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Quantum evolution

{

i~∂tψ
t = Hψt

ψt=0 = ψ
OR

{

Ȯt = 1
i~

[Ot ,H]
Ot=0 = O

t ≤ T~ → +∞ as ~ → 0
T~ ∼ log(~−1) : unstable case
T~ ∼ 1

~
: stable case.

Do we recover Classical Mechanics ?
Answer : not always.
New phenomena : delocalization, reconstruction, ubiquity ......
contained in the (classical) infinite time.
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Bambusi-Graffi-P 1998, Bouzuoina-Robert 2002 for Egorov
Haguedorn, Combescure-Robert, de Bièvre-Robert .....1995-2002
for coherent states
a lot of papers in physics, including experimental
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Why long time ?

Quantum Mechanics : stability, stationnary states, eigenvectors
Schrödinger (linear) equation

i~∂tψ = Hψ

Very different form Classical Mechanics :

{

ẋ = ∂ξh(x , ξ)

ξ̇ = −∂xh(x , ξ)
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Why long time ?

Quantum Mechanics : stability, stationnary states, eigenvectors
Schrödinger (linear) equation

i~∂tψ = Hψ

Very different form Classical Mechanics :

{

ẋ = ∂ξh(x , ξ)

ξ̇ = −∂xh(x , ξ)

How to “construct” eigenvectors ?
Link with models in atomic physics (cold atoms)
How do we understand the transition Quantum/Classical ?
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Why semiclassical approximation ?

Asymptotic method (very efficient)
Semiclassical limit ⊂ Quantum Mechanics
ex. atomic systems (scalings)

systems of spins (N spins-1
2 (symmetrized) ∼1 spin-2N)

Corresponds to experimental situations
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Why coherent states ?

Natural way of taking semiclassical limit
More precise than, e.g., Egorov theorem
Generalize to more geometrical situations (ex. spins)
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Why coherent states ?

Natural way of taking semiclassical limit
More precise than, e.g., Egorov theorem
Generalize to more geometrical situations (ex. spins)
Coherent state at (q, p) and symbol-vacuum a :

ψqp
a (x) = ~

−n/4a(
x − q√

~
)e i px

~
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Main ideas

• Coherent state follows the classical flow, and afollows the
linearized flow, up to a certain time T0(~)
• After, quantum effects are persistent, and classical paradigm
is lost
• New “dynamics” enter the game, that we can sometimes
compute
• The wave packet can reconstruct, but with (always) a singular
vacuum
• Overlapping between quantum undeterminism and classical
unpredictability
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Free evolution on the circle

i~∂tψ = −~
2

2
∆ψ ψ ∈ L2(S1)

σ(−~
2

2
∆) =

{

~
2m2

2
, m ∈ Z

}

, phases : e it ~m2

2 ⇒

Quantum Flow is 4π
~

-periodic.
Classical flow is NOT.

(except with quantized momenta (m~) but
quantum period = 2 × classical one (like harm. osc.))
Schrödinger cats : consider fractional times : t = p

q
4π
~

⇒
Relocalization on q sites

.
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General hamiltonian on the circle

H = h(−i~∂x), h(ξ) = ξ2 + cξ3 + dξ4 + O(ξ5)

coherent state : ϕ(x) = ~
−1/4

∑

e−
m2

2
~e imx

We fix t = s 4π
~
, s integer

Theorem 1 : ∃ function g , ~-independent s.t.

0 < x < 2π, e−it H
~ ϕ(x) = g(x) + O(~

1
2 )
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~ ϕ(x) = C~
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x
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1
2 )

Less localization permits relocalization, because of less sensitivity
to non-linear classical effects (thanks to Heisenberg inequalities).
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Cold atoms

Hamiltonian H = 1
2 n̂(n̂ − 1)

n̂ is a “number” operator, i.e. it has linear spectrum
H ∼ Laplacian on the circle

(I. Bloch, 2002)
H only an approximation H = 1

2 n̂(n̂ − 1) + n̂3 + . . .
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The case of a stable periodic trajectory

X (n + 1)-dimensional manifold
H : C∞

0 (X ) → C∞(X ) semiclassical elliptic pseudo-differential operator
with leading symbol, H(x , ξ)
γ periodic trajectory of H(x , ξ) elliptic and non-degenerate.
on R

n × S1 Pi = ~
2D2

xi
+ x2

i and ζ = ~Dt

Theorem

Quantum Birkhoff Normal Form
There exists a semiclassical Fourier integral operator
Aϕ : C∞

0 (X ) → C∞
(

R
n × S1

)

such that microlocally on a
neighborhood, U , of p = τ = 0

A∗

ϕ
= A−1

ϕ

and
AϕHA−1

ϕ
= H ′ (P1, ...,Pn, ζ, ~) + H ′′

the symbol of H ′′ vanishing to infinite order on p = τ = 0.
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Creation of Schrödinger cat states, due to the interaction with
transverse degrees of freedom.
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Finite time c.s. propagation

Definition

Let (q, p) ∈ R
en and a ∈ S(Rn). Then :

ψqp
a (x) := ~

− n
4 a

(

x − q√
~

)

e i
px
~

example : a(η) = e−
η
2

2

but need of general “symbol (vacuum)”.
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Finite time c.s. propagation

Definition

Let (q, p) ∈ R
en and a ∈ S(Rn). Then :

ψqp
a (x) := ~

− n
4 a

(

x − q√
~

)

e i
px
~

example : a(η) = e−
η
2

2

but need of general “symbol (vacuum)”.
∀a ψqp

a is (micro)localized at the point (q, p) (in phase-space).
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Theorem

Let H such that e it H
~ is unitary ∀t and ψqp

a ∈ D(H). Let dΦt
qp the

derivative of the flow starting at the point (q, p). Let us suppose
that

∃µ(q, p) > 0,Hölder continuous, s.t.|dΦt
qp| ≤ Ceµ(q,p)|t|

Then ∃M(t) unitary (~-independent) such that :

||e it H
~ ψqp

a − e i
l(t)
~ ψ

Φt(q,p)
M(t)a ||L2 ≤ C~

1
2 e3µ(q,p)|t|
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6µ(q,p) log(D~

−1),
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Theorem

Let H such that e it H
~ is unitary ∀t and ψqp

a ∈ D(H). Let dΦt
qp the

derivative of the flow starting at the point (q, p). Let us suppose
that

∃µ(q, p) > 0,Hölder continuous, s.t.|dΦt
qp| ≤ Ceµ(q,p)|t|

Then ∃M(t) unitary (~-independent) such that :

||e it H
~ ψqp

a − e i
l(t)
~ ψ

Φt(q,p)
M(t)a ||L2 ≤ C~

1
2 e3µ(q,p)|t|

In particular = O(~ǫ)for t < 1−ǫ
6µ(q,p) log(D~

−1), where D is a

(dimensional) constant D = supt∈R ||H3(t)a||L2/µ.

M(t) “quantization” of the linearized flow
l(t) Lagrangian action along the flow
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Long time c.s. propagation

For simplicity (q, p) periodic and t multiple of the period.

Theorem

∃S(x),S(0) = dS(0) = d2S(0) = 0 such that

e it H
~ ψqp

a (x) ∼ e i
l(t)
~ ψqp

M(t)a(x)e i
S(q−x)

~ , |t| ≤ 1 − ǫ

2µ(q, p)
log(~−1)

Need a change of phase.
In fact S = Sqp is the generating function (minus its quadratic
part) of the unstable manifold of the flow at (q, p).
⇒ Egorov theorem up to times ∼ 2

3
1
µ log(~−1) and

⇒ Egorov theorem wrong for longer times.
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Homoclinic junction

Consider a “8” :
e.g. H = −~

2∆ + x2(x2 − 1)

x

p

Consider as initial datum a c.s. of symbol a pined up at the fixed
point ψa
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Theorem

let H be as before and let 0 < γ < 1
5

∃t0 such that, if t~ := log 1
~
− t0. then

e−i
t~H

~ ψa = e i(S++π/2)/~ψb+ + e i(S−+π/2)/~ψb
−

+ O(~γ/2)

where

b±(η) :=

∫ ±∞

0
a(1/µ)

1

µ
ρ(µ~

γ)e iηµdµ

and ρ is a cut-off function, that is
ρ ∈ C∞, ρ(y) = 1, −1 ≤ y ≤ 1, ρ(y) = 0, |y | > 2.

The new “vacuum” is singular at the origin : b(x) ∼ log(x), x ∼ 0.
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Uα(η) := e i(S++π/2)/~

∫ +∞

0
α(1/µ)

1

µ
ρ(µ~

γ)e iηµdµ+

e i(S−+π/2)/~

∫ −∞

0
α(1/µ)

1

µ
ρ(µ~

γ)e iηµdµ.

Theorem

let C > 0 and let n ≤ C
log 1

~

loglog 1
~

. Then

e−i
nt~H

~ ψa = ψUna + O(~γ/2(log
1

~
)n/2).

That is : the semiclassical revival is valid for times of the order

t ∼ C
log2 1

~

loglog 1
~

.
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Morality

The quantum (semiclassical) flow is periodic with period
∼ log(~−1)

.
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The vacuum “evolves” not according the (linearized) classical flow,
but follows a new dynamical system :
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Morality

The quantum (semiclassical) flow is periodic with period
∼ log(~−1)

.
The vacuum “evolves” not according the (linearized) classical flow,
but follows a new dynamical system :

(q, p) → (pq2,
1

q
) = (qp.q, (qp)−1.p).
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The Harper case

hHARPER(p, q) := cos(p) − cos(q)

By a simple change of variable it can be unitary transform into

h(p, q) := π2(cos((p + q)/2π) − cos((p − q)/2π))

with h(p, q) ∼ pq near zero.
Let us, once again, consider a coherent state at the origin.

The coherent state will relocalize on a net of points, growing by
two at each period (quantum random walk).
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Theorem

Let Œn (for Œdipus) the set of paths Γ on Z
2 starting at (0, 0)

and containing no line of length greater than one. Let us denote
Γ(n) the extremity of Γ and Γi a vertex of Γ. Let t~ = log 1

h
~. Then

e−i
nt~H

~ ψa =
∑

Γ∈Œn

e iSΓ/~ψaΓ

Γ(n) + O(~γ/2(log
1

~
)n/2),

where SΓ = 1
2

∫

Γ̃ pdq − qdp, where Γ̃ is the path in R
2 consisting in

segment joining the points of Γ and

aΓ = Πn
i=1V

Γi a := VΓa

where

V Γi a(η) =

∫ ∞

0
e iηµa(1/µ)ρ(µ~

γ)
dµ

µ
.

if the segment (Γi−1,Γi ) is horizontal right oriented, .....
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Another way of saying the same result is the following ”path
integral” type result

Corollary

let n ≤ C
log 1

~

loglog 1
~

and let consider the matrix elements

U((0, 0); (q, p)) :=< ψa
(0,0), e

−i
nt

~
H

~ ψb
(p,q) >

will have a leading order behaviour only when (p, q) = (i , j) ∈ Z
2

and

U((0, 0); (i , j) =
∑

Γ∈Œ, Γ(n)=(i ,j)

e iSΓ/~ < a,VΓb > +O(~γ/2(log
1

~
)n/2).

the sum has to be understood as zero when there is no path
satisfying Γ(n) = (i , j).
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Another application : Jaynes-Cummings model

H =
∑

ǫjs
z
j + ωb∗b + g

∑

(

b∗s−j + bs+
j

)

Reduction to one (big) spin

H = ǫsz + ωb∗b + g
(

b∗s− + bs+
)

This is an integrable system with a degenerate torus containing an
unstable fixed point at zero.
Periods as before correspond to oscillations between the number of
bosons and fermions (Babelon, Douçot, P, in preparation).
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What is the classical symbol of an operator ?

Bψqp
a ∼ b(q, p)ψqp

a : locality
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What is the classical symbol of an operator ?

Bψqp
a ∼ b(q, p)ψqp

a : locality

B tψqp
a := e−i tH

~ Be+i tH
~ ψqp

a
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What is the classical symbol of an operator ?

Bψqp
a ∼ b(q, p)ψqp

a : locality

B tψqp
a := e−i tH

~ Be+i tH
~ ψqp

a ∼ b(Φt(q, p))ψqp
a , t ≤ 1

2µ
log(~−1)
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What is the classical symbol of an operator ?

Bψqp
a ∼ b(q, p)ψqp

a : locality

B tψqp
a := e−i tH

~ Be+i tH
~ ψqp

a ∼ b(Φt(q, p))ψqp
a , t ≤ 1

2µ
log(~−1)

for larger t not true anymore, but : possibility of defining the
symbol as an operator on the horocyclic leaf,

link with non − commutative geometry .
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Quantum undeterminism vs. sensitivity to initial conditions

Consider again the “8”

x

p
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corresponding to a potential :

x

V
Hx
L
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Φ−∞(y) = 0
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Quantum undeterminism vs. sensitivity to initial conditions

the origin 0 is a fixed point, but for all point “y” on the unstable
manifold :

Φ−∞(y) = 0

“equivalent” to

Φ+∞(0) = y , ∀y

undeterminism ?

as time → ∞ quantum undeterminism and classical unpredictability merge.
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BUON COMPLEANNO, SANDRO !
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