SPECTRA OF PT-SYMMETRIC OPERATORS AND
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Abstract

Criteria arc formulated both for the cxistence and for the non-cxistence of
complex cigenvalucs for a class of non sclf-adjoint operators in Hilbert space
invarariant under a particular discrete symmetry. Applications to the PT-
symmectric Schrédinger operators are discussed.

1 Introduction and statement of the results

The Schrodinger operators invariant under the combined application of a reflection
symmetry operator P and of the {antilinear) complex conjugation operation 7' are

called PT-symmetric. A standard class of such operators has the form H = Hy+:W

where:

1. H,is a self-adjoint realization of —A+V on some Hilbert space L*(€2); 2 C R",

n > 1; V and W are real multiplication operators.

2. V are even and odd with respect to P, respectively: PV =V, PW =-W. P

is the parity operation
(PY)(&) = $((—orr,.oo, ((1oz,), € I
where 7;, = 0,1; 3; = 1 for at least one 1 < < n;

If T is the involution defined by complex conjugation: (T%)(z) = ¢’(z), one imme-
diately checks that (PT)H = H(PT).
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PT —symmetric quantum mechanics (see e.g. [1],[2],[3],[4], [6],[6,[7], [8],[7]) requires
the reality of the spectrum of PT —symmetric operators, recently proved, for in-
stance, for the one dimensional odd anharmonic oscillators [13], [12]. Imposing
boundary conditions along complex directions, however, examples of PT'— symme-
tric operators with complex eigenvalues have been constructed [14]. It is therefore
an important issue in this context to determine whether or not the spectrum of P7T-
symmetric Schrodinger operators with standard L? boundary conditions at infinity
is real. We deal with this problem only in perturbation theory, but we will obtain
criteria both for existence of complex eigenvalues (Theorem 1.1) and for the reality
of the spectrum (Theorem 1.2), in even greater generality than the PT symmetry.

Let H be a Hilbert space with scalar product denoted (z|y), and Hy : H — H
be a closed operator with dense domain D C H. Let H;, be an operator in ‘H with
D(Hl) D D. This entails that H; is bounded relative to Hg, i.e. there exist & > 0,
e > 0 such that ||Hi¢|| < b||Ho#|| + ¢||¥|| Y € D. We can therefore define on D
the operator family H, := H. = Hy+ eH,, Ve € C.

We assume the following symmetry properties: there exists a unitary involution

J : H — H mapping D to D, such that
JHy=H}J, JH, =H}J (1.1)

In other words, J intertwines Hy and H, with the corresponding adjoint operators.

Note that:

1. The properties J? = 1 (involution) and J* = J~! {unitarity) entail J* = J,

i.e. self-adjointness of J;

2. The properties (1.1) entail, if ¢ € R, JH. = H?J; therefore the spectrum

o(H.) of H, is symmetric with respect to the real axis if ¢ € R.
3. An example of J is the parity operator P.

Let Hy admit a real 1solated eigenvalue Ay of multiplicity 2 (both algebraic and geo-
metric, i.e. we assume absence of Jordan blocks). Let e, e; be linearly independent
eigenvectors, and K, the eigenspace spanned by e;,e;. Clearly JE,, = E}_ is the

eigenspace of H corresponding to the eigenvalue Ag = Ag, and hence the bilinear
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form (u*|v),u” € E} ,v € E,; is non degenerate. Therefore we can choose ey, e; in
E», in such a way that, writing w = wui€; +usez, the quadratic form Q(u,u) = (Ju|u)

on I, assumes the canonical form
Q(u,u)zﬁuf—l—ﬁug, nn==x1,7m =241 (1.2)

Notice that if €], €} is the dual basis, then (1.2) means that Je; = 7;e}.

Under these circumstances we want to prove the following

Theorem 1.1 With the above assumpiions and notalions, consider the operator

fomily H, for e € R. Denote:
Hy, = (H161|61): Hy, = (H162|€2): Hy;, = (H161|62) (1-3)
Then (e1|Hie1) € R, (ez|Hiez) € R and there exists € > 0 such that, for || < €*:

(i) If -7 =—1, and
4| Hyz|* > (Hyy — Hzz)? (1.4)

H, has a pair of non real, complex conjugate eigenvelues near Ag;
(%) If -7 =1 H. has a pair of real eigenvalues near Aq.
Remarks

1. The above theorem applies to the PT-symmetric operator family H. = Hy +
1eW, where Hy and :W = H, are as above. Here J = P, and hence PHy =
HoP, P(ieW) = —(1eW)P = (:eW)*P so that JH. = H!J. In that case
Assumption (1.4) follows from the weaker assumption H;; # 0 because the
P—symmetry of H; and the P—antisymmetry of W entail Hy; = H;; = 0.

Indeed, we have Pe; = 1;¢; and
Hj; = (Wesle;) = (iPWe;, Pe;) = (—iW Pej| Pej) = —(1Wele;) = —Hy

2. The physical relevance of Theorem 1.1 1s best illustrated by an elementary
example. Let H = L*(R?) and Ho : H — H be the (self-adjoint) two dimen-

sional harmonic oscillator with frequencies cwy, ws:
1 1
Hyu = —iAu + i(wfxf + w%x%)u
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We have o (Hy) = {Ej, , } 1= { k1w + koo —I—%—'—?},kg =0,1,2...,2=1,2.
Let again H, = Hy +:eW, e € R, with
.'Bi.’.t?g

BEEE
Then W is bounded relative to Hg, and PW = —W if Pu(z1, 22) = u(z1, —22)

W)

or Pu(ry,27) = u(—m1,—22). Set wy = Liw, =2, by = 2,k; = 0; lLe., we
consider the eigenvalue ;g = Fg;1. Then for |e| > 0 small enough H. has a

pair of complex conjugate eigenvalues near K .

To see this, remark that E;q = FEj(wi) + Folwy) = Eo(w) + Fi(ws), where
Ai(w;) = (kK + 1/2)w; are the eigenvalues of the one-dimensional harmonic
oscillators with frequencies w;,z = 1,2. F;¢ has multiplicity 2. A basis of

eigenfunctions is given by

%“51(3715372) = 62($1)f0($2)5 %’52(3315372) = 60($1)f1($2)

Here €g, e; are the eigefunctions corresponding to (1) and E;(1), respec-
tively; fo, fi are the eigenfunctions corresponding to Eo(2) and Ey(2), re-
spectively; note that eg, e; and f; are even while f; is odd. To first order
perturbation theory, the two eigenvalues A;(¢) : j = 1,2 of H. near F; ¢ are
given by

Ai(e) = Ep g+ )

where A; : § = 1,2 are the eigenvalues of the 2 X 2 matrix

W= (Wepi|1) (Wepr|yz)
. (Weba|p1) (Wepath)

Now ¢, is even, ¥, is odd, and W is odd. Therefore 7, - , = —1. Moreover:
(Wirln) = (Webalps) = 0, (Webalips) = (Wlez) = w > 0 Therefore
Aj = tw and A;(¢) = Fi0+ tew. Hence the conditions of Theorem 1.1 (i) are
satisfied and for € small enough H, has a pair complex conjugate eigenvalues

near Fsg.

. By essentially the same proof, the result of Theorem 1.1 remains true under

the following more general conditions: under the above assumptions on Hg
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and H, let Hy admit two real, simple eigenvalues Ey, F5. Let d := E; — E be
their relative distance; D := dist[(o(Ho) \ {E2, F1}),{F2, F1}] their distance
from the rest of the spectrum; e, e; the corresponding eigenvectors, all other

notation being the same. Then if d/ D is small enough the same conclusion of

Theorem 1.1 holds provided |eH,,| > %

4. Example: Odd perturbations of guantum mechanical double wells: existence of

complez etgenvalues.
2

Let H = L*(R), Ho(h) = —ﬁ}% + 2*(1 + z)%, D(H) = H*(R) n Li(R),
W(z) € LZ(R), |[W(z)| < Az?, |2| — o0, W(1 —2) = —W(z). Here L3(R) =
{v € L*(R)|z*» € L*(R)}. In this case it is known that W is bounded
relative to Hy; moreover d = O(e™V/"), D = O(h), w = O(1) if E,, E, are the
two lowest eigenvalues, ¥, %, the corresponding eigenvectors and w is defined
as in Point 2 above. Hence the conditions of Theorem 1 are fulfilled in the
semiclassical regime provided W is continuous at zero with W(0) # 0 and
that |(e:1|/Wez)| > 1/C and thus there exist A > 0,8 > 0,C' > 0 such that
H.(%) := Ho+1eW will have at least a pair of complex conjugate eigenvalues for
Ae~B/¥ « ew << Ch. Equivalently, we may consider the double well family
Hy(g) = —j—;—l—wz(l +g%)? defined on the same domain. Here d = O(e'lfgz),
D = O(1), w = O(1). The same argument holds for the general case H; =
—h*A+ V(z), where V : R* — R is smooth, has two equal quadratic minima
and diverges positively as |z| = oo; W(z) € Lis (R"), [W(r)| £ AV(z) as

|z| — oo because the estimate for d is the same as above[15].

The second result concerns the opposite situation, a criterion ensuring the reality of
the spectrum. In this case the natural assumption is the simplicity of the spectrum
of Hy in addition to its reality. Therefore for the sake of simplicity we assume Hg

self-adjoint.

Theorem 1.2 Let the self-adjoint operator Hy be bounded below {without loss of
generality, positive), and let Hy be continuous. Let Hg have discrete spectrum,

o(Ho) ={0< Ao < Ao < A <.}, with the property

5 = inf [Ajs1 — Ajl/2 > 0. (1.5)
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Assume that all eigenvalues are simple. Then J(H(ﬁ)) €RifeeR, |ef< | Ha | ]
1

Example
2

d
Here again ‘H = L*(R); Ho = —@—I—V(w), D(Hy) = H*(R)ND(V). V(=) = k2™,
k>0 m>1; W(;t:) c L“’('R), W(—:t:) = —W(:t:) We have: O'(HG) ={\}hn =
0,1,..5

2

1
)\nmkﬂnni-}-l, n_}m

Each eigenvalue A, 1s simple. Clearly ¢ > 1. Denote now H. := Hg + teW the
operator family in LQ(R) defined by H. = Hq + Hy, Hy = W, D(H.) = D(H,).
Then H. has real discrete spectrum for |¢| < |[W||=.

2 Proof of the results

Proof of Theorem 1.1
The proof is based on perturbation theory and consists in two steps. In the first
one we show that the 2 x 2 matrix generated by restricting the perturbation H; to

By

o 1s antihermitian in case (i) of Theorem 1.1 and Hermitian in case (ii). In the
second step we show by the method of the Grushin reduction (see, e.g.[16]) that for
¢ suitably small the control of the above 2 x 2 matrix is enough to establish the
result.

Let {e1, €1} be once more a basis in E), such that (1.2) holds, and denote by
€1, e; the dual basis in the dual subspace £ = JF),. Cleatly Je; = 7je}, 7; = £1.

We denote I, the spectral projection from H to £, ,. Explicitly:
Mou = (u|e})er + (u|el)es (2.1)

Consider now the rank 2 operator family II5 1y acting on E),. The representing

2 x 2 matrix is:

H(e)jr = Aol + ¢HY,, HY, = (Hielel), 5,k = 1,2 (2.2)
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Now JHo = H}J, Jllg = II;,J. We also have JH; = H;J. Therefore:
(JHierles) = (Hier|Jes) = 7 (Hhexle]) = 73],

and in the same way

(JHiexle;) = (HyJeiles) = (Jer|Hie;) = mil e[ H e;) = moo(Hiejle}) = mpHj

7j

Summing up:

TjH},k = kal,j
Therefore, if 7,7, = 1 the matrix H(¢),; is hermitian for ¢ € R and its eigenvalues
are real; if instead 7,7, = —1 the matrix H(¢),z has a real diagonal part and an
antihermitian off diagonal part for € € ‘R and its eigenvalues are complex conjugate.
This completes the first step.
We want now to construct an approximate inverse of H. — z near Aq by solving a
Grushin problem. In this context it is equivalent to the Feshbach reduction, and

provides a convenient formalism for it. To this end, define the operators K., F_,

Po(#) in the following way:

Ri:H = C Ruu(j) = (ule?), =1, (2.3)
2
R_:C* = H, Rou_=>_ u_(je, (2.4)
i=1
Po(z) = (HGR_ ? R('J') D% C* = H xC (2.5)
+

Note that we have identified E), with its representative C?, and that By R_ = I,
the 2 x 2 identity matrix.

The associated Grushin system is

{ (Ho—z)u+ RBu_=f
Riu=f4

where v € D, f € H, u_,f. € C?. z € C belongs to a neighborhood of A; at

(2.6)

a positive distance from o(Hg) \ {A¢}. After determining w_ in such a way that
f—R_u_ € (1 —IIg)H the first equation can be solved for u(z) € (1 — Ilg)H and
hence the problem is reduced to the the rank 2 equation R u(z) = f. To solve



explicitly, remark that, for every z in the complex complement of o(Hog) \ {Xo},

Po(z) has the bounded inverse,

Eal2) = (E-EE?) _E,%?:(é)) ’

with

E%(z) = (Ho — 2)7' (1 — 1), E_?_(z) =R,
Eo_(z) = Ry, EE+(2) = (z — Xo)l.

(2.7)

(2.8)

where [ 1s the 2 x 2 1dentity matrix. The spectral problem within ¥, is thus reduced

to the inversion of E2_ (z), and obviously its solution is represented by Aq, €, ;.

Now restrict the attention to the set of complex z with dist (z,{Aq}) < 1/2R,

where

R:=||E(Do)|| = ||(1 — o)(Ho — Xa)™!|

so that by the geometrical series expansion

R
E° <
P <
Consider the operator from D x C? to ‘H defined as

o= (4t %),

assoclated to the Grushin system
{ (He—z)u+ R_u_=f
Riu=f; '

Then
ieH E%(z) ieH ES(2)
0 0

It is routine to check that 'Pc(z) has the inverse

£ = (5 B )

P(2)Eolz) = 1+ (

with

B = LEPEhEY,

)=:1—|—K:.

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)



e

Ei(s) = 3 (B H)ES (2.16)
Bi() = S B, (2.17)
Ei+(z) = EE+—|—§:(§)”EE(H1EG)”_1H1E3_. (2.18)

where all the series will be proved to have a positive convergence radius (convergence

means here uniform, or, equivalently, in the norm operator sense). We also recall

the well known fact that z is an eigenvalue of H, precisely when det F¢_(z) = 0.
We next derive the appropriate symmetries for the inverse operators [16]. From

JH. = H!J we get:
2 . 2 o 1 0
JR_u_ = E u_(j).fejzé (ru_)(j)e;, 7:= 0

Riuo = Y u(i)e

where the second equation follows from

2

(Riulu_) = Em(uk;)

=1
We thus conclude:

JRu_=Rl7u_., R.J=7R;

Therefore:
J 0 Ho—z R_\ _ ( J(H.—2z) JR_
0 T R+ 0 o 'TR+ 0
_((H—=2)Jd Rir\ _ ((H'—2) Ry J O
O\ RLJ 0 TR 0 0 7
whence

J 0 W J 0
(0 T)T’C(z)=’Pc(z) (0 T) (2.19)

Since £(z) = P(z)™", taking right and left inverses we get

or (2 0)=(2 %) e
that Is

(B ) (07 )=(5 2)(
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In particular:

By (2)'7 = 7E-4(2)
We can thus conclude that, for z € R, f 1 - 75 = 1 the 2 x 2 matrix E_,(2)
is Hermitian, and antihermitian off the diagonal with real diagonal elements if if
-7 = —1.
It remains to be proved the norm convergence of the expansions (2.15,2.17,2.18). We

have, by the relative boundedness condition ||H.¢|| < &||Hot|| + ¢||¢| and (2.10):

[HYE®|| = || H'(Ho—2)7'(1—IL)|| <
< b|[Ho(He —2)7 (1 — )| +ef|(Ho — 2)7 (1 — IL)|
< b||(Ho — 2)(Ho — 2)7H(1 — Io)|| +
+ B]2[|(Ho —2)7' (1 — Wo)|| + af|(Ho — 2)7 (1 — L)
(blz| +a)R
< b||1_110||+—1_|z_)\0|R<K

for some K(z) > 0 because |z| < B/2. Therefore
|ESCHES)"|| < K™, ||(B°H"EL|| < K™,
[ES(HAESY | < K™, |[ES(HAEO Y= By B2 | < K
Hence the expansions (2.15,2.17,2.18) are norm convergent.
To conclude the proof we have to verify that the first order truncation of the expan-

sion for E_(z) yields nonreal eigenvalues, and that the higher order terms can be

neglected. To this end, first remark that without loss of generality we may assume
Ag = 0. Then the expansion (2.18) yields:

€ _ eHyy —z eHyy 2
—E_+(Z) - ( —EFH EHQQ —Z ) + O(E )

uniformly with respect to z, |z| < 1/2R. Therefore
detEf, (2) = #° — (Hy + Hy)ez + (| Hus* + HiyHz) + O(E + ¢%z]) =
= [z — e(Hu 4 Haz) {2 + &*[|Hiz " — (Hu — Hz2)* /4] + O + €°[z])
Now det E¢ , (z), which is real for z € R, clearly has no zeros for z € C, € << |z| <<
1. On the other hand, for z = O(c), i.e. z = aw, w = O(1),

detBZ,(2) = €{[w — (Hu+ Hz2)/2" + [Hu|* — (Hi1 — Hz2)*/4}
+ O(€°(140(1))
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Therefore if 4|H12|2 > (Hu — Hgg)z there cannot be real zeros for ¢ suitably small.
We can thus conclude that detE:_ (z) is zero for z = A4(¢),

1 .
Ai(e) = §[H11 -|— HQQ :I: ZE\/4|H12|2 — (Hll — HQQ)E] -|- 0(62)

and this concludes the proof of the Theorem.

Proof of Theorem 1.2

Let us first recall that under the present assumptions H, is a type-A holomorphic
family of operators in the sense of Kato (see [17], Chapter VIL.2) with compact
resolvents Ve € C. Hence o(H,) = {)(¢)} : I=0,1,.... In particular:

(i) the eigenvalues X;(¢) are locally holomorphic functions of € with only algebraic

singularities;

(ii) the eigenvalues Ai(¢) are stable, namely given any eigenvalue A(&) of H., there

is exactly one eigenvalue A(¢) of H. such that lim Ale) = Aleg);

(iii) the Rayleigh-Schrédinger perturbation expansion for the eigenprojections and
the eigenvalues near any eigenvalue A; of Hy has convergence radius &;/|| H. ||

where 4; is half the isolation distance of A;.

Remark that since é; > 4 VI, all the series will be convergent for all ¢ € Q,;
Q. == {e € C: |e| < ro}, where rq := d/||H1| is a uniform lower bound for all
convergence radil.

Assume now without loss of generality, to simplify the notation, ||H:|| = 1. By
hypothesis |A; — A1y = 26 > 0V € N. First remark that if € € R, |¢| < rg and
A(e) is an eigenvalue of H. then |ImA(e)| < &, le. o(H)NCs =0, G5 := {2z €
C||Im z| > &}. Set indeed

Ro(z) = [Ho — 27", 2 ¢ o(H,)

Then ¥ z € C such that |[Imz| > & we have

el el

= dist|z, (Ho)] ~ [Imz]| (2.21)

leHy Ra(2)|| < le] - [[Hy - || Ro(2)]
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Hence the resolvent
Ru(z) i= [H. — 2™ = Ra(2)[1 + eHy Ro(2)]"

exists and is bounded if |[Im z| > & because (2.21) entails the uniform norm conver-

gence of the Neumann expansion for the resolvent:

|1B-(2)]| = [He — 217" = || Bo(2) Z[ eHy Ro(2)]"| <

< Ro()) 3 1 Ral D < o

b |Im z| —
Now VI € N let Qi(§) denote the open square of side 26 centered at ). Since
|Mi—Xega| > 29, it follows as in (2.21) that R.(z) exists and is bounded for z € 3Q:(4),
the boundary of @;(§). We can therefore, according to the standard procedure (see
e.g.[17], Chapter II1.2) define the strong Riemann integrals

1

P‘E(e) - 27z S3Q,(5)

R.(z)dz, il=1,2,...

As is well known, F; is the spectral projection onto the part of o(H,) inside Q.
Since H, is a holomorphic family in ¢, by well known results (see e.g. [17], Thm.
VIL.2.1), the same is true for Pj(e) for all { € A. In particular this entails the
continuity of Fi(e) for |e| < ro. Now F(0) is a one-dimensional: hence the same is
true for Pi(¢). As a consequence, there is one and only one point of o(H.) inside
any ;. Now o(H,) is discrete, and thus any such point is an eigenvalue; moreover,
any such point is real for ¢ real because JOEHC) is symmetric with respect to the real

axis. Finally, we note that if z € R, z ¢ [ J]\ — 4, A; + [ the Neumann series (2.21)

=1
is convergent and the resolvent R,(z) is there continuous. This concludes the proof

of Theorem 1.2.
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