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We consider smoothness and boundedness

of FDS of n dim. Schrödinger Eqn.

i
∂u

∂t
= H(t)u(t) (1)

H(t) =
d∑

j=1

(
1

i

∂

∂xj
−Aj(t, x)

)2

u + V (t, x)u(t).

Electric and magnetic fields are given by

F (t, x) = −∂tA(t, x)− ∂xV (t, x),

Bjk(t, x) = (∂Ak/∂xj − ∂Aj/∂xk)(t, x).

We review some known results and add

some new result. 〈x〉 = (1 + |x|2)1/2. We

almost always assume the following

Assumption 1. (1) A, ∂tA, V ∈ C∞(x) and

∂a
xA, ∂α

x ∂tA, ∂α
x V ∈ C0(t, x) for all α.

(2) ∀α 6= 0, ∃εα > 0 and ∃Cα > 0 such that

|∂α
x B(t, x)| ≤ Cα〈x〉−1−εα, (2)

|∂α
x A(t, x)|+ |∂α

x F (t, x)| ≤ Cα. (3)



Assumption 1 ⇒ ∃1 unitary propagator {U(t, s)}.
Solutions with u(s) = ϕ ∈ L2(Rn) are given by

u(t) = U(t, s)ϕ.

FDS is the distribution kernel of U(t, s):

u(t, x) = U(t, s)ϕ(x) =
∫

E(t, s, x, y)ϕ(y)dy.

For the free Schrödinger Eqn

E(t, s, x, y) =
e
∓iπn

4 ei(x−y)2/2(t−s)

(2π|t− s|)n/2
.

Classical Hamiltonian and Lagrangian are

H(t, x, p) = (p−A(t, x))2/2 + V (t, x),

L(t, q, v) = v2/2 + vA(t, q)− V (t, q).

(x(t, s, y, k), p(t, s, y, k)) are solutions of the IVP
for Hamilton’s equations

ẋ(t) = ∂pH(t, x, p), ṗ(t) = −∂xH(t, x, p);

x(s) = y, p(s) = k (4)

We begin with short time results due to D.
Fujiwara (1980, A = 0) and K. Yajima (1991).



Lemma 2.Assume Assumption 1. Then, ∃T >

0 such that ∀x, y ∈ Rd and ∀t, s ∈ R with |t−s| <

T , ∃1 solutions of Hamilton Eqn’s (4) such that

x(t) = x, x(s) = y.

The action integral of this path

S(t, s, x, y) =
∫ t

s
L(r, x(r), ẋ(r))dr

is C∞(x, y); ∂α
x ∂b

yS ∈ C1(t, s, x, y); for |α+β| ≥ 2∣∣∣∣∣∂α
x ∂β

y

(
S(t, s, x, y)−

(x− y)2

2(t− s)

)∣∣∣∣∣ ≤ Cαβ.

Theorem 3. Assume Assumption 1. Then,

FDS is given for 0 < ±(t− s) < T by

E(t, s, x, y) =
e
∓iπn

4 eiS(t,s,x,y)a(t, s, x, y)

(2π|t− s|)n/2
,

where a ∈ C∞(x, y), ∂α
x ∂

β
y a ∈ C1(t, s, x, y) and

|∂α
x ∂β

y a(t, s, x, y)| ≤ Cαβ, |α|+ |β| ≥ 0.



Theorem 3 is sharp and results do not ex-

tend beyond a short time under the con-

ditions. From singularities point of view, this

can be seen from Mehler’s formula for the har-

monic oscillator (A = 0 and V (x) = x2/2): If

A and V are t independent we write

E(t− s, x, y) = E(t, s, x, y).

Then, FDS of the harmonic oscillator is given

for m < t/π < m + 1, m ∈ Z, by

E(t, x, y) =
e−inπµ(t)/2

|2πsint|n/2
e(i/sint)(cost(x2+y2)/2−x·y)

where µ(t) = m + 1
2 and

E(mπ, x, y) = e−imπ/2δ(x− (−1)my).

FDS is smooth and bounded for non-resonant

times t ∈ R \ πZ but singularities recur at

resonant times πZ. We will show toward the

end of this talk that FDS can increase as

|x| → ∞ for some fixed t and s .



Situation is the same for linearly increasing

magnetic fields A. Consider non-vanishing

constant magnetic force in two dimensions:

V = 0 and A = (x2,−x1) (⇒ B = 2). Let

T (t) = e−iLt, L = (x1p2 − x2p1) =
1

i

∂

∂θ

and v(t, x) = T (t)u(t, x) = u(t, R(t)x), R(t) be-

ing the rotation by angle t. Then

i
∂u

∂t
=

1

2
(p−A)2u + V (t, x)u

⇔ i
∂v

∂t
= −

1

2
∆v +

1

2
x2v + V (t, R(t)−1)v.

It follows for FDSs that

Eu(t, s, x, y) = Ev(t, s, R(t)−1x, R(s)−1y).

In particular, if V = 0, then

E(t, x, y) =
−iπµ(t)

|2πsint|
e(i/sint)(cost(x2+y2)/2−x·R(t)y)

and

E(mπ, x, y) = e−imπ/2δ(x− y).



If A = 0 and V (t, x) = o(x2), short time results

extend to any finite time, a → 1 and ∂α
x ∂

β
y S

have limits as x2 + y2 →∞ (Yajima 96, 01):

Definition 4. V is subquadratic at infinity if

lim
|x|→∞

sup
t∈R

|∂2
xV (t, x)| = 0.

|∂α
x V (t, x)| ≤ Cα, |α| ≥ 3.

Lemma 5. Let A = 0 and V be subquadratic

at infinity. Let T > 0 be fixed arbitrarily. Then:

(1) ∃R ≥ 0 such that

∀x, y ∈ Rd with x2 + y2 ≥ R2 and

∀t, s ∈ R with |t− s| < T,

∃ a unique path of (4) such that

x(t) = x and x(s) = y.

For |α+β| ≥ 2, the action of this path satisfies∣∣∣∣∣∂α
x ∂β

y

(
S(t, s, x, y)−

(x− y)2

2(t− s)

)∣∣∣∣∣→ 0;

as x2 + y2 →∞ uniformly for 0 < |t− s| < T .



Theorem 6. Let A = 0 and V be subquadratic
at infinity. Let T > 0 be fixed arbitrarily. Then:
For 0 < ±(t− s) < T ,

E(t, s, x, y) =
e
∓iπn

4 eiS̃(t,s,x,y)a(t, s, x, y)

(2π|t− s|)n/2
,

where
(a) S̃, a ∈ C∞(x, y), ∂α

x ∂
β
y S̃, a ∈ C∞(t, s, x, y).

(b)S(t, s, x, y) = S̃(t, s, x, y) for x2 + y2 ≥ R2.

(c) ∀α, β, as x2 + y2 →∞

sup
0<|t−s|<T

|∂α
x ∂β

y (a(t, s, x, y)− 1)| = 0

Remark 7. Smoothness of FDS is known for
more general quadratic or subquadratic poten-
tials with magnetic fields and for Schrödinger
equations on the manifolds under the non-
trapping condition of backward Hamilton tra-
jectories of

∑
gij(x)pipj starting from y. Re-

sults are obtained via micro-local propaga-
tion of singularities theorems. For more in-
formation, we refer to recent papers by S. Doi
(04) and Martinez, Nakamura and Sordoni (07).



Results on boundedness of FDS are scarce

except when V (x) decays at infinity and

A = 0. Then, dispersive estimates

sup
x,y

|Ec(t, x, y)| ≤ C|t|−n/2 (5)

are studied for the (spectrally) continuous part

of FDS. For more information we refer to W.

Schlag’s survey article (07). For A 6= 0, (5) is

not known.

If V ≥ C|x|2+ε, then FDS should be non-

smooth and unbounded. But, results are

only for smoothness in one dimension.

Theorem 8. Let n = 1 and V ∈ C3. Assume

outside a compact set that V is convex;

|V (j)(x)| ≤ Cj〈x〉−1|V (j−1)(x)| for j = 1,2,3;

and xV ′(x) ≥ 2cV (x) (⇒ V (x) ≥ C|x|2c) for

∃c > 1. Then, E(t, x, y) is nowhere C1(t, x, y).



Because of this sharp transition, it is interest-
ing to study border line cases V (t, x) = O(x2).
We consider perturbations of harmonic os-

cillator by subquadratic W .

V (t, x) =
1

2
x2 + W (t, x). (6)

Non-resonant behavior of FDS is stable

under subquadraic perturbations (Kapitan-
ski, Rodnianski and Yajima (97), Yajima(01)):
Lemma 9. Assume (6) and A = 0. Let m ∈ Z

and ε > 0. ∃R ≥ 0 s.t. ∀t, s and ∀x, y ∈ Rd with

mπ + ε < t− s < (m + 1)π − ε, x2 + y2 ≥ R2,

∃1 path of Hamilton Eqn. (4) such that

x(t) = x and x(s) = y.

The action integral S(t, s, x, y) of this path sat-
isfies, for |α + β| ≥ 2 and as x2 + y2 →∞

∂α
x ∂β

y

(
S(t, s, x, y)−

cos(t− s)(x2 + y2)− 2x · y
2sin(t− s)

)
→ 0 uniformly wrt ε < t− s−mπ < π − ε.



Using this action as phase function, FDS can

be written in the same form as for harmonic

oscillator:

Theorem 10. Let V = (x2/2) + W (t, x) be as

above and A = 0. Let m ∈ Z and ε > 0. Then,

∀t, s as above,

E(t, s, x, y) =
e−inµ(t−s)πeiS̃(t,s,x,y)a(t, s, x, y)

(2π|sin(t− s)|)n/2
,

(a) S̃, a ∈ C∞(x, y);

∂α
x ∂

β
y S̃, ∂α

x ∂
β
y a ∈ C1(t, s, x, y), ∀α, ∀β.

(b) S(t, s, x, y) = S̃(t, s, x, y) for x2 + y2 ≥ R2;

(c) For all α and β, uniformly with respect to

mπ + ε < t− s < (m + 1)π − ε.

lim
x2+y2→∞

|∂α
x ∂β

y (a(t, s, x, y)− 1)| = 0.

What happens at resonant times? We set s =

0 and write E(t, x, y) for E(t,0, x, y).



Recurrence of singularities at resonant times

πZ persists under sub-linear perturbations

(Zelditch(83), Kapitanski, Rodnianski and Ya-

jima (97), Doi(04)). Rn
∗ = Rn \ {0}.

Theorem 11.Let A = 0, V = (1/2)x2+W (t, x).

Suppose

|∂α
x W (t, x)| ≤ Cα〈x〉δ−|α|, δ < 1.

Then, for N = 0,1, . . . ,

〈x− y〉N |E(mπ, x, y)| ≤ CN for |x− y| > 1,

WFxE(mπ, x, y) = {(−1)m(y, ξ): ξ ∈ Rn
∗}.

For linearly increasing perturbations, singular-

ities can propagate but E(mπ, x, y) falls off

as |x| → ∞. For example, if V = (1/2)x2 +

a〈x〉, then, with ξ̂ = ξ/|ξ|,

WFxE(mπ, x, y) = {(−1)m(y + 2aξ̂, ξ): ξ ∈ Rn
∗},

lim
|x−y|→∞

〈x− y〉N |E(mπ, x, y)| = 0.



However, superlinear perturbations satisfy-
ing a certain sign condition can sweep away
singularities and creat growth of FDS at
infinity. Let χ ∈ C∞

0 (1/4 < |x| < 4) be such
that

χ(x) = 1 for 1/2 < |x| < 2.

Theorem 12.Let A = 0, V = (1/2)x2+W (t, x).
Suppose W is subquadratic and

C1〈x〉−δ ≤ ∂2
xW (t, x) ≤ C2〈x〉−δ, 0 < δ < 1.

Then, E(mπ,0, x, y) ∈ C∞(x, y). Moreover, for
a fixd y, E(mπ,0, x, y) ∼ |x|nδ/(1−δ) in the sense(∫

Rn
|E(mπ,0, x, y)|2χ

(
x

R

)2 dx

Rn

)1/2

∼ Rnδ/(2−2δ)

for sufficiently large R > 0.

Note that growth rate of E(mπ, x, y) as |x| → ∞
increases (dereases) when W (x) = O(|x|2−δ)
becomes weaker(stronger):

lim
δ↑1

nδ

2(1− δ)
= ∞ and lim

δ↓0
nδ

2(1− δ)
= 0.



This is somewhat against intuition and sur-

prizing. But, this can be understood semi-

classically. Consider the ensemble Γ of classi-

cal particles sitting at time 0 at the position y ∈
Rn with uniform momentum distribution. This

is described by the wave function δ(x − y) =

E(0, x, y) semiclassically. After time mπ, Γ will

be mapped by the Hamilton flow to Lagrangian

manifold {(x(mπ, y, k), p(mπ, y, k)): k ∈ R}. Here

we have p(mπ, y, k) ∼ k and |x(mπ, y, k)| ∼ |k|1−δ

as |k| → ∞. It follows semi-classically

|E(mπ, x, y)| ∼
∣∣∣∣∣det

(
∂x

∂p

)∣∣∣∣∣
−1/2

∼ |k|nδ/2 ∼ |x|nδ/(2−2δ)

as |x| → ∞.

Notice also that when δ → 0, then

V (x) =
1

2
x2 + c〈x〉2−δ → x2/2 + c〈x〉2



and mπ is non-resonant for the latter and FDS

at t = mπ is smooth and bounded. On the

other hand as δ → 1

V (x) =
1

2
x2 + c〈x〉2−δ →

1

2
x2 + c〈x〉.

For the latter potential, singularities fill the

sphere |x − y| = 2cm and we may naively con-

sider E(mπ, x, y) = ∞ there.

We remark smoothness properties of FDS

both at non-resonant and resonant times

have been generalized by S. Doi (04 in

CMP) to more general situations including per-

turbations of non-isotropic harmonic oscilla-

tors by using Egorov type argument.

We emphasize that there still are a lot of things

to be understood. In particular:

(1) What happens for finite time FDS when

magnetic fields are present?



(2) Is FDS spatially unbounded when V is

superquadratic at infinity? If so, how is

it unbounded, locally in space or at infinity?

Note that for the free particle in an interval

[0, π] with Dirichlet condition, the FDS

E(t, x, y) = (π/2)
∞∑

n=1

ein2tsinnxsinny

is not integrable wrt x for almost all t, y.

(3) What happens in multi-dimensions when

V is superquadratic?

Proof of the last statement of Theorem 12.

Proof of theorems and their generalizations

may be found in the literature mentioned above

except the last statement of Theorem 12, viz.

the growth of E(mπ,0, x, y) as |x| → ∞, which

we prove for m = 1. We write

(x(π,0, y, k), p(π,0, y, k)) = (x(y, k), p(y, k))



for solutions of Hamilton Eqn. (4).

Lemma 13. ∃R > 0 such that canonical map

(y, k) 7→ (x(y, k), p(t, y))

has a generating function ϕ(ξ, y) defined for

ξ2 + y2 ≥ R2 such that

(∂ξϕ)(p(y, k), y) = x(y, k), (∂yϕ)(p(y, k), k) = k

For fixed y, ϕ satisfies:

C1|ξ|1−δ ≤ |∇ξϕ(ξ, y)| ≤ C2|ξ|1−δ.

|∂α
ξ ϕ(ξ, y)| ≤ Cα, |α| ≥ 2.

Theorem 14. By using ϕ̃ ∈ C∞(ξ, y) such that

ϕ̃(ξ, y) = ϕ(ξ, y) for ξ2 + y2 ≥ R2 and a ∈
C∞(ξ, y) such that

lim
ξ2+y2→∞

|∂α
ξ ∂β

y (a(ξ, y)− 1)| = 0,

the FDS E(x, y) = E(π, x, y) may be written

E(x, y) =
−i

(2π)n

∫
eixξ−iϕ̃(ξ,y)a(ξ, y)dξ



Here and in what follows various integrals should

be understood as an oscillatory integrals. Omit

y and write ϕ for ϕ̃. We need estimate

1

(2πR)n

∫ ∣∣∣∣χ(x

R

) ∫
ei(xξ−ϕ(ξ))a(ξ)dξ

∣∣∣∣2 dx

=
∫∫

χ̂2(R(η − ξ))ei(ϕ(η)−ϕ(ξ))a(ξ)a(η)dξdη.

Here χ2 = χ2. Change variables:

η = ξ + R−1ζ

and expand a(ξ + R−1ζ) by Taylor’s formula.

This produces with a(a) = ∂αa and etc.

=
∑

|α|≤N

1

α!

(−i)|α|

Rn+|α|

∫∫
F(χ(α)

2 )(ζ)

× ei(ϕ(ξ+R−1ζ)−ϕ(ξ))a(ξ)a(α)(ξ)dξdζ (7)

plus the remainder which is shown to be O(R−N)

by integration by parts with respect to the ζ

variables.



Writing

ϕ(ξ + R−1ζ)− ϕ(ξ, y) =
ζ

R
∇ϕ(ξ) + Ψ(ξ, ζ/R),

Ψ(ξ, ζ/R) =
ζ

R

(∫ 1

0
(1− θ)

∂2ϕ

∂ξ2
(ξ + (θ/R)ζ)dθ

)
ζ

R

we then expand the exponential:

ei(ϕ(ξ+R−1ζ)−ϕ(ξ))

= ei(ζ/R)∇ϕ(ξ)
N∑

m=0

(iΨ)m

m!
+ RN(ξ, R−1ζ)

Integartion by parts wrt ζ shows that RN(ξ, R−1ζ)
produces O(R−N) in (7). Thus, we need study

∑
m,α

(−i)|α|

α!Rn+|α|

∫∫
ei(ζ/R)∇ϕ(ξ)F(χ(α)

2 )(ζ)

×
(iΨ(ξ, ζ/R))m

m!
a(ξ)a(α)(ξ)dζdξ. (8)

We further expand Ψ(ξ, ζ/R) by Taylor’s for-
mula

Ψ(ξ, ζ/R) =
∑

2≤|α|≤N

(ζ/R)α

α!
ϕ(α)(ξ)+LN(ξ, ζ/R)



and expand (iΨ(ξ, ζ/R))m in (8) accordingly.

Integaration by parts shows terms which con-

tain LN produce O(R−N). When (iΨ(ξ, ζ/R))m

is replaced by terms which do not contain LN ,

(8) can be explicitly computed and produces

Cαβm

Rn+|α+β|

∫
χ
(α+β)
2 (∇ϕ(ξ)/R)

× ϕ(β1)(ξ) . . . ϕ(βm)(ξ)a(ξ)a(α)(ξ)dξ.

Thus, as R →∞, main term in (8) is given by

the term with α = 0 and m = 0:

M(R) =
1

Rn

∫
χ2(∇ϕ(ξ)/R)|a(ξ)|2dξ.

Since a(ξ) → 1 as |ξ| → ∞ and |∇ϕ(ξ)| ∼ |ξ|1−δ

for large |ξ|, we have

C
nδ/(1−δ)
R ≤ M(R) ≤ C2Rnδ/(1−δ),

which yields the theorem.


