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Abstract

We prove reality of the spectrum for a class of PT− symmetric, non self-adjoint
quantum nonlinear oscillators of the form H = p2 + P (q) + igQ(q). Here P (q) is an
even polynomial of degree 2p positive at infinity, Q(q) an odd polynomial of degree
2r − 1, and the conditions p > 2r, |g| < R for some R > 0 hold.

1 Introduction and statement of the results

Quantum nonlinear oscillators exhibiting remarkable ambiguities in the quantization pro-
cedure have recently drawn considerable attention from Francesco Calogero[1], [2], [3]. In
this paper we deal with another remarkable phenomenon taking place in a different class
of quantum non linear oscillators (the PT-symmetric ones, see below) namely the reality
of the spectrum even though the corresponding Schrödinger operators are not self-adjoint.
Consider indeed the classical Hamiltonians in the canonical coordinates (p, q) ∈ R

2:

H(p, q; g) = p2 + P (q) + igQ(q) (1.1)

Here P (q) is a real, even polynomial of degree 2p, p ≥ 1 diverging positively at infinity,
Q(q) a real, odd polynomial of degree 2r−1, r ≥ q ≥ 1, and g a complex number. Standard
quantization of (1.1) yields the Schrödinger equation (here ~ = 1)

−
d2ψ

dq2
+ P (q)ψ + igQ(q)ψ = E(g)ψ (1.2)

or, equivalently
H(g)ψ = E(g)ψ

Here H(g) is the maximal operator acting in L2(R) generated by −
d2

dq2
+ P (q) + igQ(q).

H(g) has discrete spectrum (see e.g. [4]), but it is not self-adjoint and not even normal.

Copyright c© 2005 by E Caliceti and S Graffi

1INFN, Sezione di Bologna



Non Self-Adjoint Quantum Nonlinear Oscillators with Real Spectrum 139

However it has been conjectured long ago that its eigenvalues, denoted En(g) : n = 1, 2, . . .
should be purely real if g is real. This is because the Schrödinger equation (1.2) is PT -
symmetric, namely invariant under the combined application of the reflection symme-
try operator (Pψ)(x) = ψ(−x) and of the (antilinear) complex conjugation operation
(Tψ)(x) = ψ(x). One immediately checks that (PT )H(g) = H(g)(PT ) when g ∈ R.
PT−symmetric quantum mechanics (see e.g. [5],[6],[7], [8],[9],[10],[11],[12]) requires the

reality of the spectrum of PT−symmetric operators provided PT is not spontaneously
broken; actually it has been recently proved, for instance, that a large subclass of Schrö-
dinger operators of the type (1.2) does actually have a purely real spectrum [19], [17]. Both
proofs rely on rather subtle arguments of ordinary differential equations and functions of
complex variables. Purpose of this paper is to provide a perturbation theoretic proof, valid
for a class of polynomials P and Q. It consists in the verification of the following simple
statements:

(i) All eigenvalues En(0) of H(0) are real, and stable for g suitably small (the definition
of stability is recalled in the proof of Theorem 1.1 below);

(ii) There is R > 0 independent of n such that the perturbation expansion for any
eigenvalue En(g) near En(0) converges for |g| < R;

(iii) For |g| < R the operator H(g) has no eigenvalue other than those defined by the
convergent perturbations expansions, which are real.

We will indeed prove the following

Theorem 1.1.

In the above notations, let p > 2r. Then assertions (i-iii) above hold true for the operator

H(g) defined by the maximal action of −
d2

dq2
+ P (q) + igQ(q) on L2(R).

Remarks

1. If H is a PT− symmetric operator then (PT )H = H∗(PT ) so that the eigenvalues
of H exist in complex conjugate pairs.

2. We recall that the eigenvalues En of H(0) form an increasing sequence such that
limn→∞En = +∞ and fulfill the estimate (see e.g.[4])

En = Bn2p/(p+1) +O(n
p−1
p+1 ), n→ ∞ (1.3)

for some positive constant B.

3. The proof of [17] applies to the cases P = (−iq)m, Q = −i

m−1
∑

j=1

aj(iq)
m−j , m ≥ 2, g

arbitrary under the condition (j − k)ak ≥ 0 ∀ k for at least one 1 ≤ j ≤ m/2. The
proof of [19] applies to P (q) = q2, Q(q) = q2r−1. Hence we see that for m = 2p the
present result holds for a class not contained in the previous ones.

4. The recently introduced [18] PT−asymmetric but CPT−symmetric hamiltonians
represent a small perturbation of the present class.
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2 Proof of the results

We have to verify Assertions (i-iii). Assertion (i) is well known: H(0) is a self-adjoint
operator with discrete spectrum, and Q is relatively bounded with respect to H(0) with
relative bound zero. This means that D(Q) ⊃ D(H(0)) and that for any b > 0 there is
a > 0 such that

‖Qu‖ ≤ b‖H(0)u‖ + a‖u‖, ∀u ∈ D(H(0)) (2.1)

Here D(A) denotes the domain of the operator A. This bound entails that H(g) defined
on D(H(0)) is a closed operator with compact resolvent (and hence discrete spectrum) for
all g ∈ C. Moreover all eigenvalues of H(0) are simple and stable as eigenvalues of H(g)
for |g| suitably small, i.e. there is one and only one simple eigenvalue En(g) of H(g) near
En(0) for |g| suitably small (see e.g.[23] for the formal definition).

We have thus to verify Assertions (ii) and (iii). As far as (iii) is concerned, we recall that
under the present conditions the (Rayleigh-Schrödinger) perturbation expansion near any
unperturbed eigenvalue En(0) := En has a positive convergence radius ρn; a lower bound
for the convergence radius is given by (see [22], formula VII.2.34):

R(n) =

[

2(a+ b|En|)

dn
+ 2b+ 1

]

−1

(2.2)

Here b and a are the constants of the estimate (2.1) and dn is half the isolation distance
of the eigenvalue En, namely:

dn :=
1

2
min (|En − En−1|, |En −En+1|) (2.3)

In this case, by (1.3) we have

dn ∼ n
p−1
p+1 ,

En

dn
∼ n, n→ ∞ (2.4)

Therefore to prove Assertion (ii) it is enough to verify that, choosing b = b(n) =
1

n
in

(2.1), we can find a(n) such that

an

dn
≤ Λ < +∞, n→ ∞ (2.5)

for a suitable constant Λ > 0. By (2.2) this entails that the perturbation expansions
near the unperturbed eigenvalues En have a common convergence circle of radius R > 0
independent of n, i.e. R(n) ≥ R ∀n. We have indeed:

Lemma 2.1. If p > (4r + 3)/2, ∀n given bn = K/n for some K > 0 there is N > 0 such

that the estimate (2.1) holds with an < Nn
p−1
p+1 .

Proof: Introduce from now on the standard notation pu = −i
du

dx
so that

p2u = −
d2u

dx2
, H(0) = p2 + P (q).
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The following quadratic estimate is well known (see e.g.[13])

‖p2u‖ + ‖P (q)u‖ ≤ γ|(p2 + P (q))u‖ + β‖u‖, ∀u ∈ D(H(0)) (2.6)

for some γ > 0, β > 0. Therefore to prove it will be enough to prove (2.1) with the stated
constants an and bn it will be enough to prove the further estimate

‖Qu‖ ≤ bn‖Pu‖ + an‖u‖, ∀u ∈ D(P ) (2.7)

because we then have ‖Qu‖ ≤ bn‖H(0)u‖ + bnβ‖u‖ + an‖u‖ and the constant bnβ can be
obviously absorbed in an. In turn (2.7) follows from

‖Qu‖2 ≤ b2n‖Pu‖
2 + a2

n‖u‖
2, ∀u ∈ D(P ) (2.8)

Now this L2 inequality is clearly implied by the pointwise inequality

b2nP (q)2 −Q(q)2 + a2
n ≥ 0, ∀ q ∈ R (2.9)

Next we remark that, up to an additive constant which can be absorbed in the constant
β of the estimate (2.6), we can limit ourselves to verify this inequality for homogeneous
polynomials P and Q of degree 2p and 2r − 1, respectively. Since bn = K/n this last
inequality reads

q4r−2 ≤
K2

n2
q4p + a2

n, ∀ q ∈ R (2.10)

Since there are only even powers, we can restrict to q ≥ 0. Assume for the sake of simplicity
K = 1. Remark that the inequality

q4r−2 ≤ n−2q4p

is fulfilled if

q ≥ nα, α =
1

2(p− r) + 1

On the other hand, if q < nα then q4r−2 < n(4r−2)α; hence the inequality

q4r−2 < a2
n

which yields (2.10) in this case, will be fulfilled if

an ≥ n
2r−1

2(p−r)+1 (2.11)

It suffices then to have
2r − 1

2(p − r) + 1
<
p− 1

p+ 1

or, equivalently:

p > 2r

This concludes the proof of the Lemma. An immediate consequence is the existence of the
constant Λ in (2.5), and consequently of a common convergence radius R. This verifies
Assertion (ii).
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Proof of Theorem 1.1

We have only to verify Assertion (iii). We do this by adapting the argument of [21],
Theorem 2. Let us first recall that under the present assumptions H(g) is a type-A
holomorphic family of operators in the sense of Kato (see [22], Chapter VII.2) with compact
resolvents ∀ g ∈ C. In particular:

(i) the eigenvalues El(g) are locally holomorphic functions of g with only algebraic
singularities;

(ii) the eigenvalues El(g) are stable, namely given any eigenvalue E(g0) of Hg0 of (geo-
metric) multiplicity m there are exactly m eigenvalues Ej(g) of H(g), j = 1, . . . ,m
(counting geometric multiplicities) such that lim

g→g0

Ej(g) = E(g0);

(iii) the Rayleigh-Schrödinger perturbation expansion for the eigenprojections and the
eigenvalues near any eigenvalue El of H(0) are convergent.

We have seen above that all the series are convergent for all g ∈ ΩR; ΩR := {g ∈ C : |g| ≤
R}, where R0 is the uniform lower bound for all convergence radii.
The first part of the argument concerns a localization of the eigenvalues of H(g0), g0 ∈
ΩR ∩ R. Since bn = K/n, by (2.4) and (2.5) there exists A > 0 sufficently large such that

3bn +
bnEn

dn
+

a

dn
≤ A, ∀n ∈ N (2.12)

2bn +
bn(En+1 − dn+1

δn
+
an

δn
≤ A, ∀n ∈ N (2.13)

2b1 +
a1

|E1 − d1|
≤ A (2.14)

Here:
δn := min (dn, dn+1)

For any n let Qn be the square centered at En and of side 2dn in the complex z plane,
and recall that the eigenvalues En form an increasing sequence: E0 < E1 < . . .. Let

A := {z ∈ C : Rez ≥ (E1 − d1)}
⋃

n∈N

Qn. Let us show that this set has empty intersection

with the sectrum of H(g) for |g| < 1/A, i.e. A ⊂ ρ(H(g)) = C \ σ(H(g)). ∀ z ∈ A there
are indeed two possibilities:

a) ∃ s ∈ N s.t. |Im z| ≥ δs and |Re z − Es| ≤ δs

b) ∃ s ∈ N s.t. Es + ds ≤ Re z ≤ Es+1 − ds+1

Case a): Let R0(z) := (H(0) − z)−1 be the free resolvent. Then we have:

‖gQR0(z)‖ ≤ |g| · ‖QR0(z)‖

≤ |g|[bs‖[H(0) − z]R0(z)‖ + bs|z| ‖R0(z)‖ + as ‖g(z)‖]

≤ |g|

[

bs +
bs|z| + as

dist(z, σ(H(0))

]

≤ |g|

[

bs + bs
Es + ds + |Im z|

|Im z|
+

as

|Im z|

]

≤ |g|

[

3bs + bs
Es

ds
+
as

ds

]

≤ |g|A < 1 (2.15)
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if |g| < 1/A. This formula follows by the relative boundedness condition

‖Qu‖ ≤ bn‖H(0)u‖ + an‖u‖, the fact that ‖R0(z)‖ =
1

dist(z, σ(H(0))
≤

1

|Im z|
, and

formula (2.12). We now prove that the resolvent

Rg(z) := [H(g) − z]−1 = R0(z)[1 + igQR0(z)]
−1

exists and is bounded by the uniform norm convergence of the Neumann expansion. We
have indeed, by (2.15):

‖Rg(z)‖ = ‖R0(z)[1 + igQR0(z)]
−1‖ = ‖R0(z)

∞
∑

k=0

[−igQR0(z)]
k‖ ≤

≤ ‖R0(z)‖
∞
∑

k=0

|gk|‖QR0(z)]‖
k ≤

‖R0(z)‖

1 − |g|A
(2.16)

Case b) Analogous computations yield

‖gR0(z)‖ ≤ |g|

[

bs + bs
Es+1 − ds+1 + |Im z|

dist(z, σ(H(0))
+
as

δs

]

≤ |g|

[

2bs + bs
Es+1 − ds+1

δs
+
as

δs

]

≤ |g|A < 1

provided |g| < 1/A. Here we have used (2.13). Now the same argument of case a) shows
that z ∈ ρ(H(g)) if |g| < 1/A. Finally let us prove that C\

⋃

n∈N
Qn ⊂ ρ(H(g)) if |g| < 1/A.

We only need to show that z ∈ ρ(H(g)) if |g| < 1/A and Re z ≤ E1 − d1. Once more we
have:

‖gR0(z)‖ ≤ |g|

[

b1 + b1
|z|

dist(z, σ(H(0))
+

a1

dist(z, σ(H(0))

]

≤ |g|

[

2b1 +
a1

|E1 − d1|

]

≤ |g|A ≤ 1

for |g| < 1/A. Here we have used (2.14) and the inequalities

|z| ≤ dist (z, σ(H(0)), |E1 − d1| ≤ dist (z, σ(H(0))

The results so far obtained allow us to assert that if E(g0) is an eigenvalue of H(g0) with

g0 ∈ R, |g0| < 1/A, then E(g0) ∈
⋃

n∈N

Qn. Since the open squares Qn are disjoint, there

exists n0 ∈ N such that E(g0) ∈ Qn0 . Moreover, if g 7→ E(g) is a continuous function
defined on any subset D of the circle {g : |g| < 1/A} containing g0, then E(g) ∈ Qn0. Now
let m0 denote the multiplicity of the eigenvalue E(g0). Then for g close to g0 there are m0

eigenvalues (counting multiplicities) El(g), l = 1, . . . ,m0 of H(g) such that lim
g→g0

El(g) =

E(g0). Each function El(g) represents a branch of one or several holomorphic functions
which have at most algebraic singularities at g = g0 (see [22], Thm VII.1.8). Assume
without loss g0 > 0. Let us follow one of such branches from g0 to 0, dropping from now
on the index l. As remarked above, E(g) is contained in Qn0 as g → g−0 . Suppose that
the holomorphic function E(g) is defined on the interval ]g1, g0[ with g1 > 0. We will
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show that it can be analytically continued up to g = 0 (in fact, up to g = −1/A). Since
E(g) ∈ Qn0 , E(g) is bounded on ]g1, g0[. Thus, by the stability property of the eigenvalues
of holomorphic operator families, E(g) must converge to an eigenvalue E(g1) of H(g1) as
g → g+

1 , and E(g1) ∈ Qn0 . Repeating the argument starting from E(g1), we can continue
E(g) to a holomorphic function in the interval ]g2, g1] with at most an algebraic singularity
at g1. In this way we build a piecewise holomorphic function E(g) defined on ]−1/A, 1/A[
such that E(g) is an eigenvalue of H(g). In particular E(0) coincides with En0 , which is
the only eigenvalue of H(0) inside Qn0 . Since En0 is simple, E(g) is the only eigenvalue
of H(g) close to En0 for g small. Thus E(g) must be real for g ∈ R, |g| small, because
if it is complex also its conjugate E(g) enjoys the same property, which is ruled out by
the stability. Moreover, E(g) is the sum of the perturbation expansion around En0 , and
therefore is a holomorphic function for |g| < R. Let from now on |g| < T := min (R, 1/A).
Then the holomorphy implies that the real-valuedness for |g| small extends to all |g| < T ,
g ∈ R. This concludes the proof of Theorem 1.1.
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