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Abstract

We prove a quantitative recurrence result which allow to estimate
the speed of approaching of a generic orbit to the discontinuities of
a map. This result is applied to the study of complexity indicators
for individual orbits generated by a certain zero-entropy discontinuous
maps which are related to polygonal billiards and quantum chaos.

1 Introduction

In this paper we prove a result that gives an estimate of the speed of ap-
proaching of a generic orbit near a given set. More precisely, we will see that
the time of first entrance of a generic orbit into some neighborhood of a given
set can be estimated from below by the dimension of the invariant measure
near the given set. We use this result to study certain complexity indica-
tors for individual orbits generated by the following simple (two parameter
family of) discontinuous area-preserving map over the torus. The map essen-
tially coincides with the triangle map introduced by Casati and Prosen [9] in
connection with the mixing properties of flows in certain triangular billiards
[8].
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More precisely, let θ(q) be the discontinuous function over the circle given
by θ(q) = −1 if 0 ≤ q ≤ 1/2 and θ(q) = 1 otherwise.

For any α, β ∈ [0, 1], we define the map Tα,β as

Tα,β(q, p) = (q + p + β + α θ(q) , p + β + α θ(q)) mod 1

Note that Tα,β can be written as the composition of three elementary
maps,

Tα,β = B ◦Rβ ◦Gα,

where B =

(
1 1
0 1

)
is a parabolic map (a skew translation), Rβ(q, p) =

(q, p + β) is a translation in the p direction and Gα is the discontinuous part
of the dynamics Gα(q, p) = (q, p + α θ(q)) this discontinuous map cuts the
square along the line x = 1

2
translating the two pieces in opposite directions

along the line.
As it follows from the previous definition, Tα,β acts in a very simple way

on any given set of initial conditions: there is a linear stretching, combined
with a translation, due to B ◦Rβ, and a sequence of cutting which take place
on the discontinuous lines ρ ∪ ρ′ = ({1/2} × [0, 1[) ∪ ({0} × [0, 1[).

The effect of the dynamics can be seen in Fig.1 and Fig.2, where the
evolution of a given vertical segment is shown at different values of time and
for irrational and independent values of the parameters α and β.
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Figure 1: Evolution of a vertical segment, under the iteration of the map Tα,β

with α = e−1 and β = (1 +
√

5)/2, at times t = 0, t = 3 and t = 9 respectively.

The map is marginally stable i.e. initially close orbits separate linearly
with time, until they are drastically separated by the discontinuity (see Sec.
4 for precise statements) moreover it has another peculiar property: absence
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Figure 2: Evolution of a vertical segment, under the iteration of the map Tα,β

with α = e−1 and β = (1 +
√

5)/2, at times t = 21, t = 24 and t = 30 respectively.

of periodic orbits for irrational and incommensurable values of the param-
eters α and β, with β 6= 0. Also because of these properties, this class of
maps represents a nice testing ground for some fundamental questions in the
semiclassical theory of quantized discrete dynamical systems [10].

It is surprising (at least for us) that there are basically no rigorous results
about ergodic or topological properties of such map. As far as we know, even
ergodicity for α 6= 0 is still not proven (even if probably true for irrational
α’s). Here is a brief account of what it can be proven and what it can be
conjectured from numerical data. First of all, if α = 0, β 6= 0, T0,β is basically
a skew-translation of the torus. When β is irrational, the dynamic is uniquely
ergodic and never weak or strongly mixing [7, 11]. In this case, the dynamics
is equivalent to the one generated by interval exchange transformations [7].
However discontinuities (α 6= 0) seems to provide a mechanism to enforce
ergodicity and establish certain mixing properties. In particular,for α 6= 0
and β 6= 0 irrationals, the map seems ergodic and with a power law decay of
correlation (with exponent close to 3/2)[9]. Finally, when α 6= 0 is irrational
and β = 0, the map presents some form of ergodicity and it does not show any
strong decay of correlations [9], even if a weak form of mixing is still plausible.
The dynamics in the case β = 0 is more regular than the generic case, and
this is basically due to the very slow diffusion of the ”walks”

∑n−1
k=0 θ(qk)

which enter in the n-th iterate of Tα,0. A numerical evidence of this is shown
in Fig. 3, where the orbit of the same initial condition is shown at different
times for β = 0 and β 6= 0 respectively.

It is in any case very clear that the only process which could eventually
reproduce non trivial dynamical properties (as such as the decay of correla-
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Figure 3: Orbit of a generic point under the iteration of the map Tα,β with α = e−1

and β = 0, for t = 500 and t = 25000 (left two figures). Orbit of a generic point
under the iteration of the map Tα,β with α = e−1 and β = (1 +

√
5)/2, for t = 500

and t = 25000 (right two figures).

tions) for these non-hyperbolic maps rely on the cutting effect produced by
the discontinuities.

One of the aim of the paper is to move a first step towards the under-
standing of the statistics of the singularities and consequently towards the
understanding of the mechanism which is responsable of the mixing behavior
for such non-hyperbolic map with zero topological entropy.

In this paper we characterize the chaotic behavior of the above family of
maps, giving rigorous upper bounds for the initial condition sensitivity and
for the orbit complexity of the map. The results are obtained by the use of
a general quantitative recurrence result (see Sec. 2, using techniques similar
to the results used in [4] for the study of interval exchange transformations).
Moreover we present numerical evidences that some of these upper bounds
are sharp.

While the entropy of the system is a global quantity and it can be in-
terpreted as the average information that is necessary to describe one step
of the evolution of the system, the Algorithmic Information Content (AIC),
due to Kolmogorov and Chaitin, is a pointwise notion: any finite string out
of a finite alphabet has its own information content, independently from the
context where the string appears. This is the case, for example, for strings
generated by discrete dynamical systems through a given finite partition of
the phase space.

In particular, the amount of information necessary to describe an orbit
yield to the so called orbit complexity [5], that can be considered as a point-
wise version of the entropy. In fact, this orbit complexity does in fact coincide
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almost everywhere with the entropy with respect any given invariant proba-
bility measure. More precisely, if the system has positive entropy h > 0, the
algorithmic information required to describe n steps of an orbit increases as
hn + o(n) for almost every initial point.

Conversely, in a null entropy system, the (sublinear) asymptotic behavior
of the algorithmic information describing an orbit can be considered as an
indicator of weak chaos (complexity). Such an indicator can be defined in a
way that it is invariant under topological conjugacy (see Sec. 3) and hence it
reflect some intrinsical property of the system under consideration. Moreover
(as the entropy itself does) it can be related to some dimensions and initial
condition sensitivity indicators of the system [12]. Then, this complexity
indicator seems to be a good candidate for an indicator replacing the entropy
in the zero entropy case.

We will see that the information content of a n steps orbit is low. More
precisely it is lower than C log(n) (for a periodic orbit is about log(n)).
The constant C depends on the coefficients α, β. If we suppose that the
coefficients contains a finite amount of information ( they are constructive
numbers, see Definition 4) we have a sharper bound. If α, β does not contain
finite information, some of this information can contribute (with the initial
condition sensitivity) to the complexity of the orbit and hence C could be
bigger.

The paper is organized as follows. In Section 2 we prove a quantitative
recurrence result that will be used to estimate the initial condition sensitivity
of the Casati-Prosen maps. In Section 3, after a short introduction about the
algorithmic information content we define the orbit complexity indicators. In
Section 4 we use the results of Section 2 to estimate the initial condition sen-
sitivity of the Casati-Prosen maps and in Section 5 these results are applied
to estimate from above the orbit complexity of such maps.

Acknowledgment: This work has been supported by the European Com-
mission under the Research Training Network (Mathematical Aspects of
Quantum Chaos) no. HPRN-CT-2000-00103 of the IHP Programme.

2 Quantitative recurrence near given sets

We now define an indicator R(x, Y ) of recurrence near a given set Y . This
indicator measures how faster the orbit of x approaches the set Y ⊂ X. For
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our applications, X is the torus, while Y = ρ∪ρ′ represents the discontinuous
lines for the Casati-Prosen map. In general, given Y ⊂ X, let us define the
r neighborhood of Y by

Br(Y ) = {x ∈ X, d(x, Y ) < r}.

Let us consider the first entrance time of x in Br(Y )

τr(x, Y ) = min{n, T n(x) ∈ Br(Y )}.

By this quantity we define the following indicators measuring how fast the
orbit of x approaches to Y

R(x, Y ) = lim inf
r→0

log(τr(x, Y ))

− log(r)
, R(x, Y ) = lim sup

r→0

log(τr(x, Y ))

− log(r)
.

We remark that when Y = x the above indicator is the same as the
quantitative recurrence indicator R(x) defined in [3].

If µ is a measure on X, Y ⊂ X, let us also consider

dµ(Y ) =lim sup
ε→0

log(µ(Bε(Y )))

log(ε)
. (1)

When Y is a point dµ(Y ) is the lower local dimension of the measure µ
with respect to the metric of X at the point Y .

The following is a quantitative relation between our indicators of dimen-
sion and recurrence.

Theorem 1 For all Y and for almost all x, R(x, Y ) ≥ dµ(Y ).

This theorem will be used later to calculate the initial condition sensitivity
of the CP map. The proof of the following lemma is similar to Lemma 2.1
in [4].

Lemma 1 Let (X, T, µ) be a measure preserving transformation, Y ⊂ X
and µ such that there is d > 0 and r > 0 such that µ(Br(Y )) ≤ rd for each
r < r. If α > 1

d
then for almost each x ∈ X:

lim inf
n→∞

nαd(T n(x), Y ) = ∞.
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Proof. Let us consider C > 0 and the family of sets In(Y ) = T−n(B(Y, Cn−α)).
We remark that by the assumptions stating that µ(B(Y, r)) ≤ rd and α > 1

d

then
∑

n µ(B(Y,Cn−α)) < ∞.
Since T is measure preserving then

∑
n µ(In(Y )) < ∞. Now each point

x such that lim inf
n→∞

nαd(T n(x), Y ) < C belongs to infinitely many sets in the

family In(Y ). By the Borel-Cantelli lemma this implies that x is contained
in a zero measure set. ¤
Proof of Theorem 1 We remark that if (n + 1)−α ≤ r ≤ n−α , since τr(x, Y )

is decreasing in r then
log(τn−α )

− log((n+1)−α)
≤ log(τr)

− log(r)
≤ log(τ(n+1)−α )

− log(n−α)
, by this we can

see that

lim inf
r→0

log(τr(x, Y ))

− log(r)
=lim inf

n→∞
log(τn−α(x, Y ))

− log(n−α)
.

Now Lemma 1 implies that if n is big enough τn−α ≥ n and this implies

lim inf
n→∞

log(τn−α (x,Y ))

− log(n−α)
≥ 1

α
for each α > 1

d
and this implies the statement.¤

For the Casati-Prosen map Tα,β, with Y = 1/2× [0, 1[ the theorem gives
an upper bound that is the same both in the cases α 6= 0, α = 0 (assuming
β 6= 0). We show numerically that the bound is sharp and the speed of
approaching to the discontinuity lines is the same in both cases, namely
τε(x, Y ) ∼ ε−1. This is shown in Fig.4 and Fig.5 for different ε-intervals .
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Figure 4: Plot of − log ε, (ε ∈ [10−2, 10−5] versus log(τε(x, Y )), averaged over a
set of initial conditions x ∈ T2. Two cases are shown : α = e−1, β = (1 +

√
5)/2

(solid line) and α = 0, β = (1 +
√

5)/2 (dotted).
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Figure 5: Plot of − log ε, ε ∈ [10−5, 10−7] versus log(τε(x, Y )), averaged over a set
of initial conditions x ∈ T2. Two cases are shown : α = e−1, β = (1+

√
5)/2 (solid

line) and α = 0, β = (1 +
√

5)/2 (dotted).

3 Generalized orbit complexity

We recall the definition of generalized orbit complexity that was given in [12]
to provide complexity indicators for systems with 0 entropy.

The complexity of an orbit measures the quantity of information that is
necessary to describe an orbit. This pointwise notion is based on a pointwise
notion of information content: the Algorithmic Information Content. We
now give a short recall about algorithmic information content (see [6] for
more information e.g.).

Let us consider a Turing machine A and a finite string s written in some
finite alphabet A. Intuitively A is a computer to which we can give programs
to run, the programs are binary strings. Let Σ be the set of finite binary
strings. Let p ∈ Σ, we consider p as a program to be run on the computer
A. If we start the machine A with input p, the computation stops and the
output is s we write A(p) = s. By this notation we emphasize the function:
input→ output that is naturally associated to the machine. A function is said
to be recursive if its values can be computed by a Turing machine as above.
Let us denote by `(p) the length of p.

The Kolmogorov complexity or Algorithmic Information Content of s
relative to A is the quantity

AICA(s) = min
p : A(p)=s

`(p).
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If there is no p s.t. A(p) = s then we put AICA(s) = ∞.

There are countably many Turing machines which may be computably
enumerated as A1, A2, . . . For n ∈ N let en be the n-th binary string in the
lexicographical order 0, 1, 00, 01, 10, 11, 000, . . . so that `(en) ≤ log2 n. We
say that a Turing machine U is universal if it can emulate any other Turing
machine if appropriately programmed, more formally this can be formulate as
follows: for any n ∈ N and any finite 0− 1 string p we have U(ên p) = An(p)
where, for a given word q of length m, we have denoted by q̂ the word
q0q0q1q1 . . . qm−1qm−101. This in particular means that if A is any Turing
machine a constant CA can be found so that for any finite binary string s we
have AICU(s) ≤ AICA(s) + CA. Then the AIC is independent of the choice
of the universal machine A up to a constant. Since we are going to consider
the asymptotical behavior of the AIC for very long strings this constant is
not relevant.

Let us consider a dynamical system (X, T ). X is a compact metric space
and T is a Borel map X → X. Many nice results hold when T is continuous,
the next definition does not need continuity and is then suited also for the
CP map.

Let us consider a finite open cover β = {B0, B1, ..., BN−1} of X. We use
β to code the orbits of (X, T ) into a set of infinite strings. A symbolic coding
of the orbits of X with respect to the cover β is a string listing the sets
Bi1 , .., Bin visited by the orbit of x during the iterations of T . Since the sets
Bi may have non empty intersection then an orbit can have more than one
possible coding. More precisely, if x ∈ X let us define the set of symbolic
orbits of x with respect to β as:

ϕβ(x) = {ω ∈ {0, 1, ..., N − 1}N : ∀n ∈ N, T n(x) ∈ Bω(n)}.

The set ϕβ(x) is the set of all the possible codings of the orbit of x relative
to the cover β.

Definition 1 The information content of n steps of the orbit of x with re-
spect to β is defined as

K(x, T, β, n) = min
ω∈ϕβ(x)

AICU(ωn).

where ωn is the string containing the first n digits of ω.
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By [5], when a system has an invariant measure µ with positive entropy
we have K(x, T, β, n) = h(β)n+o(n), where h(β) tends to hµ as the diameter
of β tends to 0. Hence in positive entropy systems the information increases
linearly. In a zero entropy system the information increases with a sublinear
asymptotic behavior. To be able to distinguish between all the possible
sublinear asymptotic behaviors of the K(x, T, β, n) as n increases we compare
it with a function f whose asymptotic behavior is known. For each monotonic
function f(n) with lim

n→∞
f(n) = ∞ we consider

Definition 2 The complexity of the orbit of x ∈ X relative to f and β is
defined as:

Kf (x, T, β) =limsup
n→∞

K(x, T, β, n)

f(n)
.

For the Casati-Prosen map we are interested mainly to the case where
f(n) = log(n).

Taking the supremum over the set of all finite open covers β of the metric
space X it is possible to get rid of the dependence of our definition on the
choice of the cover β and define the complexity of the orbit of x:

Definition 3 The complexity of x with respect to f is defined as

Kf (x, T ) = sup
β∈{Finite open covers}

Kf (x, T, β).

This definition associates to a point belonging to X and a function f
a real number which is a measure of the complexity of the orbit of x with
respect to the asymptotic behavior of f .

An interesting feature of this definition is that it is invariant by topological
conjugation: if the dynamical systems (X,T ) and (Y, S) are topologically
conjugate, π : X → Y is the conjugating homeomorphism, and π(x) = y
then ∀f , Kf (x, T ) = Kf (y, S) (see [12]).

Another interesting feature of orbit complexity is that it can be numeri-
cally estimated by the use of suitable data compression algorithms (see e.g.
[1]). This gives a tool for the analisys of dynamical time series.

In the following we will give a rigorous estimation of K log(x) for the orbits
generated by the Casati-Prosen map.
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4 Initial condition sensitivity of the Casati-

Prosen map

The Casati-Prosen map is sensitive to initial conditions, for example in the
formal sense of Devaney (see e.g. [2]). At an intuitive level the reason for this
is that nearby starting orbits are slowly separated by the effect of the skew
translation until they are drastically separated by the discontinuity. We now
consider a quantitative indicator of initial condition sensitivity.

The indicator is constructed in a way that can detect this weak form of
initial condition sensitivity. Its value will be estimated by the use of Theorem
1. Let us consider the following set:

B(n, x, ε) = {y ∈ X : d(T i(y), T i(x)) ≤ ε ∀i s.t. 0 ≤ i ≤ n}.

B(n, x, ε) is the set of points “following” the orbit of x for n steps at a
distance less than ε. As the nearby starting orbits of (X,T ) diverges the set
B(n, x, ε) will be smaller and smaller as n increases. The speed of decreasing
of the size of this set considered as a function of n will be a measure of the
sensitivity of the system to changes on initial conditions on a neighborhood
of x. As a measure for the size of B(n, x, ε) we consider the radius of the
biggest ball with center in x contained in B(n, x, ε), i.e.

r(x, n, ε) = sup r
Br(x)⊂B(n,x,ε)

.

To measure the speed of decreasing of this size we measure how faster
− log(r(x, n, ε)) increases as n increases. This is, in a certain sense an es-
timation from above of the initial condition sensitivity (see [12]). To have
consistent notations with the definition of Kf let us consider an f as above
and let us define rf

ε : X → R

rf
ε (x) =limsup

n→∞

− log(r(x, n, ε))

f(n)
.

Since rf
ε (x) is a monotone function with respect to ε we can define

rf (x) = sup
ε∈R+

rf
ε (x).
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Now let us estimate rlog(x) for the CP map. Let us consider two nearby
starting initial conditions x and y. As said before the orbits of x and y will
separate by the effect of the skew translation and by the effect of the discon-
tinuity. In particular, the combination of the linear separation induced by
the regular part of the dynamics, together with the estimate for the recur-
rence close to the discontinuous lines, τε(x, Y ) ∼ ε−1, leads to the estimate
rlog
ε (x) ∼ 2, for Tα,β with α, β 6∈ Q∪(0). On the other side, this behavior must

be compared with the asymptotic rlog
ε (x) ∼ 1 that we have for the continuous

skew translation F0,β. This is shown numerically in Fig. 6, whereas the effect
of the discontinuity can be rigorously estimated by the use of Theorem 1,
which leads to:

Theorem 2 For Lebesgue almost each x ∈ X rlog(x) ≤ 2.

Proof. First it is easy to remark that if Y = ρ ∪ ρ′ is the discontinuity
set of the map dµ(Y ) = 1. Let α < 1, let x ∈ X be such that (by theorem 1)
lim infn→∞ nαd(T n(x), Y ) = ∞. Let also suppose that the orbit of x never
meet Y . We can suppose that for all n nαd(T n(x), Y ) ≥ c > 0

Let us consider an y such that ∀i ≤ n

d(T i
α,β(x), T i

α,β(y)) ≤ c

2
i−α. (2)

Then the orbits of x and y are not separated by the discontinuity at the n+1
step. This is true because the orbit of x will stay far away (more than c

2
n−α)

enough from Y .
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Now let us consider the effect of the skew translation and estimate how
near we need to start from x to assure that Eq. 2 hold.

If y ∈ B(x, c
2
n−α−1) and the orbit of x, y are not separated by the discon-

tinuity then Eq. 2 holds. Indeed after m steps, if the orbit of x and y are not
separated by the discontinuity but only by the effect of the skew translation
we have that d(Tm(x), Tm(y)) ≤ c

2
mn−α−1 When m = n we have the desired

inequality.
Then for almost each x, if n is big enough B(x, n, ε) contains B(x, c

2
n−α−1).

This holds for each α > 1 and then easily implies the statement. ¤

5 Complexity of the orbits of the Casati-Prosen

map

Now we will deduce an estimation about orbit complexity by the estimation
on initial condition sensitivity given before, for this we need some technical
tools. A real number is constructive if it can be approximated at any accuracy
by an algorithm.

Definition 4 (Constructive numbers) A number z ∈ R is said to be con-
structive if there is an algorithm Pz(n) : N → Q such that Pz(n) = q implies
|q − z| < 2−n.

Now let us consider the map Tα,β with α and β constructive numbers. In
[12] general relations are proved between orbit complexity and initial condi-
tion sensitivity. These relations are proved assuming that the dynamics is
given by a continuous constructive map. However the above cited results can
be extended to the CP map, as follows

Theorem 3 In the Casati-Prosen map with constructive coefficients the fol-
lowing relation holds for Lebesgue almost each point x of the torus

K log(x) ≤ 2rlog(x) + 1. (3)

Proof. In this proof we use some results and techniques from [12] related
to computable structures and the relation between sensitivity and complexity.
We describe a construction similar to what is done in [12] section 8.1, in order
to apply theorem 31 of the cited paper to a discontinuous case. Due to lack of
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space we will not define here all the technical instruments about computable
structures that are needed for the proof. We refer the reader to [12].

Let us consider Z = ∪
i∈Z

T i(Y ), where Y is the discontinuity set of Tα,β.

Let X ′ = [0, 1]× [0, 1] \ Z. X ′ is then a full measure set in [0, 1]× [0, 1].
On the space X ′ it can be considered the computable structure induced

by the standard computable structure of X. Indeed, let us consider an in-
terpretation ([12] Definition 3) I : Σ → X constructed in the following
way: first let us consider a recursive encoding of Q×Q with strings, i.e. an(

l1
l2

)
: Σ → Q×Q, then consider I(s) = (l1(s)+z( mod 1), l2(s)+z( mod 1))

where z is a constructive irrational that is incommensurable with α and β.
On this (non compact) space X ′ the map Tα,β is constructive (in the sense

of [12] definition 9). Theorem 31 of [12] and the fact (Theorem 19 of [12])
that in a compact space ([0, 1]× [0, 1]) the orbit complexity with respect to
a computable structure is equivalent to the orbit complexity with respect to
open covers (as it is defined in this paper) implies that for each x ∈ X ′ and
hence for almost each x ∈ [0, 1]× [0, 1]

K log(x) ≤ dB(X ′)rlog(x) + 1

were dB is the upper box counting dimension of X ′, which is 2 and by this
we have the statement ¤

From the previous statement and Theorem 2 we finally have an estimation
about the generalized orbit complexity of the CP map when the coefficients
are constructive numbers

Corollary 1 In the Casati-Prosen map, with constructive coefficients, for
Lebesgue almost each x, K log(x) ≤ 3.

This implies that if the map has constructive coefficients for almost all
points the information that is necessary to describe n steps of an orbit in-
creases at most as 3 log(n) modulo lower order terms.

If the map has no constructive coefficients an estimation of the informa-
tion content of the orbits is still possible.

Theorem 4 In the Casati-Prosen map, for Lebesgue almost each x,

K log(x) ≤ 11.
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Lemma 2 Let us consider the CP map Tα,β, with α, β constructive numbers,
let z be a constructive number that is not commensurable with 1, α and

β, let x =

(
q1 + z
q2 + z

)
with q1, q2 ∈ Q. Then, there is a program P that

calculates a recursive function A : N × Q × Q × Q → Q × Q such that
d(A(n, ε, q1, q2), T

n
α,β(x)) < ε and the length of P satisfies |P | ≤ C + |Pα|+

|Pβ| (see Def. 4).

Proof. If x is as above, since z is irrational x is not on the discontinuity
set. It is easy to see that with the knowledge of α and β it is possible to
calculate with an algorithm Tα,β(x) with an arbitrary precision. Since z is not
commensurable with 1, α and β, then Tα,β(x) is not on the discontinuity line
(and the whole orbit of x never meet the line). Since Tα,β is continuous in a
neighborhood of x by approximating Tα,β(x) with a sequence of points x1 =(

q1
1 + z

q1
2 + z

)
, x2 =

(
q2

1 + z
q2

2 + z

)
, ... converging to Tα,β(x) and calculating

Tα,β(x1), Tα,β(x2)... with a greater and greater precision we can calculate a
sequence of points that converges to T 2

α,β(x), hence we can calculate T 2
α,β(x)

with arbitrary precision. By iterating this step it is easy to see that Tm
α,β(x)

can be calculated with arbitrary precision by an algorithm (the algorithm
A). We remark that varying α and β the main part of the procedure remain
the same, we only need the information that is necessary to construct α and
β with arbitrary precision,that is |Pα|+ |Pβ|. ¤

Lemma 3 Let us consider Tα1,β1, ε < 2α1 and let d > 1. For almost each
x there is a c such that if α2 and β2 are such that |α1 − α2| < c

4nd+2 and
|β1 − β2| < c

24nd+2 then it holds ∀i ≤ n + 1 d(T i
α1,β1(x), T i

α2,β2(x)) ≤ ε
4
.

Proof. Let us consider some d > 1, like in the proof of Theorem 2. Let us
consider an x such that there is a c > 0 s.t. for each n, ndd(T n

α1,β1
(x), Y ) ≥

c > 0 and ndd(T n
α2,β2

(x), Y ) ≥ c > 0. By theorem 1 this assumption can be
made for almost each x.

Let n be such that cn−d < ε. If d(T n
α2,β2

(x), T n
α1,β1

(x)) < c
4
n−d < ε

4
then

at the next step the two orbits cannot be separated by the discontinuity and
they will keep to stay at a distance less than ε .

Let us hence suppose that the two orbits are not separated by the dis-

continuity for n steps. Let us use the following notations: x =

(
x0

y0

)
,
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Tα1,β1(x) =

(
x1

y1

)
, Tα2,β2(x) =

(
x′1
y′1

)
, Tα1,β1

i(x) =

(
xi

yi

)
, Tα2,β2

i(x) =
(

x′i
y′i

)
, and finally ∆xi = |xi−x′i| and ∆yi = |yi−y′i|. With these notations

we have for each n ≥ 1 the following

{
∆yn = n∆y0

∆xn = ∆xn−1 + ∆yn−1
.

By this we can estimate ∆y1 ≤ |α1−α2|+ |β1 +β2| and d(T i
α1,β1

, T i
α2,β2

) ≤
∆y1(i + i(i+1)

2
) ≤ 3∆y1i

2 for each i ≤ n.

Hence if ∆y1 ≤ |β1 − β2| + |α1 − α2| ≤ c
12nd+2 then for each i ≤ n

d(T n
α2,β2

(x), T n
α1,β1

(x)) < ε
4
. Recalling that this holds for almost each x we

have the statement ¤
Proof of theorem 4. After the estimation (Theorem 2 ) on r we have that

for each d > 1 there is a C such that B(x, n, ε) contains a ball with radius

C
nd+1 . In such a ball there is a point of the type y =

(
q1 + z
q2 + z

)
(as in Lemma

2) and the binary expansion of q1 and q2 are q1 = 0.v1v2...vl, q1 = 0.w1w2...wl′

with max(l, l′) < − log( C
nd+2 ) (that is about 4 log(n) bits for both strings).

Let us consider a cover U (see definition of orbit complexity) of X made
of balls with rational radius and rational center. Suppose that the Lebesgue
constant of the cover is ε. A program to give a symbolic orbit for the point
x for n steps with respect to U is the following.

0) the program contains strings to codify: i) the point y as above, ii) a
couple of rationals α2, β2 such that |α−α2|+ |β−β2| < c

12nd+2 (that is about
8 log(n) bits, we remark that here c is constant when y is fixed), a string
codifying n.

1) Applying lemma 2 to the approximate map Tα2,β2 the program calcu-
lates a sequence of points p1...pn following the orbit of y at a distance less
than ε

4
for n steps. This sequence of points will follow the real orbit of x at

a distance less than ε
2
.

2) by calculating in which ball of the cover U is the point pi for 1 ≤ i ≤ n
the program outputs a symbolic orbit of x with respect to U .

The program calculates the symbolic orbit of the point x w.r.t U for the
map Tα1,β1 . But since the orbit of x w.r.t Tα,β is at a distance less than ε

2

then the symbolic orbit is the same.

It is clear that in the above program (asymptotically, as n increases), the
greater part of the information is contained in the four initial strings. They
indeed needs less than 11 log(n) + C bits to be given while the remaining
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part of the procedure has constant length with respect to n. ¤
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