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Abstract
Here, we show how the molecular structure appears and becomes stable for
supercritical physical conditions. In particular we consider, for ammonia-
type molecules, a simplified model based on a standard non-linear double-
well Schrödinger equation with a dissipative term and a perturbative term
representing weak collisions.

PACS numbers: 03.65.−w, 73.40.Gk

1. Introduction

The empirical chemical models for molecules imply certain asymmetries and structures in
apparent contradiction with quantum mechanical principles [1, 2].

The molecular structure is the result of a spontaneous symmetry breaking effect which
would be explained by means of a quantum mechanical many body model, or better, a mean
field one with non-linear terms. Thus, we have localized states of classical type. Such a strong
and stable feature is expected to be the result of a critical phenomenon changing drastically
the stationary quantum states.

As a particularly interesting example, we have pyramidal molecules such as the ammonia
molecule NH3 (or PH3). To be clearer, following Wightman [3], it is better to consider the
substituted molecule NHDT (or PHDT), in which the three hydrogen nuclei are distinguished
by isotopes. Such molecules should have a pyramidal structure with the HDT nuclei in
a triangular basis and the nucleus N (or P) at a vertex, and a chirality, depending on the
choice of the vertex. Quantum mechanics predicts symmetrical molecules with the nucleus N
delocalized in both vertices. Indeed, in the Bohr–Oppenheimer approximation the nucleus N
feels a double-well potential as was established by Hund in 1927 [4], and we have even and
odd stationary states and beating bounded states. In fact, physically we do not observe the
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effect (an inversion line) of the beating in the case of PH3. The cause of this phenomenon
should be the polarity of the pyramidal molecule which polarizes the environment, so that the
reaction field stabilizes the structure [5].

Following these ideas, Davies [6] and Pratt [7] suggested a non-linear Stark model
successfully used in [8, 9], where it was proved that at the value µc = 1 of the dimensionless
non-linearity parameter µ there is the appearance of new asymmetric stationary states and
for values of µ larger than 2µc there is the destruction of the beating motion of the
nucleus N. We underline that such a model is basically conservative, hence it is not able
to definitely explain the relevant fact that an ammonia molecule goes towards a chiral
configuration when the gas pressure is high enough. Meanwhile in [10] the same model
has been studied in order to explain the spectral data of the inversion frequency obtaining
that the non-linearity parameter µ should be proportional to the pressure of the ammonia
gas, that is 1.7µ corresponds to the physical value of the pressure (in atmospheres) at room
temperature.

In this paper, we expand such a simplified basic model for the molecular structure by
taking into account a dissipative term, which satisfies the conservation of the norm of the
wavefunction. We do not discuss the detail of this term from a physical point of view, since
the only relevant effect of this term is the energy loss, which is justified by electromagnetic
radiation. As a result, the energy (2) relaxes towards local minima, and the amount of
transferred energy dissipates into the environment (that is the other molecules of the gas), and
it is not given back within any relevant period of time. As in the case of complex Ginzburg–
Landau equations [11] and of Gross–Pitaevskii equations with weakly dissipative effects [12],
we expect to observe vortex trajectories about the new asymmetric stationary solutions. As
a result, the stability of chiral configurations for finite values of the non-linearity parameter
follows. We emphasize that such a stability result would strengthen the results by [10] where,
by means of perturbative techniques applied to states with energy close to local minima, they
compute the frequency of the inversion motion of ammonia molecules for increasing gas
pressure.

Furthermore, if we also take into account the effect of weak collisions then we find that a
chiral configuration, which exists for a non-linearity parameter greater than µc, is unstable if
the non-linearity parameter is less than 3µc. Let us note that this stability result does not depend
on the strength of the perturbation given by the weak collision. Introducing the collision term,
we are taking into account the fluctuations absent in the mean field approximation. For larger
values of this parameter, the chirality states become stable provided that the interval between
two collisions is larger than the relaxation time, in order that, when a collision occurs, the
state is near an asymmetric stationary state. This means that for a supercritical density of
the molecules, we have a stable chirality for low enough temperature. In order to better
understand the situation, consider figures 1 and 2 where the space of states is shown as a
sphere projected on a square by a Mercator map. The two coordinates z and θ , respectively,
represent the imbalance variable (which measures the localization) and the relative phase of the
components of the state with respect to the two localized states. A collision actually randomly
changes θ but not z (that is the typical decoherence mechanism). Thus, for µ greater than 3µc

(see figure 2), the line defined by a value of z equal to that of an asymmetric stationary state is
fully contained in the vibrational region. In contrast, for µ < 3µc (see figure 1) we have that
a change of θ , due to a collision, could shift an asymmetric stationary state into the beating
region.

In conclusion, here we propose a very basic model for the molecular structure which is
based on a standard non-linear Schrödinger equation with double-well potential, and where
chiral stable configurations are a result of dissipative terms.
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Figure 1. In this figure we plot the parametric graph of the solution z(t), θ(t) of equation (5) for
a given initial condition (point A) in the case µ = 1.5, ζ = 0.2, point B denotes the position of
the state at t = 10τ . Circles denote the stationary solutions. In the non-dissipative case (ζ = 0)

we have only vibrational motions around one well inside the grey region; outside the grey region,
we have periodic beating motions between the two wells. Here, z denotes the imbalance function
taking values in the interval [−1, +1] and θ is an angle taking values in the interval (−π, +π ].

2. Description of the model

The Hamiltonian for a single ammonia molecule takes the form

H0 = − h̄2

2m
� + V

where V is a double-well potential invariant under a coordinate reflection V = PV P , where
P is the unitary symmetry operator representing the inversion of the nth coordinate

(x ′, xn) → (x ′,−xn) x ′ = (x1, . . . , xn−1) n � 1.

The tunnelling time through the inter-well potential barrier is inversely proportional to the
energy splitting �E between the odd- and even-parity eigenstates |−〉 and |+〉 with energies
λ− and λ+, and the solution of the unperturbed equation

ih̄
∂

∂t
|ψ(t)〉 = H0|ψ(t)〉

shows a beating motion between the two wells with period

τ = 2πh̄

�E
�E = λ− − λ+.
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Figure 2. In this figure we plot the parametric graph of the solution for a given initial condition
(cross point) in the case µ = 4.5, ζ = 0.2. Circles denote the stationary solutions.

The actual semi-classical parameter is the energy splitting �E, and we choose the units such
that h̄ = 1, 2m = 1 and �E � 1.

Let us consider the interaction of a single molecule with the other molecules of the gas.
To this end, we take into account the attractive component of the intermolecular force between
the ammonia molecules [13]. In the mean field approximation this term could be described
by means of the effective potential depending on the wavefunction itself [10]:

Wel = Wel(|ψ〉) = ενg ν = 〈ψ |g|ψ〉 ε < 0

where g is a bounded odd function, PgP = −g, and where ε < 0 measures the strength of
the dipole–dipole interaction. The dynamics associated with the resulting Hamiltonian is such
that we have conservation of the norm:

〈ψ(t)|ψ(t)〉 = ‖ψ(t)‖2 = 1 (1)

and the conservation of the energy functional

E(ψ) = ‖∇ψ‖2 + 〈ψ |V |ψ〉 + 1
2ε〈ψ |g|ψ〉2. (2)

Furthermore, if we regard the single ammonia molecule and the environment as the constituents
of a conservative global system, then we also have to take into account a transfer of energy
from the single ammonia molecule to the environment [14] due to the dipole radiation. Hence,
we introduce a simple and basic dissipative term

Wdis = iηνgP η < 0
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satisfying the following physical prescriptions: a regular decrease of the energy (2), the
preservation of the norm (1) and the dependence of this term on the mean value of the
ammonia dipole; η measures the strength of the dissipative interaction. We do not try to relate
this parameter to physical parameters until experimental data on substituted ammonia chirality
appear. In such a way, the new effective Hamiltonian takes the form

H = H0 + W W = Wel + Wdis

where the term W is such that [T P,W ] = 0, where T |ψ(t)〉 = |ψ(t)〉� is the time-reversal
operator.

3. Main results

Here, we make use of the two-level model where we approximate the wavefunction |ψ(t)〉 by
means of its projection on the two lowest states. In particular, in such an approximation the
total wavefunction of the system may be expanded as

|ψ(t)〉 = aR(t)|R〉 + aL(t)|L〉 (3)

where

|R〉 = 1√
2
(|+〉 + |−〉) |L〉 = 1√

2
(|+〉 − |−〉)

are the right- and left-hand states; they are such that P |R〉 = |L〉. The normalization condition
(1) on the wavefunction |ψ(t)〉 implies that |aR|2 + |aL|2 = 1.

By substituting |ψ(t)〉 by (3) in the time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉

it follows that the expansion coefficients aR and aL have to satisfy the following system of
ordinary differential equations:


iȧR = aR − ωaL + ενcaR + iηνcaL

iȧL = aL − ωaR − ενcaL − iηνcaR

ν = c(|aR|2 − |aL|2)
(4)

where

ω = 1
2 (λ− − λ+)  = 1

2 (λ− + λ+)

and where we set

c = 〈R|g|R〉 = −〈L|g|L〉.
In order to study the beating motion, it is convenient to introduce the relative phase

θ = arg(aR) − arg(aL)

which is a torus variable, and the imbalance variable

z = |aR|2 − |aL|2
which takes values in the interval [−1, +1]. They have to satisfy the system of ordinary
differential equations{

ż = ωZ(z, θ)

θ̇ = ω�(z, θ)
(5)

where

Z(z, θ) = 2
√

1 − z2 [sin θ − ζz cos θ ]
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and

�(z, θ) = −2
z√

1 − z2
[cos θ + ζz sin θ ] + 2µz

and

µ = −c2ε/ω ζ = −c2η/ω.

Here, µ and ζ represent positive dimensionless parameters that measure the effective non-
linearity and the dissipation, respectively.

We observe the existence of the critical value µc = 1 for the non-linearity parameter µ.
We consider, first, the weak non-linearity case such that µ < µc. In such a case, equation (5)
admits just two stationary solutions corresponding to the unperturbed even- and odd-parity
eigenstates: z1 = 0 and θ1 = 0, corresponding to the even-parity eigenstate, is a stable
stationary solution, and z2 = 0 and θ2 = π , corresponding to the odd-parity eigenstate, is an
unstable stationary solution.

Then, we consider the strong non-linearity case such that µ > µc. The value µc is a
bifurcation point for the stable stationary solution [8] and for µ > µc we have four stationary
solutions; two of them still correspond to the unperturbed even- and odd-parity eigenstates,
the other two correspond to asymmetric states that, in the limit of large non-linearity, are
fully localized on just one of the two wells. The stationary solution z1 = 0 and θ1 = 0,
corresponding to the even-parity eigenstate, is a saddle point for µ > µc; the stationary
solution z2 = 0 and θ2 = π , corresponding to the odd-parity eigenstate, is still an unstable
solution; z3 =

√
(µ2 − 1)/(µ2 + ζ 2) and θ3 = arctan(ζ z3), and z4 = −z3 and θ4 = −θ3 are

stable asymmetric stationary solutions. Thus, any state generically goes near to one of these
two asymmetric stationary states.

Therefore, in the strong non-linearity case we have that any initial state, except the two
even- and odd-parity unperturbed eigenstates, finally goes to one of the two asymmetric
stationary eigenstates giving a chiral configuration for the substituted ammonia molecule.

Now, we show that this chiral configuration is stable with respect to collisions when the
density is large enough, and the temperature is low enough. We assume that the thermal energy
at room temperature is smaller than the distance between the doublet {λ±} and the other energy
levels, so that the validity of the two-level approximation holds, and it is much larger than the
splitting energy, so that a collision could produce a strong variation of the energy E(ψ).

To this end, we introduce a simplified model for molecular collision. When the single
molecule undergoes a collision we add to the Hamiltonian H a perturbative term of the type
f (x)v(t) where f (x) is a function with compact support and v(t) is a given time-dependent
function. For instance, let v(t) = χt1,t2(t) where χ is the characteristic function on the interval
[t1, t2], and where we assume that the perturbation acts for a time much shorter than the beating
period, that is

t2 − t1 � τ. (6)

Equation (4) then takes the form


iȧR = aR − ωaL + ενcaR + iηνcaL + v(t)cRaR

iȧL = aL − ωaR − ενcaL − iηνcaR + v(t)cLaL

cR = 〈R|f |R〉 cL = 〈L|f |L〉
since

〈R|f |L〉 = 〈L|f |R〉 ∼ 0.

Hence, the system (5) takes the form{
ż = ωZ(z, θ)

θ̇ = ω�(z, θ) + (cR − cL)v(t)
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from which it follows that |z(t2) − z(t1)| � 1, since (6), and where it is not possible to obtain
a similar bound for θ when cR 
= cL.

This fact, that is the relative phase is strongly modified after a generic collision (such that
cR 
= cL), does not actually destroy the chiral configuration of a localized ammonia molecule
if the pressure is high enough, i.e. such that µ > 3µc. Indeed, in such a case we have that
the stable solution (z3, θ3) (respectively (z4, θ4)) has a basin of attraction containing the strip
z � z� (respectively z � −z�) if ζ is small enough and where z� = 2

√
2/3 < z3. We explain

this fact by means of a continuity argument in the limit of ζ = 0. Indeed, in such a limit we
have the existence of two separatrix lines [9, 15] starting from the stationary solution (z1, θ1)

and satisfying the equation√
1 − z2 cos θ + 1

2µz2 = 1.

It is not difficult to see (2) that these paths are contained in the strip −z� � z � z� if µ > 3µc.
As a result, it follows that a perturbation due to a collision acting in an interval of the order
(6) shifts a state initially near to one of the asymmetric stationary stable eigenstates, to a
state belonging to the basin of attraction of the stationary eigenstate itself. In particular, the
state will always be far enough from the unstable stationary state and thus, after a finite time
depending on ζ , it returns near to the initial stationary state without visiting the other well,
provided that in this period another collision does not occur. This condition should be fulfilled
if the temperature is low enough.

Finally, let us note that the molecular structure is not completely stable for strong collisions
(indeed, we have the phenomenon of racemization which makes the statistical mean of the
chirality vanish at large time) and that an external electromagnetic field in the radio frequency
range could destroy the molecular structure.

4. Conclusion

In conclusion, we have shown that a simple dissipative non-linear model is able to explain the
molecular structure of symmetrical molecules. Such chiral configurations are stable for weak
collisions provided that the non-linearity parameter is larger than the critical value 3µc, and
that the frequency collisions are small enough with respect to the rate of the energy decrease.
This model would represent a significant improvement with respect to the previous simpler
ones [16] where the effect of the environment was described by means of an external periodic
perturbation superimposed onto a linear double-well Hamiltonian. In that case the relevance
of the metastability on the localizaton was exploited. The kind of trap we propose here is
simple, but not trivial, and in any case is able to make the spontaneous symmetry breaking
given by the non-linearity stable. It could be relevant in the theory of decoherence, related to
the appearance of classical mechanics, and in the study of many irreversible processes. As
clearly appears in this paper, we have only considered the spontaneous symmetry breaking
effect. In fact, one enantiomer may become dominant. This effect could be explained by
means of the parity violation for weak nuclear interactions [17], largely amplified during the
dynamics of the system [18, 19].
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