.e. the preferred sequence 1s ABC' and 1ts cychic permutations.



the hydrodynamic equa-

. , ( Jalpa,pB) )

o, P4 oA — 0

f ( PB ) TV ( JB(pa, pB) (5.4)
where

_( Jalpa.p) \ _ ( —5Vpa+ Bpa(l—2pp — pa)
T(pa; ) = ( J(pa; PB) ) - ( —gvf—?ﬂ + Bpp(2pa +pp — 1) ) (55)

tlons are

The asymmetric term in the hydrodynamic equation (5.4) is not of the form
V- (1{,9)15') as in (2.2). Hence the Einstein relation (2.3) does not hold.



The appropriate cost functional is however still given by (2.7) with J as
m (5.5) and y as in (5.2) The solution of the Hamilton-Jacoh equation
(2.9) then gives the free energy. In the case of equal densities fd:r P4 =
f dr pp = 1/3, a straightforward computation shows that for any positive 3

the solution 1s given by the functional

(pa, pB) (P pB)

l'-'-'ll'—":'

1
'3

/dr/ dyy r)pp(r +y) + pe(r)[l — palz +y) — pp(z +y)]

lI-~.'l|l—l

l
3!

'+[1-PA(I)—-PB($HPA(I%-H)}

is the functional in (5.3) with my = mp = 1/3.

where FY

%] =
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