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Abstract. In this paper we introduce and study a one-parameter family of
piecewise analytic interval maps having the tent map and the Farey map as ex-
trema. Among other things, we construct a Hilbert space of analytic functions
left invariant by the Perron-Frobenius operator of all these maps and study
the transition between discrete and continuous spectrum when approaching
the intermittent situation.

1. Introduction. Expanding maps of the unit interval have been widely studied
in the last decades in that several problems concerning their statistical behaviour
can be treated by the powerful technique of transfer operators and thermodynamic
formalism [Ba],[Co], [Ma2], [Rue1]. On the other hand, in recent years an in-
creasing interest has been carried on maps which are expanding everywhere but
on a marginally unstable fixed point in a neighbourhood of which trajectories are
considerably slowed down leading to an interplay of chaotic and regular dynamics
characteristic of intermittent systems [PM], [Sch]. Several approaches have been
proposed to extend the above mentioned techniques to this situation, in particu-
lar to characterize the nature of possible phase transitions [P1], [PS] and that of
the spectrum of the transfer operator [Rug], [Is]. In this paper we introduce a
one-parameter family of piecewise analytic maps smoothly interpolating between
the tent map and the Farey map and use it to investigate the passage between
the uniformly expanding situation and the intermittent one in both perspectives:
that of thermodynamics and that of spectral theory.The paper is organized as fol-
lows: Section 2 is devoted to introduce the model and derive some of its properties
along with those of an induced version of it. In Section 3 we discuss large devi-
ation properties and show in particular how the free energy gets non-analytic in
the intermittent limit. Section 4 deals with the spectral analysis of the transfer,
or Perron-Frobenius, operator. We construct a Hilbert space of analytic functions
where this operator gets a particularly expressive integral representation (which
becomes symmetric in the intermittent limit) and study the mechanism with which
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a continuous component in the spectrum (intermittent situation) comes out of a
purely discrete spectrum (expanding situation). Finally we extend the above con-
struction to study a family of operator-valued power series by which we obtain a
characterization of the analytic properties of the dynamical zeta functions [Rue2]
for both the original map and its induced version discussed in Section 2.

2. Preliminaires. Let r ∈ [0, 1] be a real parameter and consider the family of
piecewise real-analytic maps Fr of the interval [0, 1] defined as

Fr(x) =
{

Fr,0(x), if 0 ≤ x ≤ 1/2
Fr,1(x), if 1/2 < x ≤ 1 (2.1)

where

Fr,0(x) =
(2− r)x
1− rx

and Fr,1(x) = Fr,0(1− x) =
(2− r)(1− x)

1− r + rx
· (2.2)

Some properties of this family are listed below:
1. For r = 0 we find the tent map

F0(x) =
{

2x, if 0 ≤ x ≤ 1/2
2(1− x), if 1/2 < x ≤ 1 (2.3)

whereas for r = 1 one has the Farey map

F1(x) =
{

x
1−x , if 0 ≤ x ≤ 1/2
1−x

x , if 1/2 < x ≤ 1.
(2.4)

The latter provides an example of an intermittent map in that the fixed point
at the origin is neutral (see below).

2. The left branch Fr,0 satisfies Fr,0(0) = 0, i.e. the origin is always a fixed
point, and is conjugated to the map Tr defined as

Tr(x) =
x− r

2− r
· (2.5)

More precisely, we have, for all n ≥ 1,

Fn
r,0(x) = J−1 ◦ Tn

r ◦ J(x) (2.6)

with
J(x) = J−1(x) = 1/x. (2.7)

Notice that for r = 1 the map Tr becomes the left translation x → x − 1.
Moreover, for each r ∈ [0, 1] there is a unique point x1 left fixed by Fr,1, i.e.
Fr,1(x1) = x1 with

x1 =
√

9− 4r − (3− 2r)
2r

· (2.8)

3. The derivative is given by

F ′r(x) =

{
F ′r,0(x) = 2−r

(1−rx)2 , if 0 ≤ x ≤ 1/2

F ′r,1(x) = − (2−r)
(1−r+rx)2 , if 1/2 < x ≤ 1

(2.9)

so that F ′r,0(x) > 0 and F ′r,1(x) < 0 for all r ∈ [0, 1]. Therefore Fr is increasing
on the interval [0, 1/2] and decreasing on [1/2, 1]. In addition we have

inf
x∈[0,1]

|F ′r(x)| = F ′r,0(0) = −F ′r,1(1) = 2− r =: ρ. (2.10)
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This means that for r < 1 the map Fr is uniformly expanding, i.e. |F ′r| ≥ ρ >
1, thus providing an example of analytic Markov map [Ma2]. In particular
we have

F ′r,1(x1) =
−4ρ(√

1 + 4ρ− 1
)2 =

− (√
1 + 4ρ + 1

)2

4ρ
· (2.11)

On the contrary, for r = 1 one has |F ′(x)| > 1 for x > 0 but F ′(0) = 1.

2.1. Inverse branches and renormalisation. Set ρ = 2− r and

Sr(x) = T−1
r (x) = ρx + r (2.12)

so that
S0(x) = 2x and S1(x) = x + 1. (2.13)

The left inverse branch Φr,0 of Fr is then given as

Φr,0(x) = J−1 ◦ Sr ◦ J(x) =
x

ρ + rx
=

1
2
− 1

2

(
ρ− ρ x

ρ + rx

)
, (2.14)

whereas the right inverse branch Φr,1 is

Φr,1(x) = 1− Φr,0(x) = 1− x

ρ + rx
=

1
2

+
1
2

(
ρ− ρ x

ρ + rx

)
· (2.15)

Note that Φr,0(x) and Φr,1(x) are holomorphic in H− ρ
r

and bounded in H− ρ
r +ε for

all ε > 0, with
Hα := {x ∈ IC : Re x > α}. (2.16)

Eq. (2.14) allows us to write an explicit expression for the iterates Φn
r,0 of Φr,0.

Lemma 2.1.

Φn
r,0(x) =

(
ρn

x
+ r

n−1∑

k=0

ρk

)−1

(2.17)

Proof. Reasoning inductively in n one obtains

Sn
r (x) = ρnx + r

n−1∑

k=0

ρk (2.18)

and the claimed result follows upon applying (2.14).

Note that (2.14) can be rewritten as

J(Φr,0(x)) = Sr ◦ J(x) = ρ J(x) + r (2.19)

which can be viewed as a generalized Abel equation (see [deB]), to which it actually
reduces when r = 1. This suggests that Φr,0 satisfies some non-linear fixed point
equation. Indeed, let Rr be the renormalisation operator acting as

RrΨ(x) = α Ψ
(

Ψ
(

x

β

))
, with α = 3− r and β =

3− r

2− r
· (2.20)

Proposition 2.1. For all r ∈ [0, 1] the map Φr,0 satisfies RrΦr,0 = Φr,0 with
boundary conditions Φr,0(0) = 0 and Φ′r,0(0) = (2− r)−1 = ρ−1.
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Proof. We have

RrΦr,0(x) = α Φr,0

(
Φr,0

(
x

β

))
= α Φr,0

(
x
β

ρ + rx
β

)

= α Φr,0

(
x

α + rx

)
= α

x
α+rx

ρ + x
α+rx

= α
x

ρ(α + rx) + rx
=

x

ρ + rx
= Φr,0(x)·

Remark 1. For r = 1 the scaling factors α and β in (2.20) are both equal to 2 and
the function Φ0,1 is but the fixed point of the Feigenbaum renormalisation equation
with intermittency boundary conditions obtained in [HR].

2.2. Invariant measure, induced map, characteristic exponent. We let P
denote the Perron-Frobenius, or transfer operator associated to the map Fr (see
[Ba]). It acts on a function f : [0, 1] → IC as

Pf(x) =
∑

y : Fr(y)=x

f(y)
|F ′r(y)| , (2.21)

or, more explicitly,

Pf(x) =
ρ

(ρ + rx)2

[
f

(
x

ρ + rx

)
+ f

(
1− x

ρ + rx

)]
· (2.22)

A fundamental property of this operator is that if there is a measurable function f
which satisfies the fixed point equation

Pf(x) = f(x) (2.23)

then f is the density of an absolutely continuous measure νr on [0, 1] which is
Fr-invariant, that is νr(E) = νr(F−1

r E) for all measurable E ⊆ [0, 1].

Theorem 2.1. The function er(x) = Kr/(1− r + rx) where Kr is a given positive
constant, is a solution of equation (2.23) and thus represents the density of an
absolutely continuous Fr-invariant measure dνr(x) = er(x)dx.

Proof. By virtue of (2.22) we have

P er(x) =
Kr ρ

(ρ + rx)2

[
1

1− r + rx
ρ+rx

+
1

1− rx
ρ+rx

]

=
Kr ρ

(ρ + rx)2

[
ρ + rx

ρ + rx− 2r + r2 − r2x + rx
+

ρ + rx

ρ

]

=
Kr

(ρ + rx)

[
ρ

(1− r)ρ + rρx
+ 1

]
=

Kr

1− r + rx
·

Notice that

νr([0, 1]) =
Kr

r
log

(
1

1− r

)
(2.24)

and therefore νr([0, 1]) → ∞ when r ↗ 1. In order to compare the Fr-invariant
measure νr with a probability measure µr invariant w.r.t. to an induced map Gr
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to be defined below, we shall choose the value of Kr so that νr([1/2, 1]) = 1. This
renders

Kr =
r

log 2− log ρ
· (2.25)

In particular we have

lim
r↘0

Kr = 2 and lim
r↗1

Kr =
1

log 2
· (2.26)

Let Ar = {An}n∈IN be the countable partition of [0, 1] whose elements are the
intervals An = [cn, cn−1] with

c0 = 1 and cn = Φn
r,0(1), n ≥ 1. (2.27)

As a corollary of Lemma 2.1 we have the explicit expression

cn =
1− r

ρn − r
· (2.28)

and in particular

lim
r↘0

cn = 2−n and lim
r↗1

cn =
1
n
· (2.29)

Set X = (0, 1]\{cn}n∈IN and let τ : X → IN be the first passage time in the interval
A1, that is

τ(x) = 1 + min{n ≥ 0 : Fn
r (x) ∈ A1 }, (2.30)

so that An is the closure of the set {x ∈ X : τ(x) = n}. On the other hand, the
return time function ` : X → IN in the interval A1 is given by

`(x) = min{n ≥ 1 : Fn
r (x) ∈ A1 } = τ ◦ Fr(x). (2.31)

We now prove the following version of Kac’s formula: the νr-measure of the whole
interval [0, 1], that is (2.24), equals the conditional expectation of the function ` on
the interval A1 (recall that we have set νr(A1) = 1).

Lemma 2.2. ∫

A1

`(x)νr(dx) = νr([0, 1]) =
1

log 2− log ρ
log

(
1

1− r

)
(2.32)

Proof. Let Bn = {x ∈ A1 : `(x) = n}. Using (2.31) we have that An = Fr(Bn).
Let us show that νr(An) =

∑
k≥n νr(Bk). Indeed, for n = 1 we have 1 =

νr(A1) =
∑

k≥1 νr(Bk). Moreover, since νr is Fr-invariant, νr(An) = νr(F−1
r An) =

νr(An+1) + νr(Bn+1) and the claim follows by induction. Therefore,

νr([0, 1]) =
∑

n≥1

νr(An) =
∑

n≥1

n · νr(Bn) =
∫

A1

`(x)νr(dx),

and the last identity in (2.32) follows from (2.24).

Remark 2. As already remarked, the one-parameter family Fr is well suited to
study the transition from a strongly chaotic behaviour, corresponding to the uni-
formly expanding situation with r < 1, to an intermittent behaviour, corresponding
to the the tangent bifurcation point at r = 1. One interesting item in this study is
the divergence type of the average duration < ` > of the laminar regime as r ↗ 1
(see, e.g., [Sch]). In our situation this is nothing but the expectation of the return
time function `, and by formula (2.32) it diverges logarithmically:

< ` > ∼ log (1/δ)
log 2

as δ ≡ 1− r ↘ 0. (2.33)
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Now, using (2.31) we can express the expected return time < ` > as the expected
first passage time w.r.t. an absolutely continuous probability measure µr obtained
by pushing forward νr with Fr,1, i.e.

< ` >=
∫ 1

0

τ(x) µr(dx) (2.34)

where
µr(E) = ((Fr,1)∗ νr)(E) = (νr ◦ Φr,1)(E). (2.35)

Reasoning as in the proof of Lemma 2.2 one readily verifies that the converse
relation is

νr(E) =
∑

n≥0

(µr ◦ Φn
r,0)(E). (2.36)

In particular we have νr(An) =
∑

l≥n µr(Al) and µr(An) = µr(Fr,1(Bn)) = νr(Bn),
where Bn is as in the proof of Lemma 2.2. The measure µr will play the role of
reference probability measure in our construction. If we set hr(x) = µr(dx)/dx
then by the foregoing we have

hr = |Φ′r,1| · er ◦ Φr,1, er =
∞∑

k=0

(Φk
r,0)

′ · hr ◦ Φk
r,0 . (2.37)

Using the explicit expressions for er and Φr,1 we get

hr(x) =
Kr

2− r + rx
, (2.38)

which is monotone non-increasing with hr(0) = Kr/ρ and hr(1) = Kr/2.

The induced map. The measure µr is left invariant by a map Gr obtained from
Fr by inducing w.r.t. the first passage time τ . Indeed, by the above we can write

µr(E) = (νr ◦ Φr,1)(E) =
∑

n≥0

(µr ◦ Φn
r,0 ◦ Φr,1)(E) = ρ(G−1

r E) (2.39)

where Gr : X → X denotes the map:

x → Gr(x) = F τ(x)
r (x), (2.40)

which can be extended to all of [0, 1] as

Gr(x) = Gr,n(x) = Fn
r (x) = Fr,1 ◦ Fn−1

r,0 (x) if x ∈ ◦An for all n ≥ 1, (2.41)

Gr(0) = Gr(1) = 1 and

lim
x↗cr,n

Gr(x) = 1, lim
x↘cr,n

Gr(x) = 0, n ≥ 1. (2.42)

The explicit expression for Gr,n can be easily obtained from that of Fr and reads

Gr,n(x) =
ρ

1− r + rx

(
1− x

cn−1

)
, (2.43)

and

G′r,n(x) = − ρ (1− r + rcn−1)
cn−1(1− r + rx)2

, (2.44)

with cn as in (2.28) and r ∈ [0, 1].

Example. The induced maps corresponding to the maps F0 and F1 are the map
G0(x) such that G0,n(x) = 2(1 − 2n−1x) and the Gauss map G1(x) = 1

x (mod 1),
respectively. Their invariant densities are h0(x) = 1 and h1(x) = 1

log 2 ·
1

(1 + x) .
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We now list some properties of Gr which are relevant for our discussion.

Proposition 2.2.

1. smoothness property: Gr,n is a real analytic diffeomorphism of An onto [0, 1];
2. expanding property: for all r ∈ [0, 1] infx∈[0,1] |(G2

r)
′(x)| = |(G2

r)
′(1/2)| = 4 ;

3. distortion property: supx,y,z∈An
n≥1

∣∣∣ G′′r (x)
G′r(y)G′r(z)

∣∣∣ = L < ∞.

Proof. Statement 1) is an immediate consequence of the definition. As for 2)
notice that for r < 1 we have infx∈[0,1] |(Gr)′(x)| = |G′r(1)| = ρ > 1, whereas
infx∈[0,1] |(G1)′(x)| = |G′1(1)| = 1. Therefore, since G′r is monotone decreasing we
have infx∈[0,1] |(G2

r)
′(x)| = |(G2

r)
′(1/2)| = |G′r(1/2) ·G′r(1)| = 4

ρ ·ρ = 4. To show 3),
we first observe that the chain rule yields

G′′r (x)
(G′r)2(x)

=
τ(x)−1∑

k=0

F ′′r (F k
r (x))

(F ′r)2(F k
r (x))

· 1
∏τ(x)−1

j=k+1 F ′r(F
j
r (x))

· (2.45)

On the other hand, one can easily find a positive constant C1 such that

sup
x∈[0,1]

|F ′′r (x)|
|(F ′r)2(x)| ≤ C1. (2.46)

Moreover by an easy estimate using (2.44) one can find a constant C2 ≥ 1 so that
C−1

2 G′r(y) ≤ G′r(x) ≤ C2 G′r(y) for any choice of x, y ∈ An and any n ≥ 1. Hence,
by the mean value theorem

∏n−1
j=0 |F ′r(F j

r (x))| ≡ |G′r,n(x)| ≥ C−1
2 |An|−1 whenever

x ∈ An. The assertion now follows putting together the above inequalities.

These properties yield a uniform bound for the buildup of non-linearity in the
induction process.

Corollary 2.1. Let x, y ∈ [0, 1] be such that Gj
r(x) and Gj

r(y) belong to the same
atom Akj , for 0 ≤ j ≤ n and some n ≥ 1. There is a constant C > 0, independent
of r, such that ∣∣∣∣log

G′r(x)
G′r(y)

∣∣∣∣ ≤ C

(
1
2

)n

·

Proof. Taking x, y ∈ Ak0 , let η ∈ Ak0 be such that |G′r(η)| = |Ak0 |−1. Then using
the distortion property listed above we have

∣∣∣∣ log
G′r(x)
G′r(y)

∣∣∣∣ =
∣∣∣∣
G′′r (ξ)
G′r(ξ)

∣∣∣∣ · |x− y| for some ξ ∈ [x, y] ⊆ Ak0

=
∣∣∣∣

G′′r (ξ)
G′r(ξ)G′r(η)

∣∣∣∣ ·
|x− y|
|Ak0 |

≤ L
|x− y|
|Ak0 |

·

Now, by the expanding property we can find a constant C > 0 such that, under
the above hypotheses, |x− y| ≤ C L−1|Ak0 |βn with β = 4−

1
2 = 1/2.

Putting together the above and ([Wal], Theorem 22(3)) we have the following

Proposition 2.3. The probability measure µr is the unique absolutely continuous
invariant measure for the dynamical system ([0, 1], Gr). Moreover (Gr, µr) is an
exact endomorphism.
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Characteristic exponents. Finally we show that the measures νr and µr have
the same characteristic exponent. Set

χνr =
∫ 1

0

log |F ′r(x)| νr(dx) and χµr =
∫ 1

0

log |G′r(x)|µr(dx). (2.47)

Then we have

Proposition 2.4. For all r ∈ (0, 1) we have

χνr
= χµr

=
log(2− r) log( 1

1−r )

log( 2
2−r )

− log(4− 2r)

− 1
log( 2

2−r )
[
π2

6
− log2 2− 2Li2(

1
2− r

)]

which involves the dilogarithm function Li2(q) =
∑∞

k=1
qn

k2 . In particular,

lim
r↘0

χνr = 2 log 2, lim
r↗1

χνr =
π2

6 log 2
·

Proof. To prove the first identity we write, using (2.37),

∫ 1

0

log |F ′r(x)| νr(dx) =
∫ 1

0

log |F ′r(x)| er(x) dx

=
∫ 1

0

log |F ′r(x)|
∞∑

k=0

h(Φk
r,0(x)) · (Φk

r,0)
′(x) dx =

∞∑

k=0

∫ ck

0

log |F ′r(F k
r,0(x))|hr(x) dx

=
∞∑

k=1

∫

Ak

k−1∏

j=0

log |F ′r(F j
r,0(x))|hr(x) dx =

∞∑

k=1

∫

Ak

log |G′r,k(x)|hr(x) dx

=
∫ 1

0

log |G′r(x)|hr(x) dx =
∫ 1

0

log |G′r(x)|µr(dx).

For the second identity we have, using (2.9):

χνr = Kr

[∫ 1
2

0

(
log

ρ

(1− rx)2

)
dx

1− r + rx
+

+
∫ 1

1
2

(
log

ρ

(1− r + rx)2

)
dx

1− r + rx

]
= log ρ · νr([0, 1]) +

− 2Kr

[∫ 1
2

0

log(1− rx)
1− r + rx

dx +
∫ 1

1
2

log(1− r + rx)
1− r + rx

dx

]
.

By (2.32) the first term in the r.h.s equals the first term in the r.h.s. of (2.48).
Notice that this term has limits 2 log 2 and 0 when r ↘ 0 and r ↗ 1, respectively.
Furthermore, we have

2Kr

∫ 1

1
2

log(1− r + rx)
1− r + rx

dx = −Kr

r
log2

(
2− r

2

)
= log

(
2− r

2

)
,
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and

2Kr

∫ 1
2

0

log(1− rx)
1− r + rx

dx =

=
1

log
(

2
2−r

)
[

π2

6
− log2 2− 2 log 2 log

(
2− r

2

)
− 2

∫ 0

1
2−r

log(1− t)
t

dt

]
.

The claimed formula now follows by putting together the above expressions and
noting that ∫ 0

q

log(1− t)
t

dt = Li2(q) .

3. Free energy and large deviations. For r ∈ [0, 1) we shall consider the Fr-
invariant probability measure pr as well as its characteristic (or Lyapunov) exponent
λr given by

pr( · ) =
νr( · )

νr([0, 1])
and λr =

χνr

νr([0, 1])
(3.48)

respectively. Set moreover

u(x) := log |F ′r(x)| − λr, (3.49)

and

Sn(x) =
n−1∑

i=0

u(F i
r(x)) = log |(Fn

r )′(x)| − nλr. (3.50)

For β ∈ IR and n ≥ 1 we may then define the partition function Zn(β) as

Zn(β) =
∫ 1

0

|(Fn
r )′(x)|β pr(dx) = enβλr

∫ 1

0

eβ Sn(x) pr(dx) (3.51)

and consider the sequence of functions

fn(β) =
1
n

log Zn(β) = λr β +
1
n

log
∫ 1

0

eβ Sn(x) pr(dx). (3.52)

The limit function
f(β) = lim

n→∞
fn(β) (3.53)

is called free energy function of the characteristic exponent (see [BR], [Co], [D]).
Notice that f(0) = 0. If we set

〈A〉β :=
∫ 1

0

A(x)
eβ Sn(x)

∫ 1

0
eβ Sn(x) pr(dx)

pr(dx) (3.54)

so that in particular

〈A〉0 =
∫ 1

0

A(x) pr(dx), (3.55)

then we get

f ′n(β) = λr +
1
n
〈Sn〉β and f ′′n (β) =

1
n

[ 〈S2
n〉β − 〈Sn〉2β

]
. (3.56)

Now, for each r < 1 the transformation Fr is a uniformly expanding Markov map
and using standard arguments one sees that the sequence {f ′′n (β) : n ≥ 1} is
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uniformly bounded on compact sets. This entails that the free energy function
f(β) is convex and C1 with f ′(β) strictly increasing and given by

f ′(β) = λr + lim
n→∞

1
n
〈Sn〉β , β ∈ IR. (3.57)

In particular we have
f ′(β)|β=0 = λr · (3.58)

One finds moreover that the function β → β f ′(β) − f(β) is decreasing for β < 0
and increasing for β > 0. This relates f(β) to large deviation properties of the
sequence of random variables Sn(x). To see this, notice that

∫ 1

0
Sn(x) pr(dx) = 0

for all n ≥ 1. The ergodic theorem then yields

pr

({
x ∈ [0, 1] : lim

n→∞
Sn(x)

n
= 0

})
= 1 (3.59)

and therefore for each fixed α > 0 we have

lim
n→∞

pr ({x ∈ [0, 1] : Sn(x) ≥ nα}) = 0. (3.60)

For each r < 1 the dynamical system ([0, 1], Fr, pr) satisfies the assumptions of the
large deviation theorem which says that (see [Co], [D])

lim
n→∞

1
n

log pr ({Sn ≥ nf ′(β)− nλr}) = β f ′(β)− f(β) (β ≥ 0) (3.61)

and

lim
n→∞

1
n

log pr ({Sn ≤ nf ′(β)− nλr}) = β f ′(β)− f(β) (β ≤ 0). (3.62)

In other words, the probability of finding a deviation of Sn/n from its average value
0 decays exponentially with n. Notice that if we set α = f ′(β)− λr then the r.h.s.
in (3.61) and (3.62) can be viewed as a Legendre transform

φ(α) = β α− (f(β)− βλr), α = f ′(β)− λr. (3.63)

We now derive upper and lower bounds for the free energy function. First, from
|F ′r| ≥ ρ > 1 it follows immediately that for β ≤ 0 we have f(β) ≤ β log ρ, the
opposite inequality being valid for positive values of β. In addition, using either
the convexity of f(β) or directly (3.52) we get the inequality f(β) ≥ λr β, which is
valid for all β ∈ IR. Whence, expressing λr by means of Lemma 2.2 and Proposition
2.4 we get

Lemma 3.3. For all β ≤ 0 and r ∈ [0, 1) we have

β log ρ ≥ f(β) ≥ β log ρ + β γr

where γr ≥ 0 is given by

γr =
1

log(1− r)

[
π2

6
− 2Li2

(
1

2− r

)
+ log

(
2

2− r

)
log(4− 2r)− log2 2

]
.

Notice that limr↘0 log ρ = log 2 whereas limr↗1 log ρ = 0, moreover limr↘0 γr =
0 and limr↗1 γr = 0.
Therefore from Lemma 3.3 we obtain the

Corollary 3.2. limr↘0 f(β) = β log 2, limr↗1 f(β) = 0, (β ≤ 0).

Remark 3. This result shows that for r = 1 the free energy has a discontinuity in
its first derivative at β = 0. This can be interpreted in thermodynamic language as
a second order phase-transition [P1], [FKO].
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4. Transfer operators. The transfer operator P associated to the map Fr has
already been introduced in (2.22) and we write

Pf(x) = (P0 + P1)f(x) (4.64)

with (recall that ρ ≡ 2− r)

P0f(x) =
ρ

(ρ + rx)2
· f

(
x

ρ + rx

)
and P1f(x) =

ρ

(ρ + rx)2
· f

(
1− x

ρ + rx

)
.

(4.65)
Several interesting properties of the dynamics generated by Fr are intimately related
to sp (P), the spectrum of P (see [Ba]). However, the latter depends crucially on
the function space P is acting on, which is in general a Banach space. For smooth
uniformly expanding maps and Banach spaces of sufficiently regular functions, e.g.
the space Ck of k-times differentiable functions on [0, 1] with k ≥ 0, the transfer
operator is quasi-compact. This means that sp (P) is made out of a finite or at most
countable set of isolated eigenvalues with finite multiplicity (the discrete spectrum)
and its complementary, the essential spectrum. It has been proved in [CI] that for
piecewise C∞ expanding Markov maps of the unit interval the essential spectrum
of P when acting on Ck is a disk of radius

ress(P) = exp f(−k) , (4.66)

where f(β) is the free energy function discussed in the previous Section. Putting
together this result and Lemma 3.3 we obtain the following

Theorem 4.2. For r ∈ [0, 1) the essential spectrum of P : Ck → Ck with k ≥ 0 is
a disk of radius

e−k (log ρ+γr) ≤ ress(P) ≤ e−k log ρ .

The above bounds along with standard arguments [K] yield the following

Corollary 4.3. For r = 1 and for each fixed k ≥ 0 the essential spectrum of
P : Ck → Ck is the unit disk.

4.1. An invariant Hilbert space. From the above discussion it follows that if we
want to understand the nature of the spectrum lying under the ‘essential spectrum
rug’ we have to let P acting on increasingly smooth test functions as r approaches
1. In particular, Corollary 4.3 suggests that for r = 1 one should consider suitable
spaces of analytic functions. In the following definition we shall introduce a Hilbert
space of analytic functions which will be shown to be invariant under P for each
r ∈ [0, 1].

Definition 4.1. We denote by H the Hilbert space of all complex-valued functions
f which can be represented as a generalized Borel transform

f(x) = (B [ϕ])(x) :=
1
x2

∫ ∞

0

e−
t
x etϕ(t) dm(t), ϕ ∈ L2(m), (4.67)

with inner product

(f1, f2) =
∫ ∞

0

ϕ1(t)ϕ2(t) dm(t) if fi = B [ϕi], (4.68)

and measure
dm(t) = t e−t dt. (4.69)
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Remark 4. An alternative representation can be obtained by a simple change of
variable when x is real and positive:

f(x) =
1
x

∫ ∞

0

ds e−s ψ(sx) with ψ(t) = t ϕ(t) . (4.70)

Note that a function f ∈ H is analytic in the disk (here z = x + iy)

D1 = {z ∈ IC : Re
1
z

>
1
2
} = {z ∈ IC : |z − 1| < 1}. (4.71)

A Hilbert space identical to H apart from a slightly different choice of the measure
m was introduced in [Is] to study the operator P for r = 1 (the Farey map), whereas
a generalized version of H has been used by Prellberg in [P2] to study the spectrum

of the operator Pβf(x) =
(

1
1+x

)2β [
f

(
x

1+x

)
+ f

(
1

1+x

)]
(thus again for the case

r = 1).

Remark 5. The invariant densities er(x) = Kr/(δ + rx) and hr(x) = Kr/(ρ+ rx)
can be represented as

er = B[φr] and hr = B[ψr] (4.72)

with

φr(t) =
Kr

r

(
1− e−

r
δ t

t

)
and ψr(t) =

Kr

r

(
1− e−

r
ρ t

t

)
, (4.73)

respectively. For the limiting values r = 1 and r = 0 we get

φ1(t) =
1

t log 2
, ψ1(t) =

1− e−t

t log 2
, (4.74)

and
φ0(t) = lim

r↘0
φr(t) = 2, ψ0(t) = lim

r↘0
ψr(t) = 1 . (4.75)

We point out that φ1 is not in L2(m).

Lemma 4.4. The space H is invariant for P0 and we have

P0B [ϕ] = B [Mrϕ] , (4.76)

where Mr : L2(m) → L2(m) is defined as

Mrϕ(t) =
1
ρ

e−
r
ρ t ϕ

(
t

ρ

)
. (4.77)

Proof.

(P0B [ϕ])(x) =
ρ

(ρ + rx)2
B [ϕ]

(
x

ρ + rx

)
=

ρ

x2

∫ ∞

0

e−
ρ+rx

x t ϕ(t) t dt

=
1
x2

∫ ∞

0

e−
s
x

1
ρ

e−
r
ρ s ϕ

(
s

ρ

)
s ds

=
1
x2

∫ ∞

0

e−
s
x es (Mrϕ) (s) dm(s) = (B [Mrϕ])(x) .

The following lemma will instead specify the action of P1 on H.
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Lemma 4.5. We have
P1B [ϕ] = B [Nrϕ] , (4.78)

where Nr : L2(m) → L2(m) is the operator acting as

Nrϕ(t) =
1
ρ

e
δ
ρ t

∫ ∞

0

J1

(
2
√

st/ρ
)

√
st/ρ

ϕ(s) dm(s) (4.79)

where Jp denotes the Bessel function of order p.

Proof.

(P1B [ϕ])(x) =
ρ

(ρ + rx)2
B [ϕ]

(
1− x

ρ + rx

)
=

ρ

(ρ− δ x)2

∫ ∞

0

e−
ρ+rx
ρ−δx t ϕ(t) t dt

=
ρ

(ρ− δ x)2

∫ ∞

0

e−
ρ−δx+δx+rx

ρ−δx tϕ(t) t dt

=
ρ

x2

1(
ρ
x − δ

)2

∫ ∞

0

e
− t

ρ
x
−δ e−tϕ(t) t dt

=
ρ

x2

∫ ∞

0

e−( ρ
x−δ)t

(∫ ∞

0

J1(2
√

st)

√
t

s
ϕ(s) s e−s ds

)
dt

=
1
x2

∫ ∞

0

e−
t
x e

δ
ρ t

(∫ ∞

0

J1

(
2
√

st

ρ

) √
t

ρs
ϕ(s) dm(s)

)
dt

=
1
x2

∫ ∞

0

e−
t
x et 1

ρ
e

δ
ρ t




∫ ∞

0

J1

(
2
√

st/ρ
)

√
st/ρ

ϕ(s) dm(s)


 dm(t)

= (B [Nrϕ])(x) ,

where we have used the identity [GR]

1
up+1

∫ ∞

0

e−t/uψ(t) dt =
∫ ∞

0

e−tu

(∫ ∞

0

(
t

s

) p
2

Jp(2
√

st)ψ(s) ds

)
dt (4.80)

with p = 1, u = ρ
x − δ and ψ(s) = s e−sϕ(s). Finally, by the estimates (see [Er])

J1(x) ∼ x/2 as x ↘ 0 and J1(x) = O(x−
1
2 ) as x → ∞, along with the inequality

2δ/ρ < 1, which holds for all r ∈ [0, 1], one easily checks that Nr : L2(m) →
L2(m).

We can summarize the above in the following

Theorem 4.3. The space H is invariant for P and we have

PB [ϕ] = B [(Mr + Nr)ϕ] . (4.81)

4.2. The spectrum of Mr and P0. We are now going to study the operator Mr.
First, note that it reduces to M0 ϕ(t) = (1/2)ϕ(t/2) when r = 0, whereas for r = 1
yields the multiplication operator M1ϕ(t) = e−tϕ(t). Moreover, for r ∈ [0, 1) its
iterates are given by

Mn
r ϕ(t) =

(
n∏

k=1

e
− r

ρk t

)
ϕ

(
t

ρn

)
=

1
ρn

e−
r
δ t e

r
δ

t
ρn ϕ

(
t

ρn

)
. (4.82)
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Assume that ϕ is analytic in some open neighbourhood of t = 0 and satisfies the
eigenvalue equation

Mrϕ(t) =
1
ρ

e−
r
ρ tϕ

(
t

ρ

)
= λϕ(t). (4.83)

The above equation at t = 0 writes ϕ(0) = λ ρ ϕ(0), so that if ϕ(0) 6= 0 then
λ = 1/ρ. In this case, by (4.82) we get

ϕ(t) = ρn Mn
r ϕ(t) → e−

r
δ t ϕ(0) as n →∞, (4.84)

and therefore ϕ(t) = e−
r
δ t ϕ(0). If instead ϕ(0) = 0 we differentiate (4.83) to get

− r

ρ2
e−

r
ρ tϕ(t/ρ) +

e−
r
ρ tϕ′(t/ρ)

ρ2
= λϕ′(t) (4.85)

which at t = 0 writes ϕ′(0)/ρ2 = λϕ′(0). Therefore if ϕ′(0) 6= 0 then λ = 1/ρ2. In
this case, differentiating (4.82)-(4.83) we get

1
ρ2n

ϕ′(t) =
r

δ ρn

(
1
ρn

− 1
)

e−
r
δ t e

r
δ

t
ρn ϕ

(
t

ρn

)
+

e−
r
δ t e

r
δ

t
ρn

ρ2n
ϕ′

(
t

ρn

)
. (4.86)

Taking the limit n →∞ and noting that limn→∞ ρnϕ(t/ρn) = t ϕ′(0) we obtain

ϕ′(t) = ϕ′(0) e−
r
δ t

(
1− r

δ
t
)

, (4.87)

which upon integration renders

ϕ(t) = ϕ′(0) t e−
r
δ t. (4.88)

Iterating this argument we have that if ϕ satisfies (4.83) with ϕ(l)(0) = 0 for
0 ≤ l < k− 1 but ϕ(k−1)(0) 6= 0 for some k ≥ 1 then λ = ρ−k and ϕ(t) = tk−1 e−

r
δ t

(up to a non-zero but otherwise arbitrary constant multiplicative factor). Denoting
by ‖ ‖2 the norm in L2(m) we also have

‖tk−1 e−
r
δ t‖22 =

(
δ

1 + r

)k

(2k − 1)! (4.89)

It is not hard to see that for all r ∈ [0, 1) the sequence {tk−1 e−
r
δ t}∞k=1 is a linearly

independent family in L2(m), and by adapting ([He], p.62, Thm.8) we have that
the linear span of this family is dense in L2(m). Putting together the above along
with standard arguments we have proved the following

Proposition 4.5. For all r ∈ [0, 1) the operator Mr : L2(m) → L2(m) is compact
and its spectrum is given by sp (Mr) = {µk}k≥1 ∪ {0} with

µk =
1
ρk

≡ (
Φ′r,0(0)

)k
. (4.90)

Each eigenvalue µk is simple
and the corresponding (normalized) eigenfunction ϕk is given by

ϕk(t) = Ak tk−1 e−
r
δ t (4.91)

with

Ak =
(

1 + r

δ

)k 1√
(2k − 1)!

· (4.92)
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Remark 6. For each fixed r ∈ [0, 1) the operator Mr : L2(m) → L2(m) is actually
trace-class. Its trace is easily computed:

tr Mr =
∞∑

k=1

ρ−k =
1
δ

, (4.93)

and satisfies
lim
r↘0

trMr = 1 , lim
r↗1

trMr = ∞ . (4.94)

We recall that for r = 1 we get the multiplication operator M1 which is self-adjoint
in L2(m), its spectrum is continuous and given by the closure of the range of the
multiplying function, that is the interval [0, 1] (see, e.g., [DeV]). By the above
Proposition we see how the continuous spectrum is approached as r ↗ 1: having
fixed an interval [a, b] ⊆ (0, 1] an easy computation yields

#{µk ∈ [a, b]} ∼ log
(

b−a
ab

)

1− r
as r ↗ 1. (4.95)

Moreover a simple calculation gives

B [tk−1 e−
r
δ t] =

k! δk+1 xk−1

(δ + rx)k+1
. (4.96)

Therefore by the above and Lemma 4.4 we have the following

Corollary 4.4. The spectrum of P0 when acting upon H is given by sp (P0) =
sp (Mr). For r ∈ [0, 1) each eigenvalue µk, with k ≥ 1, is simple and the corre-
sponding (normalized) eigenfunction χk is given by

χk(x) = (Br [ϕk])(x) =
(1 + r)k k! δ√

(2k − 1)!
xk−1

(δ + rx)k+1
· (4.97)

4.3. The spectrum of Nr and P1. We now turn to study the action of the
operator Nr on L2(m). We first note that Nr can be viewed as the composition of
the multiplication operator

ϕ(t) → 1
ρ

e
δ
ρ t ϕ(t), (4.98)

(which reduces to the identity for r = 1) and the symmetric integral operator

ϕ(t) →
∫ ∞

0

J1

(
2
√

st/ρ
)

√
st/ρ

ϕ(s) dm(s). (4.99)

Observing that the (associated) Laguerre polynomials L1
k given by [GR]

L1
k(s) =

es s−1

k!
dk

dsk

(
e−s sk+1

)
=

k∑

l=0

(
k + 1
k − l

)
(−s)l

l!
(4.100)

form a complete orthogonal basis in L2(m) and expanding the kernel of the integral
operator defined above on this basis we get

J1

(
2
√

st/ρ
)

√
st/ρ

=
∞∑

k=0

L1
k(s)

tk e−
t
ρ

ρk(k + 1)!
(4.101)
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from which we see that Nr has the representation (we keep using the symbol (ϕ1, ϕ2)
to denote the inner product in L2(m) as well)

Nrϕ =
∞∑

k=1

(ϕ, ek) fk (4.102)

where ek, fk ∈ L2(m) are given by

ek(t) = L1
k−1(t) and fk(t) = Nrek(t) =

tk−1 e−
r
ρ t

ρk k!
· (4.103)

We find

‖ek‖2 =
√

k and ‖fk‖2 =

√
(2k − 1)!

(2 + r)k k!
, (4.104)

and therefore, for all r ∈ (0, 1],
∑

?‖ek‖2 ‖fk‖2 < ∞ (4.105)

showing that the operator Nr is nuclear in L2(m). Its trace can be computed as

trNr =
∫ ∞

0

e−
s
ρ

√
ρ

J1

(
2s√
ρ

)
ds =

1
2

(
1− 1√

1 + 4ρ

)
, (4.106)

with limit values

lim
r↘0

trNr =
1
3

and lim
r↗1

tr Nr =
√

5− 1
2
√

5
· (4.107)

Moreover we find

tr N2
r =

1
ρ

∫ ∞

0

∫ ∞

0

e−
t+s

ρ

[
J1

(
2
√

st/ρ
)]2

ds dt =
1
2

(
1 + 2ρ√
1 + 4ρ

− 1
)

. (4.108)

Note that tr N2
r ≤ tr Nr, with strict inequality unless r = 0 where tr N0 = tr N2

0 =
1/3. This suggests that the eigenvalues of Nr are alternately positive and negative.
Indeed we have the following

Proposition 4.6. For all r ∈ [0, 1] the spectrum of the operator Nr : L2(m) →
L2(m) is given by sp (Nr) = {νk}∞k=1 ∪ {0} with

νk = (−1)k−1

(
4ρ

(1 +
√

1 + 4ρ)2

)k

≡ − (
Φ′r,1(x1)

)k
. (4.109)

Each eigenvalue is simple and the corresponding (normalized) eigenfunction ψk is
given by

ψk(t) = Bk L1
k−1 (αrt) e−βr t, (4.110)

where αr =
√

1+4ρ
ρ , βr = 1+

√
1+4ρ

2ρ − 1 and

Bk =
√

1 + 4ρ

ρ
√

k

(
1− δ√

1 + 4ρ

)k



k−1∑

j=0

(
k

j

)(
k − 1

j

)(
δ2

1 + 4ρ

)j


− 1

2

·

Remark 7. Note that the eigenvalues of Nr can be written in terms of the function
βr as

νk =
(−1)k−1

ρk

(
1

1 + βr

)2k

· (4.111)

In particular, limr↘0 βr = 0 so that for r = 0 we have νk = (−1)k−1(2)−k, moreover

limr↗1 βr =
√

5−1
2 and thus for r = 1 we see that νk = (−1)k−1

(√
5−1
2

)2k

.
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Proof of Proposition 4.6. The proof is based on the following Hankel transform (see
[Er], vol 2)

∫ ∞

0

xp+ 1
2 e−bx2

Lp
k(ax2) Jp(xy)

√
xy dx =

(b− a)k yp+ 1
2

2p+1 bp+k+1
e−

y2

4b Lp
k

[
ay2

4b(a− b)

]
,

(4.112)
which for p = 1 can be rewritten in terms of the operator Nr as

Nr

[
e
−( 2b√

ρ−1)t
L1

k

(
2at√

ρ

)]
=

(b− a)k

4 bk+2
e
−( 1

2b
√

ρ− δ
ρ )t

L1
k

[
at

2
√

ρ b(a− b)

]
. (4.113)

To make the above identity an eigenvalue equation the following relations have to
be satisfied

2b√
ρ
− 1 =

1
2b
√

ρ
− δ

ρ
and

2a√
ρ

=
a

2
√

ρ b(a− b)
. (4.114)

This renders

a = b +
1
4b

and b =
1±√1 + 4ρ

4
√

ρ
. (4.115)

It is now easy to check that the only solution giving a function in L2(m) is that with
b = (1 +

√
1 + 4ρ)/4

√
ρ and this choice yields the eigenvalues and the eigenfunctions

given in the Proposition. Moreover, a standard evaluation of

‖L1
k−1 (α(r)t) e−βr t‖22 =

ρ2

1 + 4ρ

∫ ∞

0

[
L1

k−1(s)
]2

s e
−(1− δ√

1+4ρ
)s

ds (4.116)

yields the claimed expression for the normalizing factor Bk (see [Er], vol 1).

Direct application of the Lemma 4.5 now yields

Corollary 4.5. The spectrum of P1 when acting upon H is given for each r ∈
[0, 1] by sp (P1) = sp (Nr). Each eigenvalue νk, with k ≥ 1, is simple and the
corresponding (normalized) eigenfunction ξk is given by

ξk(x) = (Br [ψk])(x) = k Bk
(1 + (βr − αr)x)k−1

(1 + βrx)k+1
. (4.117)

4.4. The spectrum of P. First, putting together (4.93), (4.106) and Theorem
4.3 we deduce the following result,

Theorem 4.4. For all r ∈ [0, 1) the transfer operator P when acting upon H is of
the trace-class, with

trP =
1
δ

+
√

1 + 4ρ− 1
2
√

1 + 4ρ
(4.118)

with δ = 1− r and ρ = 2− r.

Remark 8. Using (2.10) and setting set x0 ≡ 0 one easily verifies that

1
δ

=
|Φ′r,0(x0)|

1− Φ′r,0(x0)
· (4.119)

Moreover, a straightforward computation based on the integral
∫ ∞

0

e−ax J1(bx) dx =
√

a2 + b2 − a

b
√

a2 + b2
(4.120)

and using (2.10) shows that
√

1 + 4ρ− 1
2
√

1 + 4ρ
=

|Φ′r,1(x1)|
1− Φ′r,1(x1)

, (4.121)
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where x1, defined in (2.8), is the unique fixed point of Fr besides x0 (obviously
one would arrive at the same conclusion by directly summing the geometric series∑

k≥1 µk +
∑

k≥1 νk with µk and νk given by (4.90) and (4.111), respectively). As
a result we can rewrite (4.118) as

trP =
∑

i=0,1

|Φ′r,i(xi)|
1− Φ′r,i(xi)

. (4.122)

This expression does’nt come unexpectedly: it is an instance of a trace formula valid
for more general analytic Markov maps (see [Ma2], Sec. 7.3.1).

We are now ready to investigate the spectrum sp (P) on the space H. We first
notice that from (4.113) with a =

√
ρ and b =

√
ρ/2 it follows that

Nr

[
L1

k(2t)
]

=
(−1)k

ρ
e−

r
ρ t L1

k

(
2t

ρ

)
= (−1)k Mr

[
L1

k(2t)
]

(4.123)

Therefore for all odd k the function L1
k(2t) lies in the kernel of Mr + Nr. This is in

agreement with (2.14) and (2.15) since we have

B [
L1

k(2t)
]

= (k + 1)(1− 2x)k (4.124)

which for k odd is an odd function w.r.t. x = 1/2. This implies that 0 is an
eigenvalue of infinite multiplicity for P for all r ∈ [0, 1].

Let us first consider the two extremal cases r = 0 and r = 1. For r = 0 we the
above theorem gives trP = 4/3, suggesting the eigenvalues 2−2n, n ≥ 0. To check,
we first note that

M0 tk =
tk

2k+1
and N0 tk =

k!
2

L1
k(t/2) =

(−t)k

2k+1
+

k−1∑

j=0

dj tj

with dj = (−1)j (k+1)! k!
2j+1 (j+1)! j! (k−j)! · Therefore the set of polynomials with even degree is a

subset of L2(m) which is invariant for M0+N0, and any polynomial with odd degree
is mapped into this subset. Given k = 2n it is now a simple task to construct a
polynomial eigenfunction φ2n (of degree 2n) to the eigenvalue 2−2n. The first three
are

φ0(t) = 1, φ2(t) =
t2

2
− 3t + 2, φ4(t) =

t4

24
− 5t3

6
+

10t2

3
− 32

15
·

Note moreover that for φk(t) =
∑k

j=0 aj tj we have (B [φk])(x) =
∑k

j=0 aj (j+1)! xj .
These observations along with standard arguments yield the following

Proposition 4.7. For r = 0 the spectrum of P when acting upon H is the set
sp (P) = {2−2n}n≥0 ∪ {0}. Each eigenvalue 2−2n is simple and the corresponding
eigenfunction is a polynomial of degree 2n.

At the opposite extremum we have the following result.

Proposition 4.8. For r = 1 the spectrum of P when acting upon H is the union of
[0, 1] and a (possibility empty) countable set of real eigenvalues of finite multiplicity.

Proof. The assertion follows by noting that for r = 1 the operator P when acting
on H is isomorphic to M1 +N1, which is a self-adjoint compact perturbation of the
(self-adjoint) multiplication operator M1. The assertion is now a consequence of
Theorem 5.2 in [GK]. Note that although the function e1(x) = (log 2)−1/x satisfies
Pe1 = e1 it does not belong to H and therefore 1 /∈ sp (P : H → H).
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The above construction, in particular Propositions 4.7 and 4.8, along with the
arguments outlined in [Is] (where the r = 1 case has been studied in detail) lead us
to state the following

Conjecture 1. For all 0 ≤ r < 1 the spectrum of P when acting upon H is a
countable subset of [0, 1] densely filling [0, 1] as r ↗ 1. When r = 1 the spectrum is
purely continuous (i.e. there are no eigenvalues).

4.5. Operator-valued functions and zeta functions. We may consider the
operator-valued function Qz defined as

Qz := z P1(1− zP0)−1. (4.125)

Its relevance is twofold: first, expanding formally in powers of z we get

Qz =
∞∑

n=1

znP1Pn−1
0 (4.126)

and using (2.41) we see that for z = 1 the operator Q ≡ Q1 is the transfer operator
associated to the induced map Gr. Second, it is related to P by the identity

(1−Qz)(1− z P0) = 1− z P. (4.127)

Now, as a consequence of (4.125) and Lemmas 4.4 - 4.5, we have the following
expression for the operator-valued function Qz when acting on H:

QzB [ϕ] = B
[
Nr

(
1
z
− Mr

)−1

ϕ

]
· (4.128)

Putting together the above we obtain

Theorem 4.5. For all r ∈ [0, 1] the operator-valued function Qz when acting on
the Hilbert space H is analytic for z ∈ IC \ Λr, where Λr = {ρk}∞k=1 for r < 1 and
Λ1 = (1,∞). For each z ∈ IC \ Λr it defines a trace-class operator.

Remark 9. Introducing the operator

Lr := (1−Mr)−1 Nr , (4.129)

we can rewrite (4.81) and (4.128) with z = 1 as

PB [ϕ] = B [ (Mr + (1−Mr)Lr )ϕ] , (4.130)

and (recall that Q ≡ Q1)

QB [ϕ] = B [
(1−Mr)Lr(1−Mr)−1 ϕ

]
, (4.131)

respectively. We thus see that the functions φr and ψr defined in (4.73) satisfy

Lrφr = φr and (1−Mr)Lr(1−Mr)−1ψr = ψr, (4.132)

so that
φr = (1−Mr)−1ψr and ψr = Nrφr. (4.133)

We now consider the dynamical zeta functions ζFr and ζGr associated to the maps
Fr and Gr, respectively, and defined by the following formal series [Rue2]:

ζFr (z) = exp
∞∑

n=1

zn

n
Zn(Fr) and ζGr (s) = exp

∞∑
n=1

sn

n
Zn(Gr), (4.134)
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where the ‘partition functions’ Zn(Fr) and Zn(Gr) are given by

Zn(Fr) =
∑

x=F n
r (x)

n−1∏

k=0

1
|F ′r(F k

r (x))| and Zn(Gr) =
∑

x=Gn
r (x)

n−1∏

k=0

1
|G′r(Gk

r (x))| ·

(4.135)
Moreover, let us define the ‘grand partition function’

Ξn(z) :=
∞∑

`=0

z`+n
∑

x=Gn
r (x)=F `+n

r (x)

n−1∏

k=0

1
|G′r(Gk

r (x))| , (4.136)

and the two-variable zeta function

ζ2(s, z) := exp
∞∑

n=1

sn

n
Ξn(z). (4.137)

A straightforward extension of ([Is], Proposition 4.3) to the present situation yields
the identities

ζ2(1, z) = (1− z) ζFr
(z) and ζ2(s, 1) = ζGr

(s) (4.138)

which are valid for all r ∈ [0, 1] and wherever the series expansions converge abso-
lutely. Therefore the analytic properties of the dynamical zeta functions ζFr and
ζGr can be deduced from those of ζ2(s, z). In turn, the latter can be studied as
follows. For q = 0, 1, . . . define

P0,qf(x) :=
[

ρ

(ρ + rx)2

]1+q

· f
(

x

ρ + rx

)

P1,qf(x) :=
[

ρ

(ρ + rx)2

]1+q

· f
(

1− x

ρ + rx

)

so that P0,0 ≡ P0 and P1,0 ≡ P1. These operators are supposed to act upon the
Hilbert space Hq ⊆ H such that a function f ∈ Hq can be represented as

f(x) = (Bq [ϕ])(x) :=
1

x2(1+q)

∫ ∞

0

e−
t
x et ϕ(t) dmq(t), ϕ ∈ L2(mq), (4.139)

with
dmq(t) = t2q+1 e−t dt (4.140)

A straightforward computation extending to non zero q values those performed in
the previous Section yields

P0,q Bq [ϕ ] = Bq [Mr,qϕ ] and P1,q Bq [ϕ ] = Bq [Nr,qϕ ] (4.141)

where Mr,q : L2(mq) → L2(mq) is defined as

(Mr,qϕ)(t) :=
1

ρ1+q
e−

r
ρ t ϕ

(
t

ρ

)
. (4.142)

and Nr,q : L2(mq) → L2(mq) is given by

(Nr,qϕ)(t) :=
1

ρ1+q
e

δ
ρ t

∫ ∞

0

J2q+1

(
2
√

st/ρ
)

(st/ρ)q+ 1
2

ϕ(s) dmq(s). (4.143)

We can now generalize (4.126) defining

Qz,q :=
∞∑

n=1

znP1,qPn−1
0,q . (4.144)
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In particular Qz,0 ≡ Qz. Now set Λr,q = {ρk+q}∞k=1 and note that Λr,q ⊆ Λr for all
q ≥ 0. Reasoning as above and using (4.141) we have that for any given q = 0, 1 . . .
the operator valued function z → Qz,q when acting on Hq is analytic for z ∈ IC \Λr,q

and for each z in this domain Qz,q defines a trace-class operator with

Qz,q Bq [ϕ ] = Bq [(−1)q Nr,q

(
1
z
− Mr,q

)−1

ϕ ]. (4.145)

Furthermore, a straightforward adaptation of ([Ma1], Corollaries 4 and 5) to our
z-dependent situation leads to the following expression for the grand partition func-
tion:

Ξn(z) = tr Qn
z,0 − tr Qn

z,1. (4.146)
This trace formula along with standard arguments (see [Ma1]) allow us to write the
two-variables zeta function (4.137) as a ratio of Fredholm determinants,

ζ2(s, z) =
det (1− sQz,1)
det (1− sQz,0)

, (4.147)

where by definition

det (1− sQz,q) = exp

(
−

∞∑
n=1

sn

n
tr Qn

z,q

)
(4.148)

is in the sense of Grothendieck [G]. Putting together the above we obtain the
following result from which the analytic properties of the dynamical zeta functions
associated to the maps Fr and Gr can be readily deduced via (4.138).

Theorem 4.6.
1. for each s ∈ IC, the function ζ2(s, z), considered as a function of the variable

z, extends to a meromorphic function in {z ∈ IC : z /∈ Λr}. Its poles are
located among those z-values such that Qz : H → H has 1/s as an eigenvalue;

2. for each z ∈ IC \ Λr, the function ζ2(s, z), considered as a function of the
variable s, extends to a meromorphic function in IC. Its poles are located
among the inverses of the eigenvalues of Qz : H → H.

Remark 10. The first statement with s = 1 shows that for r = 1 the function
ζFr (z) has a non-polar singularity at z = 1. This can be related to the non-analytic
behaviour of the free energy at β = 0 discussed in Section 3.
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