Introduction Warming up Stable case General propagation of c.s. Unstable case Questions of symbols Conclusion

Long time semiclassical evolution

T. PAUL C.N.R.S. and D.M.A., École Normale Supérieure, Paris

pour Sandro, 27 augusto 2008

$$\begin{cases} i\hbar\partial_t\psi^t &= H\psi^t\\ \psi^{t=0} &= \psi \end{cases}$$

$$\begin{cases} i\hbar\partial_t\psi^t &= H\psi^t \\ \psi^{t=0} &= \psi \end{cases} \quad \text{OR} \quad \begin{cases} \dot{\mathcal{O}}^t &= \frac{1}{i\hbar}[\mathcal{O}^t,H] \\ \mathcal{O}^{t=0} &= \mathcal{O} \end{cases}$$

$$\begin{cases} i\hbar\partial_t\psi^t &= H\psi^t \\ \psi^{t=0} &= \psi \end{cases} \quad \text{OR} \quad \begin{cases} \dot{\mathcal{O}}^t &= \frac{1}{i\hbar}[\mathcal{O}^t, H] \\ \mathcal{O}^{t=0} &= \mathcal{O} \end{cases} \\ t \leq T_\hbar \to +\infty \text{ as } \hbar \to 0 \end{cases}$$

Т

$$\begin{cases} i\hbar\partial_t\psi^t &= H\psi^t \\ \psi^{t=0} &= \psi \end{cases} \quad \text{OR} \quad \begin{cases} \dot{\mathcal{O}}^t &= \frac{1}{i\hbar}[\mathcal{O}^t, H] \\ \mathcal{O}^{t=0} &= \mathcal{O} \end{cases}$$
$$t \leq T_\hbar \to +\infty \text{ as } \hbar \to 0$$
$$T_\hbar \sim \log(\hbar^{-1}) \text{ : unstable case} \\ T_\hbar \sim \frac{1}{\hbar} \text{ : stable case.} \end{cases}$$

$$\begin{cases} i\hbar\partial_t\psi^t &= H\psi^t \\ \psi^{t=0} &= \psi \end{cases} \quad \text{OR} \quad \begin{cases} \dot{\mathcal{O}}^t &= \frac{1}{i\hbar}[\mathcal{O}^t, H] \\ \mathcal{O}^{t=0} &= \mathcal{O} \end{cases}$$
$$t \leq T_\hbar \to +\infty \text{ as } \hbar \to 0$$
$$T_\hbar \sim \log(\hbar^{-1}) \text{ : unstable case} \\ T_\hbar \sim \frac{1}{\hbar} \text{ : stable case.} \end{cases}$$
Do we recover Classical Mechanics ?

$$\begin{cases} i\hbar\partial_t\psi^t = H\psi^t \\ \psi^{t=0} = \psi \end{cases} \quad \text{OR} \quad \begin{cases} \dot{\mathcal{O}}^t = \frac{1}{i\hbar}[\mathcal{O}^t, H] \\ \mathcal{O}^{t=0} = \mathcal{O} \end{cases}$$
$$t \leq T_\hbar \to +\infty \text{ as } \hbar \to 0$$
$$T_\hbar \sim \log(\hbar^{-1}) \text{ : unstable case} \\ T_\hbar \sim \frac{1}{\hbar} \text{ : stable case.} \end{cases}$$
Do we recover Classical Mechanics ?

Answer : not always.

$$\begin{cases} i\hbar\partial_t\psi^t &= H\psi^t \\ \psi^{t=0} &= \psi \end{cases} \quad \text{OR} \quad \begin{cases} \dot{\mathcal{O}}^t &= \frac{1}{i\hbar}[\mathcal{O}^t, H] \\ \mathcal{O}^{t=0} &= \mathcal{O} \end{cases}$$
$$t \leq T_\hbar \to +\infty \text{ as } \hbar \to 0$$
$$T_\hbar \sim \log(\hbar^{-1}) : \text{ unstable case} \\ T_\hbar \sim \frac{1}{\hbar} : \text{ stable case.} \end{cases}$$
Do we recover Classical Mechanics ?

Answer : not always.

New phenomena : delocalization, reconstruction, ubiquity contained in the (classical) infinite time.

Bambusi-Graffi-P 1998, Bouzuoina-Robert 2002 for Egorov Haguedorn, Combescure-Robert, de Bièvre-Robert1995-2002 for coherent states a lot of papers in physics, including experimental

Quantum Mechanics : stability, stationnary states, eigenvectors Schrödinger (linear) equation

 $i\hbar\partial_t\psi = H\psi$

Very different form Classical Mechanics :

$$\begin{cases} \dot{x} = \partial_{\xi} h(x,\xi) \\ \dot{\xi} = -\partial_{x} h(x,\xi) \end{cases}$$

Quantum Mechanics : stability, stationnary states, eigenvectors Schrödinger (linear) equation

 $i\hbar\partial_t\psi = H\psi$

Very different form Classical Mechanics :

$$\begin{cases} \dot{x} = \partial_{\xi} h(x,\xi) \\ \dot{\xi} = -\partial_{x} h(x,\xi) \end{cases}$$

How to "construct" eigenvectors? Link with models in atomic physics (cold atoms) How do we understand the transition Quantum/Classical?

Why semiclassical approximation?

Asymptotic method (very efficient) Semiclassical limit ⊂ Quantum Mechanics ex. atomic systems (scalings) systems of spins (*N* spins- $\frac{1}{2}$ (symmetrized) ~1 spin-2*N*) Corresponds to experimental situations Introduction Warming up Stable case General propagation of c.s. Unstable case Questions of symbols Conclusion

Why coherent states?

Natural way of taking semiclassical limit More precise than, e.g., Egorov theorem Generalize to more geometrical situations (ex. spins)

Why coherent states?

Natural way of taking semiclassical limit More precise than, e.g., Egorov theorem Generalize to more geometrical situations (ex. spins) Coherent state at (q, p) and symbol-vacuum a:

$$\psi_{a}^{qp}(x) = \hbar^{-n/4} a(\frac{x-q}{\sqrt{\hbar}}) e^{i\frac{px}{\hbar}}$$

• Coherent state follows the classical flow, and *a* follows the linearized flow, *up to a certain time* $T_0(\hbar)$

- Coherent state follows the classical flow, and *a* follows the linearized flow, *up to a certain time* $T_0(\hbar)$
- After, quantum effects are persistent, and classical paradigm is lost

- Coherent state follows the classical flow, and *a* follows the linearized flow, *up to a certain time* $T_0(\hbar)$
- After, quantum effects are persistent, and classical paradigm is lost
- New "dynamics" enter the game, that we can sometimes compute

- Coherent state follows the classical flow, and *a* follows the linearized flow, *up to a certain time* $T_0(\hbar)$
- After, quantum effects are persistent, and classical paradigm is lost
- New "dynamics" enter the game, that we can sometimes compute
- \bullet The wave packet can reconstruct, but with (always) a singular vacuum

- Coherent state follows the classical flow, and *a* follows the linearized flow, *up to a certain time* $T_0(\hbar)$
- After, quantum effects are persistent, and classical paradigm is lost
- New "dynamics" enter the game, that we can sometimes compute
- \bullet The wave packet can reconstruct, but with (always) a singular vacuum
- Overlapping between quantum undeterminism and classical unpredictability

Introduction	Warming up	Stable case	General propagation of c.s.	Unstable case	Questions of symbols	Conclusion
Outline	9					

- 1 Introduction
- 2 Warming up
- 3 Stable case
- 4 General propagation of c.s.
- 5 Unstable case
- 6 Questions of symbols

7 Conclusion

$$i\hbar\partial_t\psi = -rac{\hbar^2}{2}\Delta\psi \quad \psi \in L^2(S^1)$$

 $\sigma(-rac{\hbar^2}{2}\Delta) = \left\{rac{\hbar^2m^2}{2}, \ m \in \mathbb{Z}
ight\}, \ ext{phases}: e^{itrac{\hbar m^2}{2}}$

$$\begin{split} i\hbar\partial_t\psi &= -\frac{\hbar^2}{2}\Delta\psi \quad \psi\in L^2(S^1)\\ \sigma(-\frac{\hbar^2}{2}\Delta) &= \left\{\frac{\hbar^2m^2}{2}, \ m\in\mathbb{Z}\right\}, \ \text{phases}: e^{it\frac{\hbar m^2}{2}} \Rightarrow\\ \text{Quantum Flow is } \frac{4\pi}{\hbar}\text{-periodic.} \end{split}$$

$$i\hbar\partial_t \psi = -\frac{\hbar^2}{2}\Delta\psi \quad \psi \in L^2(S^1)$$
$$\sigma(-\frac{\hbar^2}{2}\Delta) = \left\{\frac{\hbar^2 m^2}{2}, \ m \in \mathbb{Z}\right\}, \ \text{phases} : e^{it\frac{\hbar m^2}{2}} \Rightarrow$$
Quantum Flow is $\frac{4\pi}{\hbar}$ -periodic.

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi \quad \psi \in L^2(S^1)$$

$$\sigma(-\frac{\hbar^2}{2}\Delta) = \left\{\frac{\hbar^2m^2}{2}, \ m \in \mathbb{Z}\right\}, \text{ phases : } e^{it\frac{\hbar m^2}{2}} \Rightarrow$$
Quantum Flow is $\frac{4\pi}{\hbar}$ -periodic.
Classical flow is NOT.

(except with quantized momenta $(m\hbar)$ but

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi \quad \psi \in L^2(S^1)$$
$$\sigma(-\frac{\hbar^2}{2}\Delta) = \left\{\frac{\hbar^2m^2}{2}, \ m \in \mathbb{Z}\right\}, \text{ phases : } e^{it\frac{\hbar m^2}{2}} \Rightarrow$$

~

Quantum Flow is $\frac{4\pi}{\hbar}$ -periodic. Classical flow is NOT.

(except with quantized momenta $(m\hbar)$ but quantum period = 2 × classical one (like harm. osc.))

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi \quad \psi \in L^2(S^1)$$

 $\sigma(-\frac{\hbar^2}{2}\Delta) = \left\{\frac{\hbar^2m^2}{2}, \ m \in \mathbb{Z}\right\}, \text{ phases : } e^{it\frac{\hbar m^2}{2}} \Rightarrow$

Quantum Flow is $\frac{4\pi}{\hbar}$ -periodic. Classical flow is NOT.

(except with quantized momenta $(m\hbar)$ but quantum period = 2 × classical one (like harm. osc.)) Schrödinger cats : consider fractional times : $t = \frac{p}{a} \frac{4\pi}{\hbar} \Rightarrow$

$$i\hbar\partial_t\psi = -\frac{\hbar^2}{2}\Delta\psi \quad \psi \in L^2(S^1)$$

 $\sigma(-\frac{\hbar^2}{2}\Delta) = \left\{\frac{\hbar^2m^2}{2}, \ m \in \mathbb{Z}\right\}, \text{ phases : } e^{it\frac{\hbar m^2}{2}} \Rightarrow$

Quantum Flow is $\frac{4\pi}{\hbar}$ -periodic. Classical flow is NOT.

(except with quantized momenta $(m\hbar)$ but quantum period = 2 × classical one (like harm. osc.)) Schrödinger cats : consider fractional times : $t = \frac{p}{q} \frac{4\pi}{\hbar} \Rightarrow$ Relocalization on q sites

$$\begin{split} H &= h(-i\hbar\partial_x), \ h(\xi) = \xi^2 + c\xi^3 + d\xi^4 + O(\xi^5) \\ \text{coherent state} : \varphi(x) &= \hbar^{-1/4} \sum e^{-\frac{m^2}{2}\hbar} e^{imx} \\ \text{We fix } t &= s\frac{4\pi}{\hbar}, \ s \text{ integer} \\ \text{Theorem 1} : \exists \text{ function } g, \ \hbar\text{-independent s.t.} \end{split}$$

$$0 < x < 2\pi$$
, $e^{-it\frac{H}{\hbar}}\varphi(x) = g(x) + O(\hbar^{\frac{1}{2}})$

$$\begin{split} H &= h(-i\hbar\partial_x), \ h(\xi) = \xi^2 + c\xi^3 + d\xi^4 + O(\xi^5) \\ \text{coherent state} : \varphi(x) &= \hbar^{-1/4} \sum e^{-\frac{m^2}{2}\hbar} e^{imx} \\ \text{We fix } t &= s\frac{4\pi}{\hbar}, \ s \text{ integer} \\ \text{Theorem 1} : \exists \text{ function } g, \ \hbar\text{-independent s.t.} \end{split}$$

$$0 < x < 2\pi$$
, $e^{-it\frac{H}{\hbar}}\varphi(x) = g(x) + O(\hbar^{\frac{1}{2}})$

Theorem 2 : but, if $\varphi^\epsilon(x):=\hbar^{-rac{1-\epsilon}{4}}\sum e^{-rac{m^2\hbar^{1-\epsilon}}{2}}e^{imx}$

$$\begin{split} H &= h(-i\hbar\partial_x), \ h(\xi) = \xi^2 + c\xi^3 + d\xi^4 + O(\xi^5) \\ \text{coherent state} : \varphi(x) &= \hbar^{-1/4} \sum e^{-\frac{m^2}{2}\hbar} e^{imx} \\ \text{We fix } t &= s\frac{4\pi}{\hbar}, \ s \text{ integer} \\ \text{Theorem 1} : \exists \text{ function } g, \ \hbar\text{-independent s.t.} \end{split}$$

$$0 < x < 2\pi, \quad e^{-it\frac{H}{\hbar}}\varphi(x) = g(x) + O(\hbar^{\frac{1}{2}})$$

Theorem 2 : but, if $\varphi^\epsilon(x):=\hbar^{-rac{1-\epsilon}{4}}\sum e^{-rac{m^2\hbar^{1-\epsilon}}{2}}e^{imx}$

$$0 < x < 2\pi$$
, $e^{-it\frac{H}{\hbar}}\varphi(x) = C\hbar^{-\frac{\epsilon}{2}}e^{-\frac{x}{sch^{\epsilon}}} + O(\hbar^{\frac{1}{2}})$

$$\begin{split} H &= h(-i\hbar\partial_x), \ h(\xi) = \xi^2 + c\xi^3 + d\xi^4 + O(\xi^5) \\ \text{coherent state} : \varphi(x) &= \hbar^{-1/4} \sum e^{-\frac{m^2}{2}\hbar} e^{imx} \\ \text{We fix } t = s\frac{4\pi}{\hbar}, \ s \text{ integer} \\ \text{Theorem 1} : \exists \text{ function } g, \ \hbar\text{-independent s.t.} \end{split}$$

$$0 < x < 2\pi$$
, $e^{-it\frac{H}{\hbar}}\varphi(x) = g(x) + O(\hbar^{\frac{1}{2}})$

Theorem 2 : but, if $\varphi^{\epsilon}(x) := \hbar^{-rac{1-\epsilon}{4}} \sum e^{-rac{m^2 \hbar^{1-\epsilon}}{2}} e^{imx}$

$$0 < x < 2\pi$$
, $e^{-it\frac{H}{\hbar}}\varphi(x) = C\hbar^{-\frac{\epsilon}{2}}e^{-\frac{x}{sch^{\epsilon}}} + O(\hbar^{\frac{1}{2}})$

Less localization permits relocalization, because of less sensitivity to non-linear classical effects (thanks to Heisenberg inequalities).

Cold atoms

Hamiltonian $H = \frac{1}{2}\hat{n}(\hat{n} - 1)$ \hat{n} is a "number" operator, i.e. it has linear spectrum $H \sim$ Laplacian on the circle

The case of a stable periodic trajectory

X (n + 1)-dimensional manifold H : $C_0^{\infty}(X) \to C^{\infty}(X)$ semiclassical elliptic pseudo-differential operator with leading symbol, $H(x, \xi)$ γ periodic trajectory of $H(x, \xi)$ elliptic and non-degenerate. on $\mathbb{R}^n \times S^1 P_i = \hbar^2 D_{x_i}^2 + x_i^2$ and $\zeta = \hbar D_t$

Theorem

Quantum Birkhoff Normal Form There exists a semiclassical Fourier integral operator $A_{\varphi}: C_0^{\infty}(X) \to C^{\infty}(\mathbb{R}^n \times S^1)$ such that microlocally on a neighborhood, \mathcal{U} , of $p = \tau = 0$

$$A_{\varphi}^* = A_{\varphi}^{-1}$$

and

$$A_{\varphi}HA_{\varphi}^{-1}=H'(P_1,...,P_n,\zeta,\hbar)+H''$$

the symbol of H" vanishing to infinite order on $p = \tau = 0$.

Creation of Schrödinger cat states, due to the interaction with transverse degrees of freedom.

Finite time c.s. propagation

Definition

Let $(q, p) \in \mathbb{R}^{en}$ and $a \in \mathcal{S}(\mathbb{R}^n)$. Then :

$$\psi_{a}^{qp}(x) := \hbar^{-\frac{n}{4}} a\left(\frac{x-q}{\sqrt{\hbar}}\right) e^{i\frac{px}{\hbar}}$$

example : $a(\eta) = e^{-\frac{\eta^2}{2}}$ but need of general "symbol (vacuum)".

Finite time c.s. propagation

Definition

Let $(q,p) \in \mathbb{R}^{en}$ and $a \in \mathcal{S}(\mathbb{R}^n)$. Then :

$$\psi_{a}^{qp}(x) := \hbar^{-\frac{n}{4}} a\left(\frac{x-q}{\sqrt{\hbar}}\right) e^{i\frac{px}{\hbar}}$$

example : $a(\eta) = e^{-\frac{\eta^2}{2}}$ but need of general "symbol (vacuum)". $\forall a \ \psi_a^{qp}$ is (micro)localized at the point (q, p) (in phase-space).

Let H such that $e^{it\frac{H}{\hbar}}$ is unitary $\forall t$ and $\psi_a^{qp} \in \mathcal{D}(H)$. Let $d\Phi_{qp}^t$ the derivative of the flow starting at the point (q, p). Let us suppose that

 $\exists \mu(q, p) > 0$, Hölder continuous, s.t. $|d\Phi_{qp}^t| \leq C e^{\mu(q, p)|t|}$

Then $\exists M(t)$ unitary (\hbar -independent) such that :

$$||e^{it\frac{H}{\hbar}}\psi_{a}^{qp} - e^{i\frac{l(t)}{\hbar}}\psi_{M(t)a}^{\Phi^{t}(q,p)}||_{L^{2}} \leq C\hbar^{\frac{1}{2}}e^{3\mu(q,p)|t|}$$

Let H such that $e^{it\frac{H}{\hbar}}$ is unitary $\forall t$ and $\psi_a^{qp} \in \mathcal{D}(H)$. Let $d\Phi_{qp}^t$ the derivative of the flow starting at the point (q, p). Let us suppose that

 $\exists \mu(q, p) > 0$, Hölder continuous, s.t. $|d\Phi_{qp}^t| \leq C e^{\mu(q, p)|t|}$

Then $\exists M(t)$ unitary (\hbar -independent) such that :

$$||e^{it\frac{H}{\hbar}}\psi_{a}^{qp} - e^{i\frac{l(t)}{\hbar}}\psi_{M(t)a}^{\Phi^{t}(q,p)}||_{L^{2}} \leq C\hbar^{\frac{1}{2}}e^{3\mu(q,p)|t|}$$

In particular = $O(\hbar^{\epsilon})$

Let H such that $e^{it\frac{H}{\hbar}}$ is unitary $\forall t$ and $\psi_a^{qp} \in \mathcal{D}(H)$. Let $d\Phi_{qp}^t$ the derivative of the flow starting at the point (q, p). Let us suppose that

 $\exists \mu(q,p) > 0,$ Hölder continuous, s.t. $|d\Phi_{qp}^t| \leq Ce^{\mu(q,p)|t|}$

Then $\exists M(t)$ unitary (\hbar -independent) such that :

$$||e^{it\frac{H}{\hbar}}\psi_{a}^{qp} - e^{i\frac{l(t)}{\hbar}}\psi_{M(t)a}^{\Phi^{t}(q,p)}||_{L^{2}} \leq C\hbar^{\frac{1}{2}}e^{3\mu(q,p)|t|}$$

In particular = $O(\hbar^{\epsilon})$ for $t < \frac{1-\epsilon}{6\mu(q,p)} \log(D\hbar^{-1})$,

Let H such that $e^{it\frac{H}{\hbar}}$ is unitary $\forall t$ and $\psi_a^{qp} \in \mathcal{D}(H)$. Let $d\Phi_{qp}^t$ the derivative of the flow starting at the point (q, p). Let us suppose that

 $\exists \mu(q, p) > 0$, Hölder continuous, s.t. $|d\Phi_{qp}^t| \leq C e^{\mu(q, p)|t|}$

Then $\exists M(t)$ unitary (\hbar -independent) such that :

$$||e^{it\frac{H}{\hbar}}\psi_{a}^{qp} - e^{i\frac{l(t)}{\hbar}}\psi_{M(t)a}^{\Phi^{t}(q,p)}||_{L^{2}} \leq C\hbar^{\frac{1}{2}}e^{3\mu(q,p)|t|}$$

In particular = $O(\hbar^{\epsilon})$ for $t < \frac{1-\epsilon}{6\mu(q,p)} log(D\hbar^{-1})$, where D is a (dimensional) constant $D = \sup_{t \in \mathbb{R}} ||H^{3}(t)a||_{L^{2}}/\mu$.

M(t) "quantization" of the linearized flow I(t) Lagrangian action along the flow

Long time c.s. propagation

For simplicity (q, p) periodic and t multiple of the period.

Theorem $\exists S(x), S(0) = dS(0) = d^2S(0) = 0 \text{ such that}$ $e^{it\frac{H}{\hbar}}\psi_a^{qp}(x) \sim e^{i\frac{J(t)}{\hbar}}\psi_{M(t)a}^{qp}(x)e^{i\frac{S(q-x)}{\hbar}}, \ |t| \leq \frac{1-\epsilon}{2\mu(q,p)}\log(\hbar^{-1})$

Need a change of phase.

In fact $S = S_{qp}$ is the generating function (minus its quadratic part) of the *unstable manifold* of the flow at (q, p).

- \Rightarrow Egorov theorem up to times $\sim \frac{2}{3} \frac{1}{\mu} log(\hbar^{-1})$ and
- \Rightarrow Egorov theorem *wrong* for longer times.

Homoclinic junction

Consider a "8" : e.g. $H = -\hbar^2 \Delta + x^2 (x^2 - 1)$ d х

Consider as initial datum a c.s. of symbol a pined up at the fixed point $\psi_{\rm a}$

let *H* be as before and let $0 < \gamma < \frac{1}{5}$ $\exists t_0 \text{ such that, if } t_{\hbar} := \log \frac{1}{\hbar} - t_0$. then

$$e^{-i\frac{t_{\hbar}H}{\hbar}}\psi_{a} = e^{i(S^{+}+\pi/2)/\hbar}\psi_{b_{+}} + e^{i(S^{-}+\pi/2)/\hbar}\psi_{b_{-}} + O(\hbar^{\gamma/2})$$

where

$$b_{\pm}(\eta) := \int_0^{\pm\infty} a(1/\mu) rac{1}{\mu}
ho(\mu \hbar^\gamma) e^{i\eta\mu} d\mu$$

and ρ is a cut-off function, that is $\rho \in C^{\infty}, \ \rho(y) = 1, \ -1 \le y \le 1, \rho(y) = 0, |y| > 2.$

The new "vacuum" is singular at the origin : $b(x) \sim log(x), x \sim 0$.

$$egin{aligned} &Ulpha(\eta):=e^{i(S^++\pi/2)/\hbar}\int_0^{+\infty}lpha(1/\mu)rac{1}{\mu}
ho(\mu\hbar^\gamma)e^{i\eta\mu}d\mu+\ &e^{i(S^-+\pi/2)/\hbar}\int_0^{-\infty}lpha(1/\mu)rac{1}{\mu}
ho(\mu\hbar^\gamma)e^{i\eta\mu}d\mu. \end{aligned}$$

let
$$C > 0$$
 and let $n \le C \frac{\log \frac{1}{\hbar}}{\log \log \frac{1}{\hbar}}$. Then

$$e^{-i\frac{nt_{\hbar}H}{\hbar}}\psi_{a}=\psi_{U^{n}a}+O(\hbar^{\gamma/2}(\log\frac{1}{\hbar})^{n/2}).$$

That is : the semiclassical revival is valid for times of the order

$$t \sim C rac{\log^2 rac{1}{\hbar}}{\log \log rac{1}{\hbar}}.$$

The quantum (semiclassical) flow is periodic with period $\sim \log(\hbar^{-1})$

.

The quantum (semiclassical) flow is periodic with period $\sim \log(\hbar^{-1})$

The vacuum "evolves" not according the (linearized) classical flow, but follows a new dynamical system :

The quantum (semiclassical) flow is periodic with period $\sim \log(\hbar^{-1})$

The vacuum "evolves" not according the (linearized) classical flow, but follows a new dynamical system :

$$(q,p)
ightarrow (pq^2,rac{1}{q}) = (qp.q,(qp)^{-1}.p).$$

$$h^{HARPER}(p,q) := cos(p) - cos(q)$$

By a simple change of variable it can be unitary transform into

$$h(p,q) := \pi^2(cos((p+q)/2\pi) - cos((p-q)/2\pi))$$

with $h(p,q) \sim pq$ near zero. Let us, once again, consider a coherent state at the origin.

The coherent state will relocalize on a net of points, growing by two at each period (quantum random walk).

Let \mathbb{C}^n (for \mathbb{C} dipus) the set of paths Γ on \mathbb{Z}^2 starting at (0,0)and containing no line of length greater than one. Let us denote $\Gamma(n)$ the extremity of Γ and Γ_i a vertex of Γ . Let $t_{\hbar} = \log \frac{1}{\hbar}\hbar$. Then

$$e^{-i\frac{nt_{\hbar}H}{\hbar}}\psi_{a} = \sum_{\Gamma\in\mathbf{G}^{n}} e^{iS_{\Gamma}/\hbar}\psi_{\Gamma(n)}^{a_{\Gamma}} + O(\hbar^{\gamma/2}(\log\frac{1}{\hbar})^{n/2})$$

where $S_{\Gamma} = \frac{1}{2} \int_{\tilde{\Gamma}} p dq - q dp$, where $\tilde{\Gamma}$ is the path in \mathbb{R}^2 consisting in segment joining the points of Γ and

$$a^{\Gamma} = \prod_{i=1}^{n} V^{\Gamma_i} a := V_{\Gamma} a$$

where

$$\mathcal{V}^{{\sf \Gamma}_i} {\sf a}(\eta) = \int_0^\infty e^{i\eta\mu} {\sf a}(1/\mu)
ho(\mu \hbar^\gamma) rac{d\mu}{\mu}.$$

if the segment (Γ_{i-1}, Γ_i) is horizontal right oriented,

Another way of saying the same result is the following "path integral" type result

Corollary

let $n \leq C \frac{\log \frac{1}{\hbar}}{\log \log \frac{1}{\hbar}}$ and let consider the matrix elements

$$U((0,0);(q,p)) := <\psi^{a}_{(0,0)}, e^{-irac{mt_{h}H}{\hbar}}\psi^{b}_{(p,q)}>$$

will have a leading order behaviour only when $(p,q) = (i,j) \in \mathbb{Z}^2$ and

$$U((0,0);(i,j) = \sum_{\Gamma \in \times, \ \Gamma(n) = (i,j)} e^{i S_{\Gamma}/\hbar} < a, V_{\Gamma}b > + O(\hbar^{\gamma/2}(\log \frac{1}{\hbar})^{n/2})$$

the sum has to be understood as zero when there is no path satisfying $\Gamma(n) = (i, j)$.

Another application : Jaynes-Cummings model

$$H = \sum \epsilon_j s_j^z + \omega b^* b + g \sum \left(b^* s_j^- + b s_j^+ \right)$$

Reduction to one (big) spin

$$H = \epsilon s^{z} + \omega b^{*}b + g\left(b^{*}s^{-} + bs^{+}\right)$$

This is an integrable system with a degenerate torus containing an unstable fixed point at zero.

Periods as before correspond to oscillations between the number of bosons and fermions (Babelon, Douçot, P, in preparation).

 $B\psi^{qp}_{a}\sim b(q,p)\psi^{qp}_{a}$: locality

$$B\psi^{qp}_{a}\sim b(q,p)\psi^{qp}_{a}$$
: locality

$$B^t \psi_a^{qp} := e^{-i \frac{tH}{\hbar}} B e^{+i \frac{tH}{\hbar}} \psi_a^{qp}$$

$$B\psi^{qp}_{a}\sim b(q,p)\psi^{qp}_{a}$$
: locality

$$B^t \psi^{qp}_a := e^{-i\frac{tH}{\hbar}} B e^{+i\frac{tH}{\hbar}} \psi^{qp}_a \sim b(\Phi^t(q,p)) \psi^{qp}_a, \ t \leq \frac{1}{2\mu} \log(\hbar^{-1})$$

$$B\psi^{qp}_{a}\sim b(q,p)\psi^{qp}_{a}$$
: locality

$$B^{t}\psi_{a}^{qp} := e^{-i\frac{tH}{\hbar}}Be^{+i\frac{tH}{\hbar}}\psi_{a}^{qp} \sim b(\Phi^{t}(q,p))\psi_{a}^{qp}, \ t \leq \frac{1}{2\mu}\log(\hbar^{-1})$$

for larger t not true anymore, but : possibility of defining the symbol as an operator on the horocyclic leaf,

link with non – commutative geometry.

х

the origin 0 is a fixed point, but for all point "y" on the unstable manifold :

 $\Phi^{-\infty}(y)=0$

the origin 0 is a fixed point, but for all point "y" on the unstable manifold :

 $\Phi^{-\infty}(y)=0$

"equivalent" to

 $\Phi^{+\infty}(0) = y, \ \forall y$

the origin 0 is a fixed point, but for all point "y" on the unstable manifold :

 $\Phi^{-\infty}(y)=0$

"equivalent" to

 $\Phi^{+\infty}(0) = y, \,\, \forall y$

undeterminism?

the origin 0 is a fixed point, but for all point "y" on the unstable manifold :

 $\Phi^{-\infty}(y)=0$

"equivalent" to

 $\Phi^{+\infty}(0) = y, \,\,\forall y$

undeterminism?

as time $\rightarrow \infty$ quantum undeterminism and classical unpredictability merge.

Introduction Warming up Stable case General propagation of c.s. Unstable case Questions of symbols Conclusion

BUON COMPLEANNO, SANDRO!