On a Class of Non Self-Adjoint Quantum Nonlinear Oscillators with Real Spectrum

Emanuela CALICETI and Sandro GRAFFI¹

Dipartimento di Matematica, Università di Bologna 40127 Bologna, Italy E-mails: caliceti@dm.unibo.it, graffi@dm.unibo.it

This article is part of the special issue published in honour of Francesco Calogero on the occasion of his 70th birthday

Abstract

We prove reality of the spectrum for a class of PT- symmetric, non self-adjoint quantum nonlinear oscillators of the form $H = p^2 + P(q) + igQ(q)$. Here P(q) is an even polynomial of degree 2p positive at infinity, Q(q) an odd polynomial of degree 2r - 1, and the conditions p > 2r, $|g| < \overline{R}$ for some $\overline{R} > 0$ hold.

1 Introduction and statement of the results

Quantum nonlinear oscillators exhibiting remarkable ambiguities in the quantization procedure have recently drawn considerable attention from Francesco Calogero[1], [2], [3]. In this paper we deal with another remarkable phenomenon taking place in a different class of quantum non linear oscillators (the PT-symmetric ones, see below) namely the reality of the spectrum even though the corresponding Schrödinger operators are not self-adjoint. Consider indeed the classical Hamiltonians in the canonical coordinates $(p,q) \in \mathbb{R}^2$:

$$\mathcal{H}(p,q;g) = p^2 + P(q) + igQ(q) \tag{1.1}$$

Here P(q) is a real, even polynomial of degree $2p, p \ge 1$ diverging positively at infinity, Q(q) a real, odd polynomial of degree $2r-1, r \ge q \ge 1$, and g a complex number. Standard quantization of (1.1) yields the Schrödinger equation (here $\hbar = 1$)

$$-\frac{d^2\psi}{dq^2} + P(q)\psi + igQ(q)\psi = E(g)\psi$$
(1.2)

or, equivalently

$$H(g)\psi = E(g)\psi$$

Here H(g) is the maximal operator acting in $L^2(\mathbb{R})$ generated by $-\frac{d^2}{dq^2} + P(q) + igQ(q)$. H(g) has discrete spectrum (see e.g. [4]), but it is not self-adjoint and not even normal.

Copyright © 2005 by E Caliceti and S Graffi

¹INFN, Sezione di Bologna

However it has been conjectured long ago that its eigenvalues, denoted $E_n(g) : n = 1, 2, ...$ should be purely real if g is real. This is because the Schrödinger equation (1.2) is PTsymmetric, namely invariant under the combined application of the reflection symmetry operator $(P\psi)(x) = \psi(-x)$ and of the (antilinear) complex conjugation operation $(T\psi)(x) = \overline{\psi}(x)$. One immediately checks that (PT)H(g) = H(g)(PT) when $g \in \mathbb{R}$.

PT-symmetric quantum mechanics (see e.g. [5],[6],[7], [8],[9],[10],[11],[12]) requires the reality of the spectrum of PT-symmetric operators provided PT is not spontaneously broken; actually it has been recently proved, for instance, that a large subclass of Schrödinger operators of the type (1.2) does actually have a purely real spectrum [19], [17]. Both proofs rely on rather subtle arguments of ordinary differential equations and functions of complex variables. Purpose of this paper is to provide a perturbation theoretic proof, valid for a class of polynomials P and Q. It consists in the verification of the following simple statements:

- (i) All eigenvalues $E_n(0)$ of H(0) are real, and stable for g suitably small (the definition of stability is recalled in the proof of Theorem 1.1 below);
- (ii) There is $\overline{R} > 0$ independent of n such that the perturbation expansion for any eigenvalue $E_n(g)$ near $E_n(0)$ converges for $|g| < \overline{R}$;
- (iii) For $|g| < \overline{R}$ the operator H(g) has no eigenvalue other than those defined by the convergent perturbations expansions, which are real.

We will indeed prove the following

Theorem 1.1.

In the above notations, let p > 2r. Then assertions (i-iii) above hold true for the operator H(g) defined by the maximal action of $-\frac{d^2}{da^2} + P(q) + igQ(q)$ on $L^2(\mathbb{R})$.

Remarks

- 1. If H is a PT- symmetric operator then $(PT)H = H^*(PT)$ so that the eigenvalues of H exist in complex conjugate pairs.
- 2. We recall that the eigenvalues E_n of H(0) form an increasing sequence such that $\lim_{n\to\infty} E_n = +\infty$ and fulfill the estimate (see e.g.[4])

$$E_n = Bn^{2p/(p+1)} + O(n^{\frac{p-1}{p+1}}), \quad n \to \infty$$
(1.3)

for some positive constant B.

3. The proof of [17] applies to the cases $P = (-iq)^m$, $Q = -i\sum_{j=1}^{m-1} a_j (iq)^{m-j}$, $m \ge 2, g$

arbitrary under the condition $(j - k)a_k \ge 0 \forall k$ for at least one $1 \le j \le m/2$. The proof of [19] applies to $P(q) = q^2$, $Q(q) = q^{2r-1}$. Hence we see that for m = 2p the present result holds for a class not contained in the previous ones.

4. The recently introduced [18] *PT*-asymmetric but *CPT*-symmetric hamiltonians represent a small perturbation of the present class.

2 Proof of the results

We have to verify Assertions (i-iii). Assertion (i) is well known: H(0) is a self-adjoint operator with discrete spectrum, and Q is relatively bounded with respect to H(0) with relative bound zero. This means that $D(Q) \supset D(H(0))$ and that for any b > 0 there is a > 0 such that

$$|Qu|| \le b||H(0)u|| + a||u||, \qquad \forall u \in D(H(0))$$
(2.1)

Here D(A) denotes the domain of the operator A. This bound entails that H(g) defined on D(H(0)) is a closed operator with compact resolvent (and hence discrete spectrum) for all $g \in \mathbb{C}$. Moreover all eigenvalues of H(0) are simple and stable as eigenvalues of H(g)for |g| suitably small, i.e. there is one and only one simple eigenvalue $E_n(g)$ of H(g) near $E_n(0)$ for |g| suitably small (see e.g.[23] for the formal definition).

We have thus to verify Assertions (ii) and (iii). As far as (iii) is concerned, we recall that under the present conditions the (Rayleigh-Schrödinger) perturbation expansion near any unperturbed eigenvalue $E_n(0) := E_n$ has a positive convergence radius ρ_n ; a lower bound for the convergence radius is given by (see [22], formula VII.2.34):

$$\overline{R}(n) = \left[\frac{2(a+b|E_n|)}{d_n} + 2b + 1\right]^{-1}$$
(2.2)

Here b and a are the constants of the estimate (2.1) and d_n is half the isolation distance of the eigenvalue E_n , namely:

$$d_n := \frac{1}{2} \min\left(|E_n - E_{n-1}|, |E_n - E_{n+1}|\right)$$
(2.3)

In this case, by (1.3) we have

$$d_n \sim n^{\frac{p-1}{p+1}}, \qquad \frac{E_n}{d_n} \sim n, \quad n \to \infty$$
 (2.4)

Therefore to prove Assertion (ii) it is enough to verify that, choosing $b = b(n) = \frac{1}{n}$ in (2.1), we can find a(n) such that

$$\frac{a_n}{d_n} \le \Lambda < +\infty, \qquad n \to \infty \tag{2.5}$$

for a suitable constant $\Lambda > 0$. By (2.2) this entails that the perturbation expansions near the unperturbed eigenvalues E_n have a common convergence circle of radius $\overline{R} > 0$ independent of n, i.e. $\overline{R}(n) \ge \overline{R} \forall n$. We have indeed:

Lemma 2.1. If p > (4r+3)/2, $\forall n \text{ given } b_n = K/n \text{ for some } K > 0 \text{ there is } N > 0 \text{ such that the estimate (2.1) holds with } a_n < Nn^{\frac{p-1}{p+1}}$.

Proof: Introduce from now on the standard notation $pu = -i\frac{du}{dx}$ so that

$$p^{2}u = -\frac{d^{2}u}{dx^{2}}, \qquad H(0) = p^{2} + P(q).$$

The following quadratic estimate is well known (see e.g.[13])

$$||p^{2}u|| + ||P(q)u|| \le \gamma |(p^{2} + P(q))u|| + \beta ||u||, \qquad \forall u \in D(H(0))$$
(2.6)

for some $\gamma > 0, \beta > 0$. Therefore to prove it will be enough to prove (2.1) with the stated constants a_n and b_n it will be enough to prove the further estimate

$$||Qu|| \le b_n ||Pu|| + a_n ||u||, \quad \forall u \in D(P)$$
(2.7)

because we then have $||Qu|| \leq b_n ||H(0)u|| + b_n \beta ||u|| + a_n ||u||$ and the constant $b_n \beta$ can be obviously absorbed in a_n . In turn (2.7) follows from

$$||Qu||^{2} \le b_{n}^{2} ||Pu||^{2} + a_{n}^{2} ||u||^{2}, \qquad \forall u \in D(P)$$
(2.8)

Now this L^2 inequality is clearly implied by the pointwise inequality

$$b_n^2 P(q)^2 - Q(q)^2 + a_n^2 \ge 0, \quad \forall q \in \mathbb{R}$$
 (2.9)

Next we remark that, up to an additive constant which can be absorbed in the constant β of the estimate (2.6), we can limit ourselves to verify this inequality for homogeneous polynomials P and Q of degree 2p and 2r - 1, respectively. Since $b_n = K/n$ this last inequality reads

$$q^{4r-2} \le \frac{K^2}{n^2} q^{4p} + a_n^2, \qquad \forall q \in \mathbb{R}$$
 (2.10)

Since there are only even powers, we can restrict to $q \ge 0$. Assume for the sake of simplicity K = 1. Remark that the inequality

$$q^{4r-2} \le n^{-2}q^{4p}$$

is fulfilled if

$$q \ge n^{\alpha}, \qquad \alpha = \frac{1}{2(p-r)+1}$$

On the other hand, if $q < n^{\alpha}$ then $q^{4r-2} < n^{(4r-2)\alpha}$; hence the inequality

$$q^{4r-2} < a_n^2$$

which yields (2.10) in this case, will be fulfilled if

$$a_n \ge n^{\frac{2r-1}{2(p-r)+1}} \tag{2.11}$$

It suffices then to have

$$\frac{2r-1}{2(p-r)+1} < \frac{p-1}{p+1}$$

or, equivalently:

p>2r

This concludes the proof of the Lemma. An immediate consequence is the existence of the constant Λ in (2.5), and consequently of a common convergence radius \overline{R} . This verifies Assertion (ii).

Proof of Theorem 1.1

We have only to verify Assertion (iii). We do this by adapting the argument of [21], Theorem 2. Let us first recall that under the present assumptions H(g) is a type-A holomorphic family of operators in the sense of Kato (see [22], Chapter VII.2) with compact resolvents $\forall g \in \mathbb{C}$. In particular:

- (i) the eigenvalues $E_l(g)$ are locally holomorphic functions of g with only algebraic singularities;
- (ii) the eigenvalues $E_l(g)$ are stable, namely given any eigenvalue $E(g_0)$ of H_{g_0} of (geometric) multiplicity m there are exactly m eigenvalues $E^j(g)$ of H(g), j = 1, ..., m (counting geometric multiplicities) such that $\lim_{g \to g_0} E^j(g) = E(g_0)$;
- (iii) the Rayleigh-Schrödinger perturbation expansion for the eigenprojections and the eigenvalues near any eigenvalue E_l of H(0) are convergent.

We have seen above that all the series are convergent for all $g \in \Omega_{\overline{R}}$; $\Omega_{\overline{R}} := \{g \in \mathbb{C} : |g| \leq \overline{R}\}$, where R_0 is the uniform lower bound for all convergence radii.

The first part of the argument concerns a localization of the eigenvalues of $H(g_0)$, $g_0 \in \Omega_{\overline{R}} \cap \mathbb{R}$. Since $b_n = K/n$, by (2.4) and (2.5) there exists A > 0 sufficiently large such that

$$3b_n + \frac{b_n E_n}{d_n} + \frac{a}{d_n} \le A, \quad \forall n \in \mathbb{N}$$

$$(2.12)$$

$$2b_n + \frac{b_n(E_{n+1} - d_{n+1})}{\delta_n} + \frac{a_n}{\delta_n} \leq A, \quad \forall n \in \mathbb{N}$$

$$(2.13)$$

$$2b_1 + \frac{a_1}{|E_1 - d_1|} \le A \tag{2.14}$$

Here:

$$\delta_n := \min \left(d_n, d_{n+1} \right)$$

For any *n* let \mathcal{Q}_n be the square centered at E_n and of side 2dn in the complex *z* plane, and recall that the eigenvalues E_n form an increasing sequence: $E_0 < E_1 < \ldots$ Let $\mathcal{A} := \{z \in \mathbb{C} : \operatorname{Re} z \ge (E_1 - d_1)\} \bigcup_{n \in \mathbb{N}} \mathcal{Q}_n$. Let us show that this set has empty intersection with the sectrum of H(g) for |g| < 1/A, i.e. $\mathcal{A} \subset \rho(H(g)) = \mathbb{C} \setminus \sigma(H(g))$. $\forall z \in \mathcal{A}$ there are indeed two possibilities:

- a) $\exists s \in \mathbb{N} \ s.t. \ |\operatorname{Im} z| \ge \delta_s \text{ and } |\operatorname{Re} z E_s| \le \delta_s$
- b) $\exists s \in \mathbb{N} \quad s.t. \quad E_s + d_s \leq \operatorname{Re} z \leq E_{s+1} d_{s+1}$

Case a): Let $R_0(z) := (H(0) - z)^{-1}$ be the free resolvent. Then we have:

$$\begin{aligned} \|gQR_{0}(z)\| &\leq \|g| \cdot \|QR_{0}(z)\| \\ &\leq \|g\|[b_{s}\|[H(0) - z]R_{0}(z)\| + b_{s}|z| \|R_{0}(z)\| + a_{s} \|g(z)\|] \\ &\leq \|g\| \left[b_{s} + \frac{b_{s}|z| + a_{s}}{\operatorname{dist}(z, \sigma(H(0)))} \right] \\ &\leq \|g\| \left[b_{s} + b_{s} \frac{E_{s} + d_{s} + |\operatorname{Im} z|}{|\operatorname{Im} z|} + \frac{a_{s}}{|\operatorname{Im} z|} \right] \\ &\leq \|g\| \left[3b_{s} + b_{s} \frac{E_{s}}{d_{s}} + \frac{a_{s}}{d_{s}} \right] \leq \|g\|A < 1 \end{aligned}$$

$$(2.15)$$

if |g| < 1/A. This formula follows by the relative boundedness condition $||Qu|| \le b_n ||H(0)u|| + a_n ||u||$, the fact that $||R_0(z)|| = \frac{1}{\operatorname{dist}(z, \sigma(H(0)))} \le \frac{1}{|\operatorname{Im} z|}$, and formula (2.12). We now prove that the resolvent

$$R_g(z) := [H(g) - z]^{-1} = R_0(z)[1 + igQR_0(z)]^{-1}$$

exists and is bounded by the uniform norm convergence of the Neumann expansion. We have indeed, by (2.15):

$$\|R_{g}(z)\| = \|R_{0}(z)[1 + igQR_{0}(z)]^{-1}\| = \|R_{0}(z)\sum_{k=0}^{\infty} [-igQR_{0}(z)]^{k}\| \le \\ \le \|R_{0}(z)\|\sum_{k=0}^{\infty} |g^{k}|\|QR_{0}(z)]\|^{k} \le \frac{\|R_{0}(z)\|}{1 - |g|A}$$
(2.16)

Case b Analogous computations yield

$$\begin{aligned} \|gR_0(z)\| &\leq |g| \left[b_s + b_s \frac{E_{s+1} - d_{s+1} + |\operatorname{Im} z|}{\operatorname{dist}(z, \sigma(H(0)))} + \frac{a_s}{\delta_s} \right] \\ &\leq |g| \left[2b_s + b_s \frac{E_{s+1} - d_{s+1}}{\delta_s} + \frac{a_s}{\delta_s} \right] \leq |g|A < 1 \end{aligned}$$

provided |g| < 1/A. Here we have used (2.13). Now the same argument of case a) shows that $z \in \rho(H(g))$ if |g| < 1/A. Finally let us prove that $\mathbb{C} \setminus \bigcup_{n \in \mathbb{N}} \mathcal{Q}_n \subset \rho(H(g))$ if |g| < 1/A. We only need to show that $z \in \rho(H(g))$ if |g| < 1/A and $\operatorname{Re} z \leq E_1 - d_1$. Once more we have:

$$||gR_0(z)|| \leq |g| \left[b_1 + b_1 \frac{|z|}{\operatorname{dist}(z, \sigma(H(0)))} + \frac{a_1}{\operatorname{dist}(z, \sigma(H(0)))} \right]$$
$$\leq |g| \left[2b_1 + \frac{a_1}{|E_1 - d_1|} \right] \leq |g| A \leq 1$$

for |g| < 1/A. Here we have used (2.14) and the inequalities

$$|z| \le \operatorname{dist}(z, \sigma(H(0)), \quad |E_1 - d_1| \le \operatorname{dist}(z, \sigma(H(0)))$$

The results so far obtained allow us to assert that if $E(g_0)$ is an eigenvalue of $H(g_0)$ with $g_0 \in \mathbb{R}, |g_0| < 1/A$, then $E(g_0) \in \bigcup_{n \in \mathbb{N}} \mathcal{Q}_n$. Since the open squares \mathcal{Q}_n are disjoint, there exists $n_0 \in \mathbb{N}$ such that $E(g_0) \in \mathcal{Q}_{n_0}$. Moreover, if $g \mapsto E(g)$ is a continuous function defined on any subset D of the circle $\{g : |g| < 1/A\}$ containing g_0 , then $E(g) \in \mathcal{Q}_{n_0}$. Now let m_0 denote the multiplicity of the eigenvalue $E(g_0)$. Then for g close to g_0 there are m_0 eigenvalues (counting multiplicities) $E^l(g), l = 1, \ldots, m_0$ of H(g) such that $\lim_{g \to g_0} E^l(g) = E(g_0)$. Each function $E^l(g)$ represents a branch of one or several holomorphic functions which have at most algebraic singularities at $g = g_0$ (see [22], Thm VII.1.8). Assume without loss $g_0 > 0$. Let us follow one of such branches from g_0 to 0, dropping from now on the index l. As remarked above, E(g) is contained in \mathcal{Q}_{n_0} as $g \to g_0^-$. Suppose that the holomorphic function E(g) is defined on the interval $]g_1, g_0[$ with $g_1 > 0$. We will

show that it can be analytically continued up to g = 0 (in fact, up to g = -1/A). Since $E(g) \in \mathcal{Q}_{n_0}, E(g)$ is bounded on $]g_1, g_0[$. Thus, by the stability property of the eigenvalues of holomorphic operator families, E(g) must converge to an eigenvalue $E(g_1)$ of $H(g_1)$ as $g \to g_1^+$, and $E(g_1) \in \mathcal{Q}_{n_0}$. Repeating the argument starting from $E(g_1)$, we can continue E(g) to a holomorphic function in the interval $]g_2, g_1]$ with at most an algebraic singularity at g_1 . In this way we build a piecewise holomorphic function E(g) defined on]-1/A, 1/A[such that E(g) is an eigenvalue of H(g). In particular E(0) coincides with E_{n_0} , which is the only eigenvalue of H(0) inside \mathcal{Q}_{n_0} . Since E_{n_0} is simple, E(g) is the only eigenvalue of H(g) close to E_{n_0} for g small. Thus E(g) must be real for $g \in \mathbb{R}$, |g| small, because if it is complex also its conjugate $\overline{E}(g)$ enjoys the same property, which is ruled out by the stability. Moreover, E(g) is the sum of the perturbation expansion around E_{n_0} , and therefore is a holomorphic function for $|g| < \overline{R}$. Let from now on $|g| < T := \min(\overline{R}, 1/A)$. Then the holomorphy implies that the real-valuedness for |g| small extends to all |g| < T, $g \in \mathbb{R}$. This concludes the proof of Theorem 1.1.

Acknowledgment

We thank Francesco Cannata for his interest in this work and many useful suggestions.

References

- F. Calogero and S. Graffi, On the quantization of a nonlinear oscillator, Phys.Lett. 313 A, 381-386 (2003)
- F. Calogero, On the quantization of two other nonlinear oscillators, Phys.Lett. 319 A, 240-3245 (2003)
- F. Calogero, On the quantization of another two nonlinear oscillators, J.Nonlinear Math.Phys. 11, 1-6 (2004)
- [4] F.A. Berezin, M.S. Shubin, The Schrödinger Equation, Kluwer 1991
- [5] Z. Ahmed, P-, T-, PT-, and CPT-invariance of Hermitian Hamiltonians Phys.Lett. A310, 39-142 (2003)
- [6] C.M. Bender, S. Boettcher, and P. N. Meisinger, *PT-Symmetric Quantum Mechanics* Journal of Mathematical Physics 40,2201-2229 (1999)
- C.M. Bender, M.V. Berry, and A. Mandilara Generalized PT Symmetry and Real Spectra. J.Phys. A: Math. Gen. 35, L467-L471 (2002)
- [8] C.M. Bender, D.C. Brody, and H.F. Jones *Must a Hamiltonian be Hermitian?*, American Journal of Physics, in press
- F. Cannata, G. Junker and J. Trost, Schrödinger operators with complex potential but real spectrum, Phys Lett A246 219-226 (1998)
- [10] M. Znojil, F. Cannata, B. Bagchi and R. Roychoudhury, Supersymmetry without Hermiticity within PT symmetric quantum mechanics. Phys. Lett. B483, 284 (2000)
- [11] F. Cannata, M.V. Ioffe and D.N. Nishniadinze, Two-dimensional SUSY Pseudo-Hermiticity without Separation of Variables. Phys. Lett. A310, 344-352 (2003)

- G. Levai and M. Znojil, Systematic search for PT symmetric potentials with real energy spectra J. Phys. A: Math. Gen. 33 (2000) 7165.
- [13] B. Simon, Anharmonic oscillator: a singular perturbation theory, Ann. Phys. 57, 76-130 (1970)
- [14] R. Kretschmer and L. Szymanovski, Pseudo-Hermiticity in infinite dimensional Hilbert spaces quant-ph/0305123 (2003)
- [15] A. Mostafazadeh, Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian J.Math.Phys. 43, 205-212 (2002); Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum, ibidem, 2814-2816 (2002); Pseudo-Hermiticity versus PTsymmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries 3944-3951 (2002)
- [16] S. Weigert, Completeness and Orthonormality in PT-symmetric Quantum Systems quantph/0306040 (2003) M. Znojil, What is PT symmetry? (quant-ph/0103054)
- [17] K.C. Shin, On the reality of the eigenvalues for a class of PT-symmetric oscillators. Comm. Math. Phys. 229, 543-564 (2002)
- [18] E. Caliceti, F.Cannata, M.Znojil, A.Ventura, Construction of PT-asymmetric non Hermitian hamiltonians with CPT symmetry, preprint 2004
- [19] P. Dorey, C.Dunning, R.Tateo, Spectral Equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J.Phys. A 34 (2001), 5679-5704, (2001).
- [20] P.E. Dorey, C. Dunning and R. Tateo, Supersymmetry and the spontaneous breakdown of PT symmetry, J.Phys. A 34, L391-L400 (2001)
- [21] E. Caliceti, S. Graffi and J. Siöstrand, Multiple wells in the semiclassical limit, J. Phys. A: Math. Gen. 38 (2005) 185-193.
- [22] T. Kato, Perturbation Theory for Linear Operators, 2nd Edition, Springer-Verlag, 1976
- [23] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Academic Press 1978