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In this talk I will consider the computation of the maximum density of regular

lattices in large dimensions using an approach based on statistical mechanics.

The starting point will be some theorems of Rogers, which are virtually unknown

in the community of physicists.

Using his approach one can find many similarities (and differences) with the

problem of computing the entropy of a system of hard spheres. The relation

between the two problems is investigated in detail. Some conjectures are

presented: further investigation is needed in order to check their consistency.



Which is the maximum density of hard spheres when they are packed on a regular

lattice? In two and three dimensions the solution is well known; the lattices with

maximal packing density are the hexagonal and the ffc lattices respectively.

In generic dimensions the result for the maximal packing density in not known: a

lower bound on the maximal packing density has been established by Minkowski.

We are interested to the infinite dimension limit.

We will introduce the Rogers measure over the space of all possible lattices.

We will show how to compute the moments of a function of the lattice using the

Rogers I will present some simple computations in order to become more familiar

with Rogers results.

Finally in the last section we start a comparison between the packing problem

and the thermodynamic of hard spheres; I present a conjecture for the relation

between these two problems in the infinite dimension limit.



How to parametrize the lattice?

To each matrix unimodular matrix Λ of this set we can associate a regular lattice,

having cells of unit volume, that is given by all the points of the form

xi =
∑

k

Λi,knk ≡ (Λn)i,

where the nk take all the possible integer values (both positive and negative).

This correspondence is not one to one

If we consider non overlapping spheres centered on the points of the lattices, the

maximum allowed diameter (R(Λ)) is given by

R(Λ)2 = min
n

|Λn|2

and the minimum is done over all the possible choices of the integer

D-dimensional vector n, with the exclusion of the origin. Our aim is to compute

RM = max
Λ

R(Λ).

The computation of the minimum for generic Λ is an NP-hard problem for large

dimensions D.



We introduce the notation

〈f(|x|)〉Λ ≡
∑

n

f(|x(n)|) ≡
∑

n

f(|Λn|),

where the sum is done over ZD, origin excluded.

R(Λ)2 = − lim
β→∞

ln(F (β)Λ, ) F (β)Λ =
〈exp(−β|x|2)〉Λ

β
.

In other words |x|2 is the Hamiltonian,

Z(β)Λ ≡ 〈exp(−β|x|2)〉Λ

is the partition function and R(Λ)2 is the ground state energy.

The maximum packing density problem is a minimax problem, i.e. it consists in

finding the matrix Λ such the ground state energy is as large as possible.

Alternatively we consider the quantity

K(R)Λ = 〈θ(R − |x|)〉Λ,

K(R)Λ = 0 for R < R(Λ), K(R)Λ > 0 for R > R(Λ).



In order to formulate the statistical problem we must firstly introduce a measure

dµ(Λ) on the space of all possible lattices.

F (Λ) =

∫

dµ(Λ)F (Λ).

If the measure dµ(Λ) does not vanish near the maximum of R(Λ), we can extract

the value of RM from the properties of the appropriate averages.

We can compute the moments of K(R)Λ:

K(s) = K(R)s
Λ ≡

∑

k=0,∞

P (k, R)ks .

The function P (k, R) is the probability that a lattice has k points inside a sphere

of radius R.

When R > RM there are no lattices with no points inside a sphere of radius R. It

is evident that

P (0, R) > 0 for R < RM , P (0, R) = 0 for R > RM .

The program consists in reconstructing the function P (k, R) from its moments: in

this way one can find the value of RM .



We must chose the measure dµ(Λ).

There is a natural definition (due to Siegel) of the measure over unimodular

matrices, restricted to the fundamental region, each lattice may be represented in

one and only one way by a matrix in the fundamental region.

We can consider the set of matrices Λ (introduced by Rogers) that at fixed ω

depend on D− 1 α-variables. The action of such a matrix on a vector is defined as

(Λn)i = ωni for i < D, (Λn)D = η

(

nD +
∑

i=1,D−1

αini

)

,

where the unimodularity condition implies that

ωD−1η = 1.

The ω-dependent measure is obtained by taking a flat measure in the interval 0-1

for each of the D − 1 α-variables. Eventually the limit ω → 0 is taken.



The computations with the Rogers measure are much simpler. The two measures

are equivalent for our purposes: the quantities

〈f〉sΛ

are the same if evaluated with the two measures.

The first result one can prove is:

〈f〉Λ =

∫

dDxf(x) .



If we apply this result to the case f(x) = θ(R − |x|) we find that

K(R) ≡
∑

k=0,∞

P (k, R)k = VD(R) ,

where VD(R) ≡ RDπD/2Γ(D/2 + 1)−1 is the volume of the D-dimensional sphere

of radius R. The function K(R)Λ may take only even integer values and

consequently P (0, R) must be different from zero in the region where

VD(R) < 2,

that is also a consequence of the celebrated Minkowski theorem in large

dimensions.



Let us call Rc the D-dependent value of R such that

VD(Rc) = 1 .

It is convenient to measure all the lengths in units of Rc when the dimension D

go to infinity. At this end we define:

r = R/Rc, rM = RM/Rc .

When the dimensions D go to infinity, we face the problem of finding the limit of

rM that we suppose to exist. The following bounds are known for infinite D:

1 ≤ rM ≤ 1.322.

The lower bound is the Minkowski theorem, while the upper bound is the

Kabatiansky-Levenshtein bound)



Rogers main theorem Let us recall some known results of the values of the

moments of the function f ,

fs ≡

(

∑

n

f(Λn)

)s

,

in the case where s < D. We shall see later how this annoying constraint (s < D)

may be removed.

f ≡
∑

n

f(Λn) =

∫

∞

−∞

dDxf(x) .

The strategy for computing the moments defined in eq. consists of a few steps:

• We classify all sets of s vectors nk (k = 1, . . . s) according to their linear

dependence.

• We perform the average and the sums inside each class.

• We write the final result the sum over all possible classes.



The crucial theorem is based on the following two lemmas.

LI
∑

nk

(

∏

k=1,s

f(Λnk)

)

=

(
∫

dDxf(x)

)s

,

where
∑LI

denotes the sum over all the sets of s vectors nk belonging to ZD

that are linearly independent (as usual the origin, i.e. nk = 0, never appears).

The formula is valid only for s ≤ D and it has a very simple meaning. By

changing the lattice each of the s points nk may be carried in any point of the

space independently from the other one, provided that they are linearly

independent.



We introduce s vectors n that are linear combination of s − h linear independent

vectors and their linear dependence is specified by a matrix M . The s vectors n

span a (s − h)D dimensional space and they satisfy the following h (vectorial)

linear conditions:
∑

k=1,s

Mj,knk = 0 for j = 1, h ,

where the matrix M has integer elements and it is irreducible (there is no integer

matrix M ′ such that pM ′ = M with p integer). The previous case corresponds to

h = 0.

In this case we find that

∑

nk

i

(M)

(

∏

k=1,s

f(Λnk)

)

= N (M)

∫

∏

k=1,s

dDxkf(xk)
∏

j=1,h

δD

(

∑

k=1,s

Mj,kxk

)

,

where the sum (
∑(M)

) is done on vectors that satisfy the condition (12) (they

depend on the matrix M and have s − h linear independent components). The

quantity N (M) is a normalization factor that is equal to 1 in many cases; for our

purposes it may be taken equal to 1.



We consider all possible linear dependence of the vectors n and we transform the

sum over all the values of n to a sum over all possible linear dependencies. We

can now state the main theorem of Rogers :

< f >s =
∑

h=0,s−1

∑

M

N (M)

∫

∏

k=1,s

dDxkf(xk)
∏

j=1,h

δD

(

∑

k=1,s

Mj,kxk

)

,

where the sum is done over all the sets of h × s matrices M corresponding to

different linear conditions.



The case s = 2

Here we have to compute
∑

n1,n2

f(n1)f(n2) .

Now we have two possibilities:

• The two vectors n are linearly independent. We obtain the following

contribution
∫

dDx1dDx2f(x1)f(x2) .

• We consider the case where the two vectors n are linearly dependent. In this

case we can write the constraint in an unique way as

q1n1 + q2n2 = 0 ,

if we restrict ourselves to the case of positive q1 and (q1, q2) = 1 (i.e. the

pair q1 and q2 is irreducible)

We finally finds the following contribution
∫

dDxdDyf(x)f(y)δD(q1x + q2y) =

∫

dDxf(q1x)f(q2x).



Putting everything together we find the final expression

∑

n1,n2

f(n1)f(n2) =

∫

dDx1dDx2f(x1)f(x2) +

I
∑

q1,q2

∫

dDxf(q1x)f(q2x) ,

where the sum
∑I

is restricted over the irreducible pairs with q1 positive.



The Gaussian case

Let us consider the case where the function f(x) is given by

f(x) = (2π)−D/2 exp(−βx2/2).

Here the integrals can be easily done and we finds that

< f > = β−D/2< f2 > = β−D + β−D/2

I
∑

q1,q2

(q2
1 + q2

2)−D/2 ,

For large D we find:

(< f >)−2/D = β−1 , (< f >2)−2/D ≈ max(β−2, (2β)−1) ,

The problems connected with the limit D → ∞ are clear from the previous

formulae. Depending on the value of β different terms are the leading ones (the

case β < 1, 1 < β < 2, 2 < β are different).

The terms with the q’s and the g’s equal to 1 are always the leading ones inside a

given class.



Summing the leading terms

Generalizing the analysis of the first moments one concludes that at given value

of h the leading terms, when the dimensions go to infinity, come from h linear

conditions of the form
∑

qixi = 0

with qi ∈ ±1.

If we select these contributions the result can be given in terms of h integrals of

the same function. We get:

< f >s ≈
∑

h=1,s

∏

i=1,h

(

∑

νi=1,s

C(s, h, ν)2νi−1

∫

dDxf(x)νi

)

,

where the sum is done over all the sets of h integers νi such that
∑

i

νi = s,

and C(s, h, ν) is a combinatorial factor.



After some simple algebra we find that

exp(y < f >) ≈ exp

(

1

2

∫

dx(exp(2yf(x)) − 1)

)

.

If we apply this formula to the case of the theta function we find that

exp(yK(R)Λ) ≈ exp

(

VD(R)

2
(exp(2y) − 1)

)

= exp

(

−
VD(R)

2

)

∑

k=0,∞

1

k!

(

VD(R)

2

)k

exp(2ky) .

At the end we get a simple result:

P (2k, R) ≈ exp

(

−VD(R)

2

)

1

k!

(

VD(R)

2

)k

,

while P (2k + 1, R) = 0 (The number of points of a lattice inside a sphere is

always even!).

This Poisson distribution implies that

P (0, R) ≈ exp

(

−VD(R)

2

)

.



Rc is the radius of a sphere of unit volume. If we take a large value of D at fixed

ratio r ≡ (R/Rc) V (rRc) goes to zero or to infinity depending if r is smaller or

greater than 1.

• If r < 1, P (0, rRc) goes to 1 apart from exponentially small corrections.

With probability going to 1 lattices do not have points at distance smaller

that Rc.

• In the interesting case r > 1 this computation give an exponentially small,

but non-vanishing, contribution for P (0, rRc).

P (0, rRc) is always non zero and we can find always a lattice that contains no

points at distance less than rRc. This result cannot be correct because it can be

proved that no such lattice exist for large D as soon r > 1.322 .

This failure arise from neglecting exponentially small terms. We cannot neglect

the subleading terms if there are strong cancellations among the leading terms

and if the sum of the leading terms becomes smaller of some subleading term. It

was proved by Rogers that these cancellations do not happen in the relatively

small region where rD < D and this leads to a marginal improvement of the

Minkowski bound.



The importance of being connected

Let us consider an integer valued function f and its moments defined as

< fs >=
∑

k

P (k)ks =
∑

G

∫

∏

i=1,n

(dDxif(xi))G({x}) ,

where the sum is done over the appropriate set of function G({x}). These

functions are an appropriate product of delta functions that enforce the linear

dependence of some of the x’s.

A function G is connected if it goes to zero when one or more of the x go to

infinity together.

If G is not connected, it can be written as the product of its connected pieces. If

we take care of all the multiplicity factors and we use the standard manipulations

of statistical mechanics we find that

< fs >c=
∑

Gc

∫

∏

i=1,n

(

dDxif(xi)
)

Gc({x}) ,

where the sum is done only over those G that are connected (we call them

Gc({x})).



A new difficult

The program we have put forward may seem witless.

We can write an equation ) of the form

fs = F (s, D) ,

that is valid only for s < D: for s ≥ D for the very good reason that in this case

both sides of equation are infinite.

How could we write a meaningfully expression in finite dimension for

exp(y < f >, if we can compute only a few moments of the < f >?

I would like to put forward a reasonable conjecture that should allow us to

overcome this difficulty.



A preliminary conjecture We conjecture that each given moment can be

computed at sufficient high dimensions, where it is convergent, and that we can

evaluate it as analytic continuation in D and s at the point we need it.

The analytic continuation of the moments in the dimensions D at fixed s and the

analytic continuation of the moments in the value of s at fixed dimensions D

should coincide.

If this conjectures are true, Rogers formulae bring information on the function

P (k) also in the region where its moments are divergent: our program make sense.

I do not know how these conjectures could be proved in a rigorous and systematic

way. One could in principle check by explicit computations that the leading

singularities at z = 0 (or equivalently the tails of the function P (k) at large k) are

correctly reproduced.



The statistical mechanics of hard spheres

Let us consider the partition function of a system of hard spheres of diameter R

at density 1:

Z(V, N) =

∫

∏

i=1,N

dxi

∏

i,k=1,N

θ(|xi − xk| − R) .

Z(V, N) ≈ exp(V SH(r)) ,

where SH(r) is the entropy density of hard spheres and r is the reduced diameter.

The entropy should diverge when r = rA, i.e. the highest density packing.

We do not know if the highest density packing is a lattice packing and if rA = rM .

In dimensions 3 the most compact packing is a lattice packing and rA = rM .

Therefore the partition function vanishes as soon as r > rM and

lim
r→(rM )−

SH(r) = −∞ .

In three dimensions hard sphere crystallize: there is a diameter rC such that for

r > rC the configurations of the hard particles are very similar to those of a

regular crystal.



Generally speaking in higher dimensions we can have two possibilities:

1. The partition function of hard spheres is different from zero also in the

region r > rM and diverges at a value of r = rA > rM .

2. As in the three dimensional case the partition function of hard spheres

becomes zero at rM = rA. We can however distinguish among two cases.

(a) There is a diameter rC where the entropy has a singularity and the

system crystallize.

(b) There is no crystallization transition.

We consider also the possibility of having a glass transition in the non-crystalline

phase at the point rG. This glass transition may be or in the metastable phase

above rC , as in three dimensions, or in the stable liquid phase below rC . This

glass phase transition is important because the virial expansion does not give

information on the behaviour above rG. There are arguments that predict that

rG = 1.



A first look to the virial expansion

Our aim is to compare the virial expansion for the partition function with the

formulae that we have obtained for ln(P (0, r)). Let us consider firstly the results

that we obtain if we consider a particular class of diagrams, i.e. those of a chain.

In this case one finds that

−SH(r) = V (R) +
∑

k=3,∞

k−1

∫

∏

i=1,k

dν(xi)δ

(

∑

i=1,k

xi

)

,

dν(x) = dDxθ(R − x) .

We would like to compare this result with the homologous one for the quantity

SL(r) ≡ ln(P (0, r)).



One finds, among many other terms the following terms

−SL(r) = V (R) +
∑

k=2,∞

∫

∏

i=1,k

(

dν(xi)
∑

qi

)

δ

(

∑

i=1,k

xiqi

)

,

where the sum over the q is done with the condition:

• All q are different from zero.

• Conventionally q1 is positive.

• The set of k variables qi for i = 1, k is irreducible, i.e. they do not have

common factors.

• For k = 2 the terms with q1 = 1 = ±q2 are absent.

At each given k the leading term in the sum comes from those term where q1 = 1

and qi = ±1. If we retain only these contributions, we find (neglecting factors

two) exactly the same result that for the SH(r).

The expression for SL(r) coincide with that for SH(r) obtained summing a subset

of diagrams of the virial expansion.

This result can be simply understood: the distribution of the points of a random

lattice are random if they do not satisfies linear constraints.



A more refined conjecture and open problems

• SH(r) is the entropy for a gas of hard spheres as function of the diameter. It

may have singularities at various values of r.

• SL(r) = ln(P (0, r), i.e. the logarithm of the probability of finding a lattice

packing with reduced radius r. It should diverge toward infinity when we

reach the maximum density for a lattice packing, i.e. rM . This function can

be written as an integral over a finite dimensional space so for fixed D it

should be a smooth function of the radius. Only in the infinite dimensions it

could develop a real first order phase transition, however it could be possible

to observe the premonitory signs of this transition by evaluating it

numerically. It is also not clear if a glass transition at r = 1 is present also

for this function.

• SI(r) The two previous quantities are not easy to compute. One could use

here a third quantity that is maybe slightly less defined, but it would be

much easier to compute: the function SI(r) that it is the entropy computed

using integrals equations that generalize the hypernetted chain

approximation. SI(r) coincides with the results of the hypernetted chain

approximation approximation as soon the bridge diagrams are neglected, but

it can be much more complex.



Homework

• The computation of SI(r) is the more urgent task in order to obtain analytic

predictions. While the situations is more or less clear in the HNC, it is not

clear if there is a value of the density where bridge diagrams must be

considered. Having under control SI(r) would be very interesting.

• One should extend to the lattice case the analytic tools that are used to

predict a glass transition in the hard sphere liquid, in order to see if they

predict a phase transition also in SL(r).

• One should numerically evaluate the quantity SL(r), at least in low

dimensions where numerical computations should be feasible, to see if there

are signs of a first order transition by increasing the dimensions.

If we succeed in showing that SI(r) is well defined, one can put forward the

conjecture that

SI(r) = SL(r) .

A preliminary test of this conjecture can be done by verifying that the terms that

we have neglected in the difference do not pile up to something finite.

In conclusion this paper has posed more problem that those it has solved. The

difference and the commonalities of the two problems could be further clarified.
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