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Introduction

Complexity  is a feature of living  systems (Milnor)

1 Non linear  long range interactions 
2 Collective self organization (emerging properties)
3 Hyerarchical structures (networks)
4 Metastability and irreversibility 

5 Information processing and storage
6 Self reproduction 

Physical systems with long range forces  share 1-4 (precomplex)

Life appears at the borderline between order and chaos (Kaufmann)

Information allows  project coding and causes irreversibility if     
             
                        limited. Infinite information = infinite energy.

.
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.Non linear systems classification

According to  the correlations decay

A) Regular                                    C(t) = 1/ t

B) Weakly chaotic                        C(t) = 1/ t α

C) Strongly chaotic                       C(t) = e - β  t    

Networks
Similar classification holds

A) Hyerarchical network                L(k)= 1/ k α

B) Random network                       L(k) = e – β  k

.
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.

  Physical systemsPhysical systems
  Deterministic in Euclidean spaces (infinite information)Deterministic in Euclidean spaces (infinite information)

 Symmetries in Euclidean spacesEuclidean spaces 

 Simple elementary units (point mass)

 Environment is optional 

 Few scales 

.
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The emergence of self organized  structures due to The emergence of self organized  structures due to 
coherencence on time scales short with respect to the coherencence on time scales short with respect to the 
collisional relaxation timescollisional relaxation times

   

Plasma wave breaking                              Spiral galaxy                                          Clusters

.
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Transtion to complexity
Occurs via information coding.   The elementary unit is 
the Von Neumann automaton  

Theorem I   There exist self replicating automata

Theorem II  Robust automata can be assembled with unreliable componets

          Gas of atoms                     Information coding                  Gas of automata 

  

     The gas of atoms                 Coding via DNA helix.            The gas of automata 



 Theory and simulations for weakly chaotic systems

  Weak chaos:  predicatbility and  reversibility
                          
 Return time spectra and correlations decay

 Toy models

 Numerical experiments:  round off arithmetics.

 
 Irreversibility of numerical experiments with symplectic maps. 

.
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Information on phase space localization of a classical 
system is finite.  Measurements perturb classical  
systems. Infinite accuracy requires infinite energy.

Computer simulations  are close  to physical reality.  
IrreversibilityIs intrinsic due to limited information 

Langevin test particle models  in Rd should have a 

small noise for  round off plus a collisional noise.

 

.
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1 N body simulations and continuum  limit1 N body simulations and continuum  limit

Such  limit  of N body system is still open questionSuch  limit  of N body system is still open question

 Fluid limit  (T=0)Fluid limit  (T=0)

 Mean field limit  (T>0)Mean field limit  (T>0)

 Kinetic limit    (collisional)Kinetic limit    (collisional)
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Short range forces

The Grad limit  N  oo  and σ   0  with N σ  = 
1/λ   constant leads for hard spheres  σ  =  π  R2   to the 
Boltzmann’s equation

     f /    t    + [ f, p2/2+V(r) ] = J(f,f)          f=f(r,p,t)              Kinetic

The moments of these  equations  provide the continuity and 
Navier Stokes equation after closure

 n(r,t) =        f(r, p, t)  dp            P(r,t)=   n-1     p    f(r,p,t)  dp          Fluid  
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Long range forces  (Coulomb oscillators)

Their distinctive property is the generation of a self field.

The  charge fluctuations is charged o neutral plasma  generate a field
self screened supposing local thermodynamical  equilibrium.

          V(r)=  Q  r -1 e – r / rD              rD   = kT/(4π   e2 n0
2)

 where rD is the Debye radius. 

The  electrostatic force  on  a charge, confined by a linear attracting field, 
is  the sum of  a near field  and  a far  field                                                             
        

 Vnear (r)=       Σ    e2 | r-ri|  −1        Vfar (r)=        Σ  e2 |

r-ri| -1 
                   i, ri < rD                                                     i, ri > rD

                       

     
              i, ri < rD
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Electrostic case. The Hamiltonian  of the system reads

                  N

Htot =  m    Σ       pi
2/2m2  +  ω 0

2 ri
2/2  + ξ  ( 2N)-1   Σ   rij

-1              

      ξ  =   Q2/M
                           i=1                                                                    i = j                                            
                                                
 
where M=Nm and Q= Ne are the total charge and mass, fixed as  N oo.
In this limit we assume the charge density to become continuos. After the
scaling Htot/m  Htot,   p/m  p

                       N

         Htot  =   Σ   H(ri, pi)        H(r,p)= p2/2 + ω 0
2 r2/2 + ξ  V(r) 

                                         
                                          i=1

The phase space distribution f(r,p,t) satisfies  Liouville + Poisson (Vlasov) 
equation  as N  oo.  A proof is given by Kiessling

       f  /     t  + [ f, H ] = 0                       ∆  V = - 4π        f(r, p, t)  dp
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Main result    In the limit N oo  the  collisional  part can be ignored, 

For a 2D model  r-1 log r  we have shown  (C. Bendetti, G. Turchetti   J. 
Phys. A  364, 197  (2006) )  by  very  accurate integration of the N body 
Hamilton’s equations, that the relaxation time scales as N. It  agrees with 
2D Landau’s  Kinetic theory,  which has same scaling  in the 3D case.

Vlasov mean field equilibria   Given any stationary distribution 
 f= f(H) the collisions drive it to the Maxwell-Boltzamman distribution  

fMB = c e-H/kT  with a self consistent potential V.

The KV  disytribution  f = c δ (H-E) gives a uniformely charged  cylinder 
of radius R.   
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Collisions    Numerical simulation with  N= (1,2,3,4)x103   fitted with  

n=n0 e-α s + nMB (1-e-α s)  where s = α N = 1/3,   s=v0 t   and  τ  = v0/a

                                      C. Benedetti C. Benedetti 
20042004

    N   N α
   103   0.31

 2 103   0.30

 3 103   0.33

 4 103   0.32

 5 103   0.32
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Collisions as a random process.

In  Landau’s theory collisions are assumed to be  frequent, small angle, binary
and independent.  Letting w(s) be a Wiener noise the equations of motion are

                                          H          
  d r  =  p ds                 d p =              ds    + ( dp )coll

                                                                       r  
                                                                                                                                        d(p)coll                                (dpi)coll  d(pj)coll

 (dp) coll =   K ds + D1/2  dw(s)        K=                           Dij = 

                                                                      ds                                ds
Slow decay of p.d.f. due to rare hard collisions 

                                                                          From the time series analysis 
                                                                          the momentum jumps p.d.f.
                                                                          has a power law decay as

                                                                           ρ (∆ px) = c (∆ px)
-4      xy

                                                                                           

                                                                                          and can be fitted with a Student

                                                                          Σ (3) distribution 
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The complex systemsThe complex systems
        Automata on a network: physical 1D dynamics (car following and saefty Automata on a network: physical 1D dynamics (car following and saefty 

distance) cognitive dynamics (decisions at crossings)  distance) cognitive dynamics (decisions at crossings)  rightright
        Space based acquisition data system  (GPS)  Space based acquisition data system  (GPS)  leftleft
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Automata based models for pedestrian mobility
 Model 1 Two automata interact with a long range repulsive (Coulomb) 

force within a sight cone.  Reduced to quadratures (Turchetti, Zanlungo)

F1=-ω 2 r1 +(r1-r2) / r12 q(C12)    C12= v1 . (r1-r2) –v1 r12 cos α

For α  = 0 the  symmetry 12 is lost, and 3-rd principle breaks

Model 2 Theory fo mind

Based on recursive thinking. At order 
zero free uniform motion. At order 1 
any automatonn sees order 0 
automata and avoids collisions 
accordingly.  
Genetic selection allows successful 
collision avoiding rules (Zanlungo)
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2 Strong and weak chaos asymptotics2 Strong and weak chaos asymptotics

   Local and global dynamical  indicators

 Lyapounov  exponent λ (x) or reversibility error h(x) are  local 

 The spectrum of Poincaré recurrences F (t, x) is semi-local 

    Limit cases: integrable  and uniformly hyperbolic systems

 Weak chaos: borderline from  integrability  to strong chaos
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Poincaré recurrences.
Given an invertible map M defined on a set Ω  with an invarian measure µ
The first return time in the neighborhood of a point x in Ω  is given by

  τ  (x, A)   =   inf  ( x in A,   Mn  (x) in A )
                    n>0

   Kac’s theorem;  the average return time in A  for an ergodic system  is 

   < τ A >  = 1/ µ (A)

   The spectrum of recurrences is given by

    F(t)   =      Lim      FA  ( t )               FA( t )  =  µ ( A > t ) / µ (A)
                      µ (A)  0

    A > t    = (  x in A,   τ  (x, A)  >  t < τ A > )
                   

.
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  Mixing systems 

  Exponential spectrum for

        F(t)  = e-t      generic points      F(t)  = e- λ  t   periodic points

 Integrable systems

          F(t)  =   C t -2

 Transition systems:   A = Ap U Am

  F(t)=  pm  FAm ( km t) + pp  FAp ( kp t) 

  km=  <  tA >/ <  tAm >     pm= µ (Am) / µ (A)

                         

.
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 Standard map   λ =8 (red), cat map (blue),  e-t  (black)
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           Standard map for   λ =0.2, 0.5 0.9  (initial point in integrable region) 

           black analytical solution decay as t-2
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       Standard map at the   edge of the chaotic region
       λ =2,3,4,5  (red, blue, purple, green). Black curve    F(t) =  p e -t + (1-p) t -2

.
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  3 Finite information and round off3 Finite information and round off  

 The reversibility error.   

 Iterating forward and backwards a map one 
does not come back to the initial points.

 
 The round off  causes an error since it acts as a 

noise and renders the map irreversible
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 The computer arithmetics (D. Knuth The art of comp. Progr. Vol 2)

The base b excess q representation of a real number  x is x* where

       x* = (e,f) = f be-q     = x [1+δ p(x)]            |f| < 1       |δ p|<b1-p

where f is a where f is a signed fractionsigned fraction  and 0 < e <2q.     and 0 < e <2q.   
  
In  a computer    b=2,  q=32 and 0 < e < 63 and f= n 2In  a computer    b=2,  q=32 and 0 < e < 63 and f= n 2-24  -24  wherewhere
0 < n < 20 < n < 22424 in the 4 bytes representation (simple precision). in the 4 bytes representation (simple precision).
Three bytes used for  f and one byte for e and in base 10  representation Three bytes used for  f and one byte for e and in base 10  representation 

                                                  xx* * = + 0.d= + 0.d11dd22 … d … d77  10   10 +E+E          E < 32          E < 32

The arithmetic operations involve round off  The arithmetic operations involve round off  

    zz=  =  x+y x+y    x x**  + + yy**= (ex, f) = z [1+= (ex, f) = z [1+δδ p p (z)](z)]               f=  f= round round   (f(fxx+f+fyybbeeyy-e-exx))
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  Orbits and pseudo-orbitsOrbits and pseudo-orbits  

The round off acts as a random perturbation and breaks theThe round off acts as a random perturbation and breaks the

Reversibility. Supposing M(x) is an invertible map  MReversibility. Supposing M(x) is an invertible map  M-1-1 o  o MM =  = I.I.

Letting   MLetting   M**(x(x**) = round) = round ( ( M(x M(x**) ) )   and )   and  M M* * 
-1-1

    (x(x**) = round) = round ( ( M M-1-1(x(x**) ) ))

                                                                  MM**
-1-1  oo M M** = I +  = I + εε

The reversibility errorThe reversibility error    at a point x=xat a point x=x**(1+(1+δδ ) is defined as ) is defined as 

                                          εε   (n)= | M(n)= | M**
-n-n  oo M M**

nn(x(x**) –x) –x* * ||

This is basically the same as the round off error on the  orbitThis is basically the same as the round off error on the  orbit
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 Let  Let  ξξ   be the round off error on the map be  be the round off error on the map be

                      MM**(x(x**)  = M(x)  = M(x**) ( 1 +) ( 1 +ξξ (x(x**) )      |) )      |ξξ |  <  c b|  <  c b-p       -p        |x-x*| < b |x-x*| < b1-p1-p

    The round off error on the trajectory  setting xThe round off error on the trajectory  setting x*n*n = M = Mnn(x(x**))

  η  η (n)(n)= |M= |Mnn(x) – M(x) – M**
nn(x (x **)| <  |DM)| <  |DMn n (x(x**)| |x-x )| |x-x **| + x| + x*n*n  ξξ (x (x * n-1* n-1))

                  

      +   +   ΣΣ         D M D M kk (x  (x * n-k* n-k)  x)  x* n-k * n-k   ξξ (x (x * n-k-1* n-k-1)   +  O(|)   +  O(|ξξ ||22))
              1 < k < n-11 < k < n-1

    If the map is ergodic it is not hard to prove thatIf the map is ergodic it is not hard to prove that      

          Lim     nLim     n-1-1  LnLn   η η (n)(n)  <  < λ λ           maximum Lyapounov exponentmaximum Lyapounov exponent
                                                  nn oo oo
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  The simplest examples are the maps on the torus  TThe simplest examples are the maps on the torus  T11

i)i)                                                                        M(x)= x + M(x)= x + ωω   Mod 1Mod 1
  IteIterating n=rating n=bbkk  times  (times  (bb  base), we have   base), we have p-np-n  digits after   digits after round off of round off of x+ bx+ bn n 

  Figure: LogFigure: Log10 10 η  η  vs logvs log1010 n n                              ηη ( b( bk  k  ) = b ) = b -(p-k ) -(p-k ) 

  
ii)ii)  M(x)= q x Mod 1   q      M(x)= q x Mod 1   q    ZZ

Choosing b=q  at every step one digit is lost 
 

                                ηη (k) = q (k) = q -(p-k)-(p-k)
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 The reversibility error The reversibility error εε (n) is about the same as the(n) is about the same as the

        round off error round off error ηη (2n) for the same initial point(2n) for the same initial point

                                                        εε (n)        (n)        ηη (2n)(2n)

For an integrable map (i.e. translation on the torus)For an integrable map (i.e. translation on the torus)

                                                Log  Log  ηη (n)= log n – p Log b(n)= log n – p Log b

For an hyperbolic map For an hyperbolic map 

                                                Log Log ηη (k) = k (k) = k λ  λ  – p Log b– p Log b
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.                                                  Other model maps

    Elliptic maps
     x’  = R ( 2π  ν   +  2π 2 x2 )                      x=( x, y)    rotation    in  R2 

    X’ = X + ν  + Y  mod 1                     map on cylinder   T x R
    Y’= Y

    x = (Y/π )1/2 cos (2π  X)                           change of coordinates 
    y=  (Y/π )1/2 sin  (2π  X)                           from    R2   to T x R
   

   Hyperbolic maps
    x’  = RH (2π  ν   +  2π 2x2 )                         hyperbolic   rotation    in  R2

    
    x’= (q+1)x + y   mod 1 
    y’=qx + y        mod 1                       hyperbolic automorphism  of T2

    Small perturbations   of these maps (Cirikov and Henon maps)

.



        Nonlinearity, noise and information

.

.



        Nonlinearity, noise and information

.

.



        Nonlinearity, noise and information

.

.
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 Pdf of the pseudo-orbit and  orbit  distancePdf of the pseudo-orbit and  orbit  distance    

GivenGiven    any smooth function f(x) we consider the  random variableany smooth function f(x) we consider the  random variable
                                                  ∆∆   ff(x,n) = f(M(x,n) = f(Mnn(x))-f(M(x))-f(M**

nn(x))(x))

function of the random process function of the random process ξξ  since M since M**(x) = M(x) + (x) = M(x) + ε ξ  .ε ξ  .

Let  Let  ρ  ρ   be the pdf of  this process  be the pdf of  this process 

                                              F(t) = F(t) = E E ((∆∆   ff(x,n) < t)     (x,n) < t)     ρρ (t) = F’(t)(t) = F’(t)

The characteristic function of  The characteristic function of  ∆∆   ff(x,n)  for  n(x,n)  for  n oo  using the  oo  using the fidelity theoremfidelity theorem    
isis

Lim Lim EE (e  (e ik ik ∆∆ f (x,n)f (x,n) )= Lim      )= Lim     expexp((ikf(Mikf(Mnn(x)(x)))))  expexp((ikf(Mikf(M**
nn(x)(x)))))     dm(x) ddm(x) dθθ 11((ξξ )… d)… dθθ nn((ξξ )=)=

nn oo                      n oo                      n oo oo

=               =               e e ik f(M(x))ik f(M(x))  d  dµ (µ (x)       e x)       e ik f(M(x))ik f(M(x))  d  dµµ εε ((x)x)

If the map is ergodic and  If the map is ergodic and  ξξ  stationary the last means can be written as limit  stationary the last means can be written as limit 
of of 

Birkoff sums Birkoff sums suitable for numerical computationssuitable for numerical computations
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After the limit n After the limit n  oo   the limit   oo   the limit  εε    0  can be taken.  In this case the 0  can be taken.  In this case the

distribution distribution ρρ εε (t)  has a limit  (t)  has a limit  ρρ (t)= (t)= ρρ (-t). The simmetry follows from(-t). The simmetry follows from

                    EE( ( ∆∆ f f (oo, (oo, εε ) ) =     f(x) d) ) =     f(x) dµµ (x) -       f(x) d(x) -       f(x) dµµ εε (x)   =       t (x)   =       t ρρ εε (t) dt(t) dt

whose  whose  εε    0 limit vanishes. As the possible simplest example we consider  0 limit vanishes. As the possible simplest example we consider 

                                          M(x)= qx mod 1        M(x)= qx mod 1        q  integer    m(x)= q  integer    m(x)= µµ (x)=x(x)=x

          e e ik M(x)ik M(x) dx =  2 k dx =  2 k-1-1 e  e ik/2ik/2  sin k/2                      sin k/2                    ρρ (t)= (1-|t|) (t)= (1-|t|) ΘΘ  (1-|t|)  (1-|t|) 

                                                              ρρ
                                                                          

                                                                                  -1            0            1     -1            0            1     tt
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Numerical investigations were performed on strange attractors generated by Numerical investigations were performed on strange attractors generated by 

Baker’s, Lozi and HenonBaker’s, Lozi and Henon map. The triangular distribution  changes into map. The triangular distribution  changes into

  

Simmetric distributions peaked at t=0 which reflect the attractor nature and Simmetric distributions peaked at t=0 which reflect the attractor nature and 

itsits topology topology. The . The  R  R x x CCantorantor structure of Baker’s attractor reflects into a  structure of Baker’s attractor reflects into a 

continuous-singular measure F(t) for the orbit-pesudorbit  fluctuations.continuous-singular measure F(t) for the orbit-pesudorbit  fluctuations.
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  Hénon   attractor and p.d.f. Hénon   attractor and p.d.f. ρρ (t), f(x)=x(t), f(x)=x

Baker’s attractor and  p.df.  p.df. ρρ (t) and f(x)=x(t) and f(x)=x
                                              

The error p.d.f  r(t) has
A similar structure for 
the different attractors.

The choice  f(x,y)=r
r=(x2+y2)1/2 mediates
the smooth structure 
of leaves and the
transverse Cantor
structure (see baker’s)

Comparison  of  ρ (t) 

.
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The other face of informationThe other face of information  (Dr. Jeckil and Mr Hide)(Dr. Jeckil and Mr Hide)

Coding allows to write projects. Energetically  writing  a code  is   Coding allows to write projects. Energetically  writing  a code  is   

cheapcheap compared to assembling the  whole structure compared to assembling the  whole structure

In the physical world the information is finite. Position determinacy is limitedIn the physical world the information is finite. Position determinacy is limited

by the atomic size.by the atomic size...

Measurements disturb also the classical state.Measurements disturb also the classical state.

A computer simulation, based on finite information,  is close to physics.A computer simulation, based on finite information,  is close to physics.

Computer round off is equivalent to add noise in the equations  defined on Computer round off is equivalent to add noise in the equations  defined on RR2d2d

  Finite information in dyn. sys. = irreversibilityFinite information in dyn. sys. = irreversibility  



Theory and simulations for weakly chaotic systemsTheory and simulations for weakly chaotic systems

 Conclusions Conclusions

 The theory of dynamical systems has  provided the The theory of dynamical systems has  provided the 
theoretical foundation of  non linear phenomena  and a theoretical foundation of  non linear phenomena  and a 
way to approach non equilibrium statistical mechanicsway to approach non equilibrium statistical mechanics

 Complex systems require the inclusion of information Complex systems require the inclusion of information 
theory in order  to describe the cognitive properties of theory in order  to describe the cognitive properties of 
the elementary units, wich are Von Neumann automatathe elementary units, wich are Von Neumann automata

 The finite information content of the physical world can The finite information content of the physical world can 
be described by introducing some background  noise.be described by introducing some background  noise.

      The effect is similar to  finite digital computation with The effect is similar to  finite digital computation with 
round off artithmetics round off artithmetics 
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