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Abstract

Recently, Gallavotti proposed an Equivalence Conjecture in hydrodynamics, which states that forced-damped fluids can
be equally well represented by means of the Navier–Stokes equations (NS) and by means of time reversible modifications of
NS called Gauss–Navier–Stokes equations (GNS). This Equivalence Conjecture received numerical support in several recent
papers concerning two-dimensional fluid mechanics. The corresponding results rely on the fact that the NS and GNS systems
only have one attracting set. Performing similar two-dimensional simulations, we find that there are conditions to be met by
the GNS system for this to be the case. In particular, increasing the Reynolds number, while keeping fixed the number of
Fourier modes, leads to the coexistence of different attractors. This makes difficult a test of the Equivalence Conjecture, but
constitutes a spurious effect due to the insufficient spectral resolution. With sufficiently fine spectral resolution, the steady
states are unique and the Equivalence Conjecture can be conveniently established.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the Navier–Stokes (NS) equation for a
two-dimensional incompressible fluid, with periodic
boundary conditions. In dimensionless form, this
equation can be written as

u̇ + R2(u · ∂u) = �u + f − ∂p, div(u) = 0, (1)

whereR is the Reynolds number andf is a time inde-
pendent forcing term, with vanishing spatial average.
As a consequence, the spatial average of the flowu,

∗ Corresponding author.
E-mail addresses:giberti@uninsubria.it (C. Giberti),
rondoni@polito.it (L. Rondoni), vernia@unimore.it (C. Vernia).

is preserved by the dynamics, and can be taken to be
zero without loss of generality. Recently, Gallavotti
introduced a modification of the NS equation, which
takes the form[1,2]:

u̇ + R2(u · ∂u) = α�u + f − ∂p, (2)

whereα is a time-dependent multiplier, defined in such
a way that one global quadratic quantity, such as the
enstrophy, is constant in time. In particular, to fix the
enstrophyQ = ∫

�2 dx, whereω = ∇ × u is called
vorticity, one must take

αQ(u,ω, f) =
∫

[ω · f + ω · (ω · ∇)u] dx∫
(∇ × ω)2 dx

. (3)
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Eq. (2), with α given by Eq. (3) has been called
Gauss–Navier–Stokes (GNS) equation in[2], because
αQ implements Gauss’ principle of least constraint
[3], in order to makeQ a constant of motion. If
Eq. (2)with α given byEq. (3)correctly describe the
behavior of certain fluids, as the results of Refs.[4,5]
suggest, those fluids have experimentally observable
properties, which the NS equations do not make
obvious (cf. Section 2 below). Hence, a thorough
examination ofEqs. (2) and (3)becomes necessary.

The numerical solution of the NS and GNS equa-
tions with periodic boundary conditions is conve-
niently performed in terms of the Fourier modes ofu,
using the truncated expansion:

u(x, t) =
∑

k∈L
γk exp(ik · x)

k⊥

|k| ,

L = [−L,L] × [−L,L]\{0}. (4)

By N we denote the number of complex modes which
corresponds to the chosenL. The numerical solution
of Eqs. (1) and (2)is then computed from

γ̇k = −β|k|2γk − iR2

×
∑

k1+k2=k,
k1,k2∈L

(k⊥
1 · k2)(|k2|2 − |k1|2)

2|k||k1||k2| γk1γk2 + f̂k

for k ∈ L, (5)

obtained substituting(4) in Eqs. (1) and (2), where one
takesβ = 1 for the NS dynamics, andβ = αQ, written
in terms of Fourier modes, for the GNS dynamics.
Because the Fourier modes obey the reality condition
γk = −γ̄−k, it suffices to consider the modesγk with
k ∈ L+ = [0, L] × [−L,L]\{0}, and to integrate a
system ofN real ODEs, for the real and imaginary
parts ofγk, xk andyk, respectively, withk ∈ L+.

We assume that inL+ there is only one non-
vanishingf̂k, which is taken equal to 1 and, in our
numerical experiments, the non-vanishing mode has
either k∗ = (1,−2) or k∗ = (2,−1). Consider now
the global quadratic quantities, defined by

Qm =
∑

k∈L+
k2m|γk|2, m = 0,1,2, . . . . (6)

Then the enstrophy is given byQ = 2Q1, while the
energy is defined byE = 2Q0. Recalling the special
form of f which we adopt, and constrainingQ1 to be
a constant under the GNS dynamics, we get

β(γ) − αQ(γ) = |k∗|2xk∗

Q2(γ)
, where xk∗ = Re(γk∗)

(7)

which must be substituted inEq. (5). The fourth order
Runge–Kutta numerical scheme, which we adopted,
does not guarantee that the constraint of constant en-
strophy,Q(γ(t)) = Q1, be exactly implemented. For
this reason, we scale the computedγ at every time step,
replacing it with

√
Q1/Q(γ)γ, in the surfaceQ(γ) =

Q1. However, this renormalization scheme does not
change the convergence order of the original Runge–
Kutta scheme[6]. In our calculations, the time step
usually equals 10−3, except in the most delicate cases
where it is reduced to 10−4. In this paper we denote
by 〈g〉NS

T the time average of the observableg, overT
dimensionless time units, under the NS dynamics, and
by 〈g〉GNS

T the corresponding time average under the
GNS dynamics. The limits of these averages for grow-
ing T are denoted by〈g〉NS and〈g〉GNS, respectively.

2. Equivalence

The first set of numerical experiments which we dis-
cuss concerns the role of the initial conditionuGNS(0)
for the GNS evolution, whenuGNS(0) is the last field
uNS(T) produced by a long NS evolution which has
reached a non-equilibrium steady state. In particular,
we consider the NS evolution over a number of differ-
ent time intervals [0, Tj], j = 1, . . . , nic, starting from
the same initial fielduNS(0), and withTj > T for all j,
whereT is the time needed to reach a steady state. We
then simulatenic GNS evolutions, takinguGNS

j (0) =
uNS(Tj) as initial condition for thejth GNS run. This
way, each different GNS evolution takes place on a
different surfaceQ(γ) = Q1(uNS(Tj)) and yields a
different value for the time average of the termαQ.

In our framework, the Equivalence Conjecture pro-
posed by Gallavotti in[2], and later revised and tested
in Refs.[4,5], can be stated as follows.
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Equivalence Conjecture. The stationary phase space
probability distributions of the NS equations and of
the GNS equations are equivalent in the limit of large
Reynolds number, provided the fixed enstrophyQ of the
GNS evolution coincides with the average enstrophy
〈Q〉NS of the NS evolution at the same R.

In analogy with the theory of equivalence of equi-
librium ensembles, the object of the Equivalence
Conjecture are the “local observables”, i.e. the quan-
tities which depend only on a finite number of Fourier
modes of the velocity fieldu. In other words, if the
Equivalence Conjecture is verified andϕ is a local
observable, the ratio〈ϕ〉NS/〈ϕ〉GNS should converge
to 1 asR tends to infinity. Refs.[4,5] showed that
the equivalence may concern also global quantities.
In particular, one expects〈αQ〉GNS = 1. i.e. that the
average “viscosity” of the GNS evolution equals the
viscosity of the NS equation. This fact, first observed
in most of the cases treated in[4], was made precise
in [5] for the NS and GNS dynamics with only one
steady state, and it is studied in a different setting in
this paper. In particular, we investigate the dependence
of 〈αQ〉GNS

T on the differenceQ(uNS(Tj)) − 〈Q〉NS
T

in order to check whether it is the case or not that
〈αQ〉GNS

T � 1, wheneverQ(uNS(Tj))/〈Q〉NS
T � 1.

The interest of the Equivalence Conjecture lies in
the following facts. If the NS and GNS description of
the same fluid are equivalent, one may use one equa-
tion or the other, depending on the particular features
of the fluid one wishes to describe. For instance, if
the GNS equation is valid, the dissipated power in the
fluid fluctuates, and its fluctuations could be described
by the Gallavotti–Cohen fluctuation theorem[7]. This
property is not evidenced by the NS equation, which
predicts that the dissipated power is constant in time
[2,4,5].1 At the same time, a local fluctuation theo-
rem can be derived for the same systems for which the
Gallavotti–Cohen theorem holds (see, e.g. Ref.[8]).
Therefore, one may think that this local theorem holds
for the GNS dynamics and, by virtue of the Equiv-

1 Note that there is no conflict between the predictions of the
NS and GNS equations, in this instance, because the fluctuations
which are the object of the Gallavotti–Cohen theorem should not
be observed, normally, in macroscopic systems.

alence Conjecture, that it must hold also for the NS
dynamics. As a matter of fact, the results of Ref.[5]
indicate that this is the case. The Equivalence Conjec-
ture, then, appears as a useful theoretical tool for the
extension of the theory of equivalence of ensembles
to non-equilibrium statistical mechanics, for a deeper
understanding of the properties of the NS dynamics,
and also for suggesting new experiments, like those
reported in Refs.[9,10].

The idea behind the Equivalence Conjecture is
simple. If the fluctuations ofαQ occur on time scales
which are short compared with the macroscopic
observation time scales, and if〈αQ〉GNS = 1, the
macroscopic observables should be equally well com-
puted from the NS and the GNS dynamics. However,
〈αQ〉GNS cannot be adjusted at will, because it is
automatically produced by the GNS evolution, and
the viscosity of the NS equation cannot be adjusted
either, as it is fixed to be 1. The Equivalence Conjec-
ture allows us to circumvent this difficulty, suggesting
that the equality of the average viscosities is obtained
if the average enstrophies are equal. When the value
of 〈Q〉NS is known, the equality〈Q〉NS = QGNS can
be easily imposed in various ways, e.g. following
the procedure of[4,5] or simply taking at random
an initial velocity field for the GNS evolution, and
then rescaling this field so that its initial enstrophy
equals〈Q〉NS. Once the equality of the average en-
strophies is obtained, the largeR limit is required to
ensure that the fluctuations ofαQ do really occur on
sufficiently short time scales, and the results of[4,5]
suggest that this is the case if the initial fields of
the GNS evolutions are properly constructed. How-
ever, the question of the influence of the GNS initial
fields on the validity of the Equivalence Conjecture
has not been investigated in[4,5]. This question be-
comes important if the phase spaces of the NS or
GNS equations contain more than one steady state. In
that case, tuning the parameters of the NS and GNS
evolutions as required by the Equivalence Conjecture
may not be enough to obtain the desired equiva-
lence, because the initial conditions of the NS and
of the GNS evolutions may fall into attractors with
different statistical properties. In this paper, we will
observe that this, indeed, does happen in certain cases
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and we will characterize the cases for which it does
not.

3. Results

Figs. 1 and 2portray the typical probability distri-
butionπR of the quantity defined by

q = Q(uNS)/〈Q〉NS
T (8)

for N = 24 andR2 = 200,2000. These distribu-
tions are constructed using the fieldsuNS(Tj), j =
1, . . . , n = 5 × 104, produced by the NS evolution
at the time instantsT1, T2 = T1 + �T, T3 = T2 +
�T, . . . , Tn = Tn−1 +�T which are separated by the
time interval�T = 4×10−2 (in dimensionless units)
in order to decorrelate two consecutive fields. The re-
sulting distributions approximate Poisson probability
distributions, whose peak lies belowq = 1, and ap-
pears to draw closer to 1 for growingR. At smaller
R, we observed different kinds of distributions, such
as those ofFigs. 3 and 4for N = 24 andN = 48,
respectively, atR2 = 150. However, in all cases we
checked, the distribution approximates a Poisson dis-
tribution for growingR. For instance, in the case of

Fig. 1. Probability distribution ofQ(uNS(Ti))/〈Q〉NS
T at N = 24

andR2 = 200.

Fig. 2. Same as Fig. 1 atR2 = 2000.

Fig. 4, the two peaks approach one another and finally
merge whenR becomes sufficiently large.

Figs. 5 and 6show the dependence of〈αQ〉GNS
T on

the variableq, for different values of the Reynolds
numberR and of the spectral resolutionN. Each

Fig. 3. Probability distribution ofQ(uNS(Ti))/〈Q〉NS
T at N = 24

andR2 = 150.
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Fig. 4. Same asFig. 3 at N = 48.

figure contains 200 points corresponding to 200
different initial fields uNS(Tj). The data inFigs. 5
and 6 show a sharp, albeit not simple, connection
between the average values〈αQ〉GNS

T and the constant
enstrophy of the corresponding GNS evolutions. Sim-

Fig. 5. Average〈αQ〉GNS
T as a function ofQ(uNS(Ti))/〈Q〉NS

T for
N = 48 andR2 = 122.

Fig. 6. Same asFig. 5 at N = 120 andR2 = 150.

ilarly to the case of Ref.[4], this relation often yields
〈αQ〉GNS

T ≈ 1 for q = 1, but not always, indicating
that at finiteN andR, 〈αQ〉GNS

T depends on all the
parametersN, R andq in a way which is difficult to
characterize. As mentioned above, this dependence
may be due to the coexistence of steady states with
different statistical properties which, then, makes
difficult a direct test of the Equivalence Conjecture.

To clarify this issue, one should analyze a two pa-
rameters space for the GNS evolution, considering
many spectral resolutionsN and, for eachN, many
Reynolds numbersR. This is numerically too expen-
sive; therefore, we concentrated on the case withN =
24, which can be controlled quite well numerically.
We considered a set of pairs(R2,Q1), and for each
of them we took a numbernic of initial fields sam-
pled at random with an absolutely continuous (with
respect to the Lebesgue measure) distribution on the
invariant ellipsoids identified byQ(u) = Q1. Then,
in each ellipsoid, we computed the time averages of
several observables along the correspondingnic GNS
evolutions. In particular, we tooknic = 100, and we
computed the values of〈αQ〉GNS

T , of 〈Qm〉GNS
T for sev-

eralm’s, and of〈x2
k〉GNS

T or 〈y2
k〉GNS

T for several wave
vectorsk ∈ L+. In some cases, all thenic average
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Table 1
Number of steady states for the GNS dynamics withN = 24 and different values ofR2 and of the fixed enstrophyQ1

a

R2 Q1 = 0.02 Q1 = 0.1 Q1 = 0.2 Q1 = 0.3 Q1 = 0.4 Q1 = 0.5

1000 – 1 1 1 1 S
1500 – 1 1 S S S
2000 – 1 S S S S
2500 – 1 S S S S
3000 1 S S S S S
3500 1 S – – – –
4000 1 S – – – –
4500 1 S – – – –
5000 1 S – – – –

a The symbol 1 denotes the cases with just one steady state, while S denotes the cases with more than one steady state.

values of each observable turned out to be equal up to
numerical errors; in other cases there was at least one
observable whosenic averages were not all the same.
We take the first as cases in which there is a unique
steady state which attracts all initial conditions in the
phase space, while the other cases clearly correspond
to situations in which two or more steady states coex-
ist, and hysteresis phenomena are possible[11].

Our results are summarized inTable 1, where 1
denotes the cases for which only one steady state was
evidenced by our calculations, while S (for “several”)
indicates the cases with more than one steady state.
Table 1shows that for fixedQ1, smallR2 implies the
presence of a unique steady state, while growingR2

implies the coexistence of a growing number of steady
states. Similarly, for fixedR2, there is only one steady
state ifQ1 is small, while there is a growing number
of steady states ifQ1 grows. The cases denoted by a
dash have not been investigated, due to the length of
the relevant simulations but, extrapolating our results
to such cases, it seems reasonable to conclude that
we should haveS’s in place of the dashes forQ1 =
0.2,0.3,0.4,0.5, and 1’s forQ1 = 0.02.

To clarify these facts, let us consider some example
more in detail.

3.1. Case withQ1 = 0.1

Table 2 shows the dependence ofᾱQ on R2 for
Q1 = 0.1, where

ᾱQ = 1

nic

nic∑

j=1

〈αQ〉GNS
T (uGNS

j (0)), (9)

nic is the number of initial conditionsuGNS
j (0) for

which〈αQ〉GNS
T is computed, andσ(ᾱQ) is the standard

deviation of the distribution of the〈α〉GNS
T values.

These results show how the relative spreading of the
〈αQ〉GNS

T values has a sudden jump passing from the
case of a unique steady state to the case of coexisting
steady states. In the first case, the relative spreading is
only an indication of the numerical error on the calcu-
lation of 〈αQ〉GNS

T , as evidenced also by the results for
R2 = 1500,2000 obtained from simulations of dif-
ferent length, and by the fact thatσ(ᾱQ)/ᾱQ does not
change much withR2. Differently, in the second case,
we observe that the relative spreading rapidly grows
with R2, in a monotonic fashion.

Table 2
Properties ofᾱQ as a function ofR2, for two values of the
integration timeT , where neededa

R2 ᾱQ σ(ᾱQ) T σ(ᾱQ)/ᾱQ

300 0.443966 1.29476× 10−3 104 2.92× 10−3

350 0.393078 1.03238× 10−3 104 2.63× 10−3

400 0.352696 9.13097× 10−4 104 2.59× 10−3

450 0.319712 1.11033× 10−3 104 3.47× 10−3

500 0.291373 9.46472× 10−4 104 3.25× 10−3

550 0.267641 9.64748× 10−4 104 3.6 × 10−3

1000 0.153389 5.29941× 10−4 104 3.45× 10−3

1500 0.103519 4.72735× 10−4 104 4.57× 10−3

1500 0.103682 2.65998× 10−4 3 × 104 2.56× 10−3

2000 7.823× 10−2 3.3869× 10−4 104 4.33× 10−3

2000 7.8126× 10−2 2.531× 10−4 3 × 104 3.24× 10−3

2500 6.2523× 10−2 1.98× 10−4 3 × 104 3.17× 10−3

3000 4.783× 10−2 2.9457× 10−3 104 6.16× 10−2

4000 2.129× 10−2 1.476× 10−2 104 6.92× 10−1

5000 0.160473 7.080× 10−3 104 4.4 × 10−2

6000 4.11× 10−3 6.1375× 10−3 104 1.49

a Here,nic = 20 forR2 ∈ [300,550],nic = 100 forR2 ≥ 1000.
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Fig. 7. Average〈αQ〉GNS
T as a function ofR2, together with the

fit f(x) = 75.5829/Rb, b = 1.7946, forN = 24 andQ1 = 0.1.

Fig. 7 reports a fit of the values of̄αQ as a function
of R2 in the range with a unique steady state. Because
αQ is a kind of viscosity, if the conjectured equivalence
between the NS and the GNS dynamics really holds,
as the numerical results of[4,5] suggest, one should
find that〈αQ〉GNS ∼ 1/R. The spectral resolution we
use is clearly insufficient to correctly represent this
kind of hydrodynamic properties for the values ofR

we considered. In fact, the best fit of our data yields
〈αQ〉GNS

T = const./Rb with b ≈ 1.7946.
Figs. 8–10show the time evolution ofαQ. As R

grows, the evolution changes from apparently chaotic
with a unique steady state, to quasi-periodic or inter-
mittent, depending on the initial condition. The chaotic
steady state forR2 = 1000, has a Lyapunov spec-
trum with 10 positive exponents (the maximum being
λmax ≈ 33.81) and Kaplan–Yorke dimensionDKY ≈
22.588 [12].

For the case withR2 = 3000, out of the 100 differ-
ent initial conditions which we considered, 98 yield in-
termittent evolutions with〈αQ〉GNS

T ∈ [0.040,0.048],
one initial condition yields a quasi-periodic evolution
with 〈αQ〉GNS

T ≈ 0.0048, and the last initial condition
leads to a long erratic transient, apparently followed

Fig. 8. QuantityαQ as a function of time for the chaotic case at
N = 24, R2 = 1000 andQ1 = 0.1.

by an intermittent steady state with〈αQ〉GNS
T ≈ 0.051.

However, the length of the transient casts some doubts
on the sufficiency of our simulation times to correctly
understand this case. The intermittent cases, includ-

Fig. 9. Same asFig. 8 for the quasi-periodic case atN = 24,
R2 = 3000 andQ1 = 0.1.
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Fig. 10. Same asFig. 8 for the intermittent case atN = 24,
R2 = 3000 andQ1 = 0.1.

ing this last dubious case, are also characterized by
fluctuations ofαQ with amplitude which varies over
two orders of magnitude.

It is interesting to observe that a further increase of
R can result in a suppression of the intermittent be-
havior. For instance, atR2 = 4500 we found that three
quasi-periodic steady states coexist, and that every ini-
tial condition we considered was attracted by one of
them, suggesting that the phase space does not con-
tain any other steady state. This implies that largerR

does not produce a higher degree of chaos in the GNS
dynamics, if the spectral resolutionN is fixed. On the
contrary, largerR at fixedN leads to a higher degree
of order.

The situation appears different when the spectral
resolutionN is not fixed but grows withR. For in-
stance, the case withQ1 = 0.1, R2 = 3000 and
N = 48 yields a unique steady state, with〈αQ〉GNS

T ∈
[0.05195,0.05402] where the width of the interval
basically indicates the numerical error on the com-
puted value of〈αQ〉GNS

T . Similarly, for N = 80 and
sameR2 andQ1, we obtained a unique steady state
with 〈αQ〉GNS

T ∈ [0.02030,0.02095]. The same holds
for the other averages which we computed to test the

Fig. 11. Same asFig. 8 for the intermittent case atN = 24,
R2 = 2000 andQ1 = 0.2.

uniqueness of the steady states, some of which, like
αQ, turn out to be approximately Gaussian, while
the others, like the real or imaginary parts of some
Fourier modes of the velocity field, are not Gaus-
sian. In particular, the non-Gaussian distributions
include bimodal distributions which are symmetric
about 0.

3.2. Cases withQ1 = 0.2 andQ1 = 0.4

The cases withN = 24, Q1 = 0.2 andR2 =
2000,3000 also have intermittent and quasi-periodic
steady states, which are selected by the initial condi-
tions. This is exemplified byFigs. 11 and 12. Fig. 13
is the projection of the coordinatesx(0,1) and x(1,2)

when x(1,−1) = 0 for R2 = 2000, andFig. 14 is
the projection of the coordinatesx(0,1) and x(2,0)

whenx(1,−1) = 0 for R2 = 3000. In both cases we
have a quasi-periodic evolution and, in particular,
the case withR2 = 3000 has at least three different
quasi-periodic steady states. The power spectrum of
the signal ofFig. 12, reported inFig. 15, contains
at least two different basic frequencies and some
of their integer combinations. The computation of
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Fig. 12. Same asFig. 8 for the quasi-periodic case atN = 24,
R2 = 2000 andQ1 = 0.2.

the Lyapunov spectrum of this steady state is quite
delicate and, in order to obtain what we consider
sufficiently accurate data (see point 2 inSection 4), a
time step of 10−4 was used. The resulting spectrum
has four negative exponents of magnitude of order

Fig. 13. Coordinatesx(0,1) and x(1,2) for x(1,−1) = 0 for the
quasi-periodic case atN = 24, R2 = 2000 andQ1 = 0.2.

Fig. 14. Coordinatesx(0,1) and x(2,0) for x(1,−1) = 0 for the
quasi-periodic case atN = 24, R2 = 3000 andQ1 = 0.2.

O(10−3), while the other exponents have magnitude
ranging from O(10−4) down to O(10−6), and can-
not be distinguished from zero with our accuracy.
The cases withN = 24,Q1 = 0.4 andR2 = 3000
have quasi-periodic, intermittent and chaotic steady

Fig. 15. Power spectrum ofαQ for the case ofFig. 12.
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Fig. 16. αQ as a function of time for the quasi-periodic case at
N = 24, R2 = 3000 andQ1 = 0.4.

states, selected by the initial condition, as evidenced
by the time dependence ofαQ shown inFigs. 16–18.
This distinguishes this case from the previous ones,
which were chaotic only when the steady state was
unique.

Fig. 17. αQ as a function of time for the intermittent case at
N = 24, R2 = 3000 andQ1 = 0.4.

Fig. 18.αQ as a function of time for the chaotic case atN = 24,
R2 = 3000 andQ1 = 0.4.

4. Concluding remarks

1. Our study of the GNS dynamical system has ev-
idenced that fixing the spectral resolutionN and
the enstrophyQ, and lettingR grow, the dynamics
gradually become more and more ordered. This
is a consequence of the fact that the Gaussian
constraint has to work more for largerR to keep
Q fixed at the same valueQ1. The corresponding
evolutions, then dissipate more and the contraction
of the phase space volumes is stronger. Therefore,
the steady states occupy a small fraction of the
phase space and make room for different steady
states to coexist.

If Q1 decreases at fixedN, R, the opposite hap-
pens: the steady states become less ordered, and
occupy larger fractions of the phase space, leaving
no room for the coexistence of different steady
states. This is due to the fact that smallerQ1

implies that the Gaussian constraint works less.
Counterintuitive looks the fact that increasing

the spectral resolutionN with fixed R andQ, i.e.
increasing the volume of the phase space, leads
to a unique steady state, rather than to an increase
in the number of coexisting steady states. This is
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due to the fact that the denominator of(7) grows
more rapidly withN than the numerator does,
because the denominator contains higher powers
of k than the numerator. The result is that the
dissipation per degree of freedom needed to con-
strain Q decreases asN grows, then the phase
space contraction rate decreases leaving no room
for more than one steady state. This suggests that
there must be a scalingN = N(R;Q1) for the
GNS equations which determines the boundary
between the cases whose steady states are unique
and the cases whose phase space is decomposed
in various ergodic components.

The main consequence of the existence of this
scaling is that the Equivalence Conjecture ap-
pears to be valid for the NS and GNS dynamics,
in agreement with the results of Refs.[4,5], but
some care must be used in order to observe it. In
practice, the equivalence between NS and GNS
dynamics can be observed for growingR only if
the simulations are performed with finer and finer
spectral resolution̂N > N(R;Q1). The need for
N to be “much larger than the Kolmogorov scale”,
so that the cut off equations be physically rele-
vant, was already discussed in[2], but the precise
form of N(R;Q1) is still unknown. Indeed, the
present work constitutes the first quantitative study
of the existence ofN(R;Q1) for the GNS dynam-
ics. The phenomenon by which higherR at fixed
N,Q1, or higherQ1 at fixedN, R, lead to more
orderly dynamics looks similar to the phenomenon
which produces “string phases” in non-equilibrium
molecular dynamics[13].

Alternatively, the validity of the Equivalence
Conjecture can be assessed only restricting the
analysis to the basins of attraction of each separate
steady state. As a matter of fact, this is the proce-
dure developed in[4], and used also in[5], in order
to deal with the cases in which the steady states
are unique as well as with the cases characterized
by several coexisting steady states.

2. The purpose of our calculations of the Lyapunov
exponents of the GNS dynamics was to distinguish
the chaotic cases from the quasi-periodic ones.
Therefore, we were not concerned with the plainly

positive or negative exponents, as much as we were
with the vanishing ones. It is for this reason that we
used the presence of at least two “vanishing” expo-
nents as the criterion to assess the accuracy of our
calculations. In other words. the accuracy of the
calculation of the Lyapunov exponents was kept
under control making sure that at least two zero ex-
ponentsλk, λk+1, corresponding to the direction of
the flow and to the conservation ofQ, were present
in the spectrum. The test consisted in checking
that |λk| and |λk+1| be less than a given tolerance
δλ, which we choose to be of order O(10−4).

Nevertheless, such calculations remain particu-
larly delicate in the cases which we qualified as
quasi-periodic, due to the presence of a number
of very small Lyapunov exponents, whose actual
values cannot be distinguished from zero with our
accuracy.

This is a common problem when dealing nu-
merically with zero exponents[5], if the classical
algorithm developed in Ref.[14] is used to calcu-
late the whole Lyapunov spectrum, as appropriate
in our case. Therefore, in the quasi-periodic cases,
some uncertainty remains on whether some of the
exponents are really zero or small but positive (the
negative exponents do not matter in this instance).
This prevents us from stating with absolute cer-
tainty that the cases we took as quasi-periodic are
really such. However, all the information we have,
including the power spectra and the properties of
the projected phase space portraits, support the
view that those steady states are quasi-periodic,
and that their largest exponents are not positive.
Even if this was not the case, the time scales over
which the chaotic behavior could become evident
are so long to make such a behavior not distin-
guishable from numerical noise, hence irrelevant
for any practical observation.

One interesting observation is that the number
of “vanishing” Lyapunov exponents, and the pro-
jected phase space portraits, suggest that our quasi-
periodic steady states have at least three indepen-
dent frequencies, in contrast with the cases studied
by Franceschini, Zanasi and one of us in[15,16],
whose independent frequencies are not more than 3.
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Table 3
Steady states for the GNS dynamics withN = 24 and different
values ofR2 and of the fixed enstrophyQ1

a

R2 Q1 = 0.1 Q1 = 0.2 Q1 = 0.3

1000 1 1 1
1500 1 1 (i, q)

2000 1 (i, q) (q, i)

2500 1 (q, i) q

3000 (i, q) q (i, q, c)

a The symbol 1 denotes the cases with one chaotic steady state,
c denotes the presence of chaotic steady states,i the presence
of intermittent steady states, andq the presence of quasi-periodic
steady states. The order in which the symbolsc, i andq appear in
a given box indicates the size of the relevant basins of attraction,
in decreasing order (the pair(i, q) says that there are more initial
conditions which lead to intermittent states than initial conditions
which lead to quasi-periodic states).

3. The GNS evolutions which we considered inter-
mittent depend on the parametersR andQ1 in a
fashion similar to that described by the Pomeau–
Manneville scenario of intermittency[17,18], but
there is at least one difference. The “regular”
phases of our intermittent GNS evolutions appear
to be the shadow of a quasi-periodic, not a peri-
odic, trajectory which may exist at close parame-
ters values. This finds support also on the results
reported inTable 3, for the case withN = 24,
which suggest that the intermittency does not exist
in the absence of quasi-periodic motions.

A detailed study of these aspects, and an investi-
gation in the spirit of[19] of the possible sequence
of bifurcations leading from ordered motions to
chaotic ones in the GNS dynamics, is quite expen-
sive from a numerical point of view, and will be
the object of future works.

Acknowledgements

LR gratefully acknowledges support from GNFM-
INDAM. CG and CV were supported by the research
project Cofin 2000 “Sistemi dinamici classici, quan-
tistici e stocastici”. The authors are indebted to G.
Gallavotti for inspiring this work and for enlightening
discussions. Thanks are in order to V. Franceschini
for his help with the interpretation of some numerical
results.

References

[1] G. Gallavotti, Equivalence of dynamical ensembles and
Navier–Stokes equations, Phys. Lett. A. 223 (1996) 91.

[2] G. Gallavotti, Dynamical ensemble equivalence in fluid
mechanics, Physica D 105 (1997) 163.

[3] C. Lanczos, The Variational Principles of Mechanics, Dover,
New York, 1970.

[4] L. Rondoni, E. Segre, Fluctuations in two-dimensional rever-
sibly damped turbulence, Nonlinearity 12 (6) (1999)
1471.

[5] G. Gallavotti, L. Rondoni, E. Segre, Lyapunov spectra and
nonequilibrium ensembles equivalence in 2D fluid mechanics,
Physica D 187 (2004) 338–357.

[6] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical
Integration, Springer, Berlin, 2002.

[7] G. Gallavotti, E.G.D. Cohen, Dynamical ensembles in
stationary states, J. Stat. Phys. 80 (5/6) (1995) 931.

[8] G. Gallavotti, A local fluctuation theorem, J. Phys. A 263
(1999) 39.

[9] S. Ciliberto, C. Laroche, An experimental test of the
Gallavotti–Cohen fluctuation theorem, J. Phys. IV 8 (6) (1998)
215.

[10] W.I. Goldburg, Y.Y. Goldschmidt, H. Kellay, Fluctuation and
dissipation in liquid crystal electroconvection, Preprint, 2001.

[11] D. Ruelle, Elements of Differentiable Dynamics and
Bifurcation Theory, Academic Press, Boston, 1989.

[12] J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange
attractors, Rew. Mod. Phys. 57 (1985) 617.

[13] D.J. Evans, G.P. Morriss, Statistical Mechanics of Non-
equilibrium Liquids, Academic Press, London, 1990.

[14] G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov
characteristic exponents for smooth dynamical systems and
for Hamiltonian systems; a method for computing all of them.
Part 1. Theory, Meccanica 15 (1980) 9;
G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov
characteristic exponents for smooth dynamical systems and
for Hamiltonian systems; a method for computing all of them.
Part 2. Applications, Meccanica 15 (1980) 21.

[15] V. Franceschini, R. Zanasi, Three-dimensional Navier–Stokes
equations truncated on a torus, Nonlinearity 4 (1992) 189.

[16] C. Giberti, R. Zanasi, Behavior of a three-torus in truncated
Navier–Stokes equations, Physica D 65 (1993) 300.

[17] Y. Pomeau, P. Manneville, Intermittent transition to turbulence
in dissipative dynamical systems, Commun. Math. Phys. 74
(1980) 189.

[18] G. Gallavotti, Foundations of Fluid Mechanics, Springer,
Berlin, 2002.

[19] V. Franceschini, C. Tebaldi, F. Zironi, Fixed point behavior
of N-mode truncated Navier-Stakes equations asN increases,
J. Stat. Phys. 35 (1984) 387;
V. Franceschini, C. Giberti, M. Nicolini, Common periodic
behavior in larger and larger truncations of the Navier–Stokes
equations, J. Stat. Phys. 50 (1988) 879;
V. Franceschini, C. Giberti, Qualitative and quantitative
stabilized behavior of truncated two-dimensional Navier–
Stokes equations, Theor. Comput. Fluid Dynam. 2 (1991)
185.


	Coexistence of chaotic and non-chaotic states in the two-dimensional Gauss-Navier-Stokes dynamics
	Introduction
	Equivalence
	Results
	Case with Q1=0.1
	Cases with Q1=0.2 and Q1=0.4

	Concluding remarks
	Acknowledgements
	References


