
NONLINEAR TIME-DEPENDENT ONE-DIMENSIONAL
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Abstract. We consider time-dependent Schrödinger equations in one dimension with double-
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we show that the reduction of the time-dependent equation to a 2-mode equation gives the dominant
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1. Introduction. Recently, the theoretical analysis of the nonlinear time-
dependent Schrödinger equation

i�ψ̇ = H0ψ + ε|ψ|2ψ, ε ∈ R, ψ̇ =
∂ψ

∂t
,(1)

where

H0 = − �
2

2m
∆+ V, ∆ =

d∑
j=1

∂2

∂x2
j

, d ≥ 1,

has attracted an increasing interest (see [15] for a review and [11] for a rigorous deriva-
tion of the Gross–Pitaevskii energy functional). When V is a double-well potential,
one of the main goals is to understand how the nonlinear perturbation with strength
ε affects the unperturbed beating motion (see, e.g., the review paper [5] and the pa-
per [19], where (1) is proposed as a model for chiral molecules). To this end, it is
crucial to study the solution ψ for times of the order of the beating period; in other
words, for practical purposes the unit of time is given by the beating period T = π�/ω,
where � is the Planck’s constant and ω is one-half of the energy splitting between the
two lowest energies.

Here, I consider (1) in the semiclassical limit where, by assuming that d = 1 and
under some generic assumption on the double-well potential, we give the asymptotic
behavior of the solution ψ with a precise estimate of the error. In particular, the
main result (Theorem 3) consists of proving that the solution of the Gross–Pitaevskii
equation is approximated, with a rigorous control of the error, by means of the solution
of an integrable two-dimensional dynamical system. As a result it follows (Theorem 4)
that the beating motion between the two wells of a state initially made of the two
lowest eigenstates disappears for increasing nonlinearity.
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A similar investigation was recently performed in [7], where the nonlinear pertur-
bation is given by ε〈ψ, gψ〉gψ and g(x) is a given odd function, and in [14], where,
in dimension d = 1 and d = 3, we consider the limit of large barrier between the
two wells. In particular, in [14] I had to assume that the discrete spectrum of the
Schrödinger operator H0 consists of only two nondegenerate eigenvalues and that the
restriction to the continuous eigenspace of the unitary evolution operator satisfies an
a priori estimate uniformly with respect to the parameters of the model.

Finally, we mention other recent results concerning the study of the existence of
stationary solutions for Gross–Pitaevskii equations with double-well potentials [2], [3]
and, in the case of single-well-type potentials, the existence of solutions asymptotically
given by solitary wave functions in the case when the discrete spectrum of the linear
Schrödinger operator has only one nondegenerate eigenvalue [16], [21]. In the case of
linear Hamiltonian H0 with exactly two bound states Tsai and Yau [18], making use
of some ideas by Soffer and Weinstein [17], proved that, in dimension d = 3 and under
certain resonance conditions, if the initial data is near a nonlinear ground state, then
the solution ψ(t, x) asymptotically approaches to certain nonlinear ground state.

Our paper is organized as follows.
In section 2 we introduce the main notation and state the assumptions on the

potential. Moreover, we collect some semiclassical results concerning the spectrum of
the linear Schrödinger operator.

In section 3 we prove the global existence of the solution of the Gross–Pitaevskii
equation, the existence of conservation laws, and an a priori estimate (Theorem 2).
The global existence of the solution is proved for both repulsive and attractive non-
linear perturbation, where, in the second case, we have to assume that the strength
of the nonlinear perturbation is small enough.

In section 4 we introduce the two-level approximation which, roughly speaking,
consists of projecting the Gross–Pitaevskii equation onto the two-dimensional space
spanned by the eigenvectors of the linear Schrödinger operator associated to the two
lowest eigenvalues. For practical purposes, it is more convenient to choose, as a basis
of such a two-dimensional space, the two single-well states. The dynamical system
we obtain is exactly solvable.

In section 5 we give our main result (Theorem 3) proving the stability of the two-
level approximation. Here, we make use of the comparison criterion between ordinary
differential equations and an a priori estimate of the solution of the Gross–Pitaevskii
equation. We emphasize that, in order to obtain such an estimate, assumption d = 1
on the dimension plays a crucial role.

In section 6 we give the full rigorous justification of the results by Vardi [19]
proving the existence of a critical value for the nonlinearity parameter giving the
destruction of the beating motion (Theorem 4).

2. Assumptions and preliminary results. Here, we consider the Cauchy
problem

i�ψ̇ = Hεψ, Hε = H0 +W,(2)

ψ(0, x) = ψ0(x) ∈ L2(R), ‖ψ0‖ = 1,

where ψ̇ denotes the derivative of ψ with respect to the time t, H0 is the lin-
ear Schrödinger operator formally given by (here, x denotes the spatial variable in
dimension 1)

H0 = − �
2

2m

d2

dx2
+ V,(3)
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V is a symmetric double-well potential, and

W = ε|ψ|2

is the nonlinear perturbation with strength ε.
In the following, for the sake of definiteness, we denote by C any positive constant

independent of ε, �, and t, we assume � small enough, that is, � ∈ (0, ��] for some �
�,

and we denote

‖ϕ‖p = ‖ϕ‖Lp =

{∫
|ϕ(x)|pdx

}1/p

and ‖ϕ‖ = ‖ϕ‖2.

Moreover, given y = (y1, . . . , ym) ∈ Rm for some m ≥ 1, we denote

|y| = max
1≤j≤m

|yj |.(4)

2.1. Assumptions on the potential. Here, we assume that the potential V
is a regular symmetric function which admits two nondegenerate minima and it is
bounded from below. More precisely, we have the following hypothesis.

Hypothesis 1. The potential V (x) is a real-valued function such that
(i) V (−x) = V (x) ∀x ∈ R;
(ii) V ∈ C2(R);
(iii) V (x) admits two nondegenerate minima at x = ±a for some a > 0 such that

V (x) > Vmin = V (±a) ∀x ∈ R, x 
= ±a;(5)

in particular, for the sake of definiteness, we assume that

dV (±a)

dx
= 0 and

d2V (±a)

dx2
> 0;

(iv) finally we assume that

lim inf |x|→∞V (x) = V∞ > Vmin.

It follows that the operator formally defined in (3) admits a self-adjoint realization
(still denoted by H0) on L2(R) (see, for instance, Theorem III.1.1 in [4]). Let σ(H0) =
σd∪σess be the spectrum of the self-adjoint operator H0, where σd denotes the discrete
spectrum and σess denotes the essential spectrum. From Hypothesis 1(iv) it follows
that σd ⊂ (Vmin, V∞), σess = ∅ if V∞ = +∞ (see Theorem XIII.67 in [13]) and that
σess ⊆ [V∞,+∞) if V∞ < ∞ (see Theorem III.3.1 in [4]). Furthermore, the following
two lemmas hold.

Lemma 1. Let σd be the discrete spectrum of H0. Then, for any � ∈ (0, ��], it
follows that

(i) σd is not empty and, in particular, it contains two eigenvalues at least;
(ii) letting λ1,2 be the lowest two eigenvalues of H0, they are nondegenerate, in

particular λ1 < λ2, and there exists C > 0, independent of �, such that

inf
λ∈σ(H0)−{λ1,2}

[λ− λ2] ≥ C�.

Proof. The proof is an immediate consequence of the above assumptions and
standard WKB arguments.
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Lemma 2. Let ϕ1,2 be the normalized eigenvectors associated to λ1,2. Then
(i) ϕj, j = 1, 2, can be chosen to be real-valued functions such that ϕj(−x) =

(−1)j−1ϕj(x);
(ii) ϕj ∈ H1(R);
(iii) ϕj ∈ Lp(R) for any p ∈ [1,+∞];
(iv) there exists a positive constant C such that

‖ϕj‖p ≤ C�
− p−2

4p ∀p ∈ [2,+∞], ∀� ∈ (0, ��].(6)

Proof. Property (i) immediately follows from assumption Hypothesis 1(i). Prop-
erty (ii) follows from Lemma III.3.1 in [4]. Property (iii) follows from Theorem III.3.2
in [4]. Finally, property (iv) follows for p = +∞ by means of standard WKB ar-
guments. From this fact, from the normalization of the eigenvectors, and from the
Hölder inequality, property (iv) follows for any p ∈ [2,+∞]:

‖ϕj‖p =
[
‖ϕ2

jϕ
p−2
j ‖1

]1/p
≤ ‖ϕj‖2/p

2 ‖ϕj‖(p−2)/p
∞ = ‖ϕj‖(p−2)/p

∞ .

2.2. Splitting and single-well states. It is well known that the splitting be-
tween the two lowest eigenvalues vanishes as � goes to zero. In particular, we have
the following lemma.

Lemma 3. Let

ω =
λ2 − λ1

2
and Ω =

λ2 + λ1

2

and

ϕR =
1√
2
[ϕ1 + ϕ2] and ϕL =

1√
2
[ϕ1 − ϕ2] ,

where ϕ1,2 are the normalized eigenvectors associated to λ1,2. Then there exist two
positive constants C and Γ, independent of �, such that

‖ϕRϕL‖∞ ≤ Cω(7)

and

ω ≤ Ce−Γ/� ∀� ∈ (0, ��].(8)

As a result it follows that

lim
�→0

ω = 0(9)

and

lim
�→0

Ω− Vmin

�
= c(10)

for some c > 0.
Proof. In order to prove this lemma we observe that V is a symmetric double-well

potential with nonzero barrier between the wells. That is, let δ > 0 be small enough
and let us define the two sets

BR =
{
x ∈ R+ : V (x) ≤ Vmin + δ

}
BL =

{
x ∈ R− : V (x) ≤ Vmin + δ

}
}

, i.e., x ∈ BR ⇔ −x ∈ BL.
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From condition (5) it follows also that

BR = [b, c] and BL = [−c,−b]

for some c > a > b > 0. The sets BR,L are usually called wells. Let

Γδ =

∫ b

−b

√
max[V (x)− (Vmin + δ), 0]dx > 0

be the Agmon distance between the two wells. From these facts and from standard
WKB arguments (see [8] and [9]) then (7)–(10) follow for some Γ ∈ [Γ0,Γδ].

Remark 1. By definition it follows that ϕR(−x) = ϕL(x); moreover, from (7),
it follows that these functions are localized on only one of the wells BR and BL; for
example, ∫

BR

|ϕR(x)|2dx = 1 +O(e−C/�)

for some C > 0. For such a reason we call them single-well (normalized) states.
Remark 2. We emphasize that, by assuming some regularity properties on the po-

tential V , it is then possible to obtain the precise asymptotic behavior of the splitting
as � goes to zero [9].

2.3. Assumptions on the parameters. We assume that the parameter ε is
such that

ε → 0 as � → 0

and

cε

ω
≤ C, c = ‖ϕ2

R‖ ∀� ∈ (0, ��](11)

for some positive constant C. We recall also that the other parameter of the model,
i.e., the splitting ω, satisfies the asymptotic estimate (8).

2.4. Assumption on the initial state. Let

Πc = 1− 〈ϕR, ·〉ϕR − 〈ϕL, ·〉ϕL(12)

be the projection operator onto the eigenspace orthogonal to the two-dimensional
eigenspace associated to the doublet {λ1,2}. Letting ψ0 be the initial wave function,
we assume the following.

Hypothesis 2. Πcψ
0 = 0.

3. Global existence of the solution and conservation laws. Here, we prove
that the Cauchy problem (2) admits a solution for all time provided that Hypotheses
1–2 are satisfied and the strength ε of the nonlinear perturbation is small enough.
Moreover, we prove a priori estimate of the solution ψ.

The following results hold.
Theorem 1. There exist �

� > 0 and ε0 > 0 such that for any � ∈ (0, ��] and
ε ∈ [−ε0, ε0] the Cauchy problem (2) admits a unique solution ψ(t, x) ∈ H1 for any
t ∈ R. Moreover, the following conservation laws hold:

‖ψ(t, ·)‖ = ‖ψ0(·)‖ = 1(13)
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and

E(ψ) =
�

2

2m

∥∥∥∥∂ψ∂x
∥∥∥∥

2

+ 〈V ψ, ψ〉+ 1

2
ε‖ψ2‖2 = E(ψ0).(14)

Proof. From Hypothesis 2 it follows that

ψ0 = c1ϕ1 + c2ϕ2, c1,2 = 〈ψ0, ϕ1,2〉.
From this fact and from Lemma 2, ψ0 ∈ H1. Therefore, existence of the global
solution ψ ∈ C(R, H1) and the conservation laws (13) and (14) follow from known
results (see, for example, the papers quoted in [15] and [16]) for any ε > 0 (repulsive
nonlinear perturbation) and for any ε ∈ (−ε0, 0) for some ε0 > 0 (attractive nonlinear
perturbation).

Remark 3. There exists a positive constant C independent of � and ε such that

|E(ψ)− Vmin| ≤ C(ω + � + ε�−1/2) ∀� ∈ (0, ��], ∀ε ∈ [−ε0, ε0].(15)

This estimate immediately follows from (14), from Hypothesis 2, and from Lemmas
1 and 2. Indeed, from Hypothesis 2 it follows that

E(ψ0) = 〈H0(c1ϕ1 + c2ϕ2), (c1ϕ1 + c2ϕ2)〉+ 1

2
ε‖ψ0‖4

4,

where ‖ψ0‖4 ≤ C�
−1/8 from (6) and where

〈H0(c1ϕ1 + c2ϕ2), (c1ϕ1 + c2ϕ2)〉 = λ1|c1|2 + λ2|c2|2 = Ω− ω + 2ω|c2|2.
From these facts and from (10), inequality (15) follows.

Theorem 2. Let ε0(�) be a function such that

lim
�→0

ε0(�)/�
2 = 0.(16)

The solution ψ of (2) satisfies the following uniform estimate: there exists a positive
constant C independent of t, �, and ε such that

‖ψ‖p ≤ C

[ |E(ψ0)− Vmin|
�2

] p−2
4p

∀p ∈ [2,+∞](17)

and ∥∥∥∥∂ψ∂x
∥∥∥∥ ≤ C

[ |E(ψ0)− Vmin|
�2

] 1
2

for all time and ∀� ∈ (0, ��], ∀ε ∈ [−ε0(�), ε0(�)].
Proof. In order to prove the estimate (17) let

k =
�√
2m

, Λ =
E(ψ0)− Vmin

k2
.

Then the conservation laws (13) and (14) imply that∥∥∥∥∂ψ∂x
∥∥∥∥

2

+
1

2
[sign(ε)]ρ2‖ψ2‖2 ≤ Λ,
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where

ρ = |ε|1/2/k � 1,

according to (16). In particular, if we set

χ = ρψ,

then the above equation takes the form∥∥∥∥∂χ∂x
∥∥∥∥

2

+
1

2
[sign(ε)]‖χ2‖2 ≤ Λρ2,

from which it follows that∥∥∥∥∂χ∂x
∥∥∥∥

2

≤ ρ2|Λ|+ 1

2
‖χ2‖2 = ρ2|Λ|+ 1

2
‖χ‖4

4.(18)

From the Gagliardo–Nirenberg inequality (see, for instance, [6] and [20], where the
dimension is here equal to 1)

‖χ‖2σ+2
2σ+2 ≤ C

∥∥∥∥∂χ∂x
∥∥∥∥
σ

‖χ‖2+σ ∀σ ≥ 0,(19)

where we choose σ = 1, it follows that

‖χ‖4
4 ≤ C

∥∥∥∥∂χ∂x
∥∥∥∥ ‖χ‖3 ≤ C

∥∥∥∥∂χ∂x
∥∥∥∥ ρ3

since ‖χ‖ = ρ‖ψ‖ = ρ and ‖ψ‖ = 1. By inserting this inequality in (18) it follows
that ‖∂χ∂x‖ satisfies ∥∥∥∥∂χ∂x

∥∥∥∥
2

≤ ρ2|Λ|+ Cρ3

∥∥∥∥∂χ∂x
∥∥∥∥(20)

for any t ∈ R. From (20) it immediately follows that∥∥∥∥∂χ∂x
∥∥∥∥ ≤

√
|Λ|ρ (1 + o(1)) as ρ → 0.

Hence, ‖∂ψ∂x ‖ ≤ C
√|Λ| and, from (19), we have that

‖ψ‖p ≤ C

∥∥∥∥∂ψ∂x
∥∥∥∥
σ/p

≤ C|Λ|(p−2)/4p,

where we choose now σ = p−2
2 , i.e., p = 2σ + 2.

Remark 4. Condition (16) is true in the semiclassical limit and under assump-
tion (11).

Remark 5. From the fact E(ψ0) − Vmin = O(�), which follows from (8), (15),
and (16), and from the bounds (17) and (11), it then follows that

‖ψ‖p ≤ C�
− p−2

4p ∀p ∈ [2,+∞] and

∥∥∥∥∂ψ∂x
∥∥∥∥ ≤ C�

− 1
2(21)

for any t ∈ R, � ∈ (0, ��], and ε ∈ [−ε0(�), ε0(�)].
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4. Two-level approximation. For our purposes it is more convenient to make
the substitution ψ → e−iΩt/�ψ; hence (2) takes the following form (where, with abuse
of notation, we still denote the new function by ψ):

i�ψ̇ = (H0 − Ω)ψ + ε|ψ|2ψ, ψ(x, 0) = ψ0(x).(22)

Let us write the solution of this equation in the form

ψ(t, x) = aR(t)ϕR(x) + aL(t)ϕL(x) + ψc(t, x),(23)

where aR(t) and aL(t) are unknown complex-valued functions depending on time and
ψc = Πcψ, Πc, defined in (12), is the projection onto the space orthogonal to the
two-dimensional space spanned by the two single-well states ϕR and ϕL; i.e.,

〈ψc, ϕR〉 = 〈ψc, ϕL〉 = 0 ∀t ∈ R.

From the conservation law (13) it follows that

|aR(t)|2 + |aL(t)|2 + ‖ψc(t, ·)‖2 = 1 ∀t ∈ R.(24)

By substituting ψ by (23) in (2) we obtain that aR, aL, and ψc must satisfy the
system of differential equations


i�ȧR = −ωaL + ε〈ϕR, |ψ|2ψ〉,
i�ȧL = −ωaR + ε〈ϕL, |ψ|2ψ〉,
i�ψ̇c = (H0 − Ω)ψc + εΠc|ψ|2ψ.

(25)

By again substituting ψ by (23) in the first two equations of the above system,
we obtain that these equations take the form{

i�ȧR = −ωaL + εc|aR|2aR + εrR,

i�ȧL = −ωaR + εc|aL|2aL + εrL,
(26)

where

c = ‖ϕ2
R‖2 = ‖ϕ2

L‖2 = O(�−1)(27)

and where rR and rL are given by

rR = 〈ϕR, |ψ|2ψ〉 − |a2
R|aR〈ϕR, |ϕR|2ϕR〉

= 〈ϕR, |ψ|2φL〉+ aR〈|ϕR|2, |φL|2 + aRϕRφ̄L + āRϕ̄RφL〉,
rL = 〈ϕL, |ψ|2ψ〉 − |a2

L|aL〈ϕL, |ϕL|2ϕL〉
= 〈ϕL, |ψ|2φR〉+ aL〈|ϕL|2, |φR|2 + aLϕLφ̄R + āLϕ̄LφR〉,

where

φL = aLϕL + ψc and φR = aRϕR + ψc.

We denote by two-level approximation the solutions bR and bL of the system of
ordinary differential equations{

i�ḃR = −ωbL + εc|bR|2bR,
i�ḃL = −ωbR + εc|bL|2bL,

bR,L(0) = aR,L(0),(28)
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obtained by neglecting the remainder terms rR and rL in (26). It is easy to see that
the solution of this system satisfies the conservation law

|bR(t)|2 + |bL(t)|2 = |bR(0)|2 + |bL(0)|2 = |aR(0)|2 + |aL(0)|2 = 1,(29)

and, moreover, it is also possible to explicitly compute (see [12] and Appendix B
in [14]) the solution of (28) by means of elliptic functions cn and dn [1]. In particular,
we obtain that the imbalance function, defined as

z(t) = |bR(t)|2 − |bL(t)|2,(30)

is given by

z(t) =

{
Acn [Aη(ωt/� − τ0)/2k, k] if k < 1,

Adn [Aη(ωt/� − τ0)/2, 1/k] if k > 1,

where η = εc/ω, τ0 depends on the initial condition,

I =
√

1− z2(0) cos[θ(0)]− ηz2(0)/4,

θ = arg(bR)− arg(bL) is the relative phase,

A =
2
√
2

η

[√
1

4
η2 + 1 + Iη −

(
1 +

1

2
Iη

)]1/2

,

and

k2 =
1

2


1− 1 + 1

2Iη√
1
4η

2 + 1 + Iη


 .(31)

We emphasize that z(t) periodically assumes positive and negative values if and only
if k < 1.

5. Stability of the two-level approximation. Our main result consists of
proving the stability of the two-level approximation when we restore the remainder
terms rR and rL in (28).

We prove the following.
Theorem 3. Let ψc = Πcψ, aR(t) = 〈ψ,ϕR〉, and aL(t) = 〈ψ,ϕL〉, where

ψ is the solution of (22), and let bR(t) and bL(t) be the solution of the system of
ordinary differential equations (28). Let ε ∈ [−ε0(�), ε0(�)], where ε0(�) satisfies the
condition (16). Then, for any τ ′ > 0, there exists a positive constant C independent
of ε, �, and t such that

|bR,L(t)− aR,L(t)| ≤ Ce−C�
−1

and ‖ψc(·, t)‖ ≤ Ce−C�
−1

(32)

for any � ∈ (0, ��] and for any t ∈ [0, �τ ′/ω].
Proof. For the sake of simplicity, hereafter, we omit the parameters when doing

so does not cause misunderstandings. In order to prove the theorem we introduce the
slow time τ = ωt/� and let{

AR,L(τ) = aR,L(t),

BR,L(τ) = bR,L(t),
RR,L(τ) =

ε

ω
rR,L(t), and η =

εc

ω
.
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Then (26) and (28), respectively, take the form (here ′ denotes the derivative with
respect to τ) {

A′
R = iAL − iη|AR|2AR +RR,

A′
L = iAR − iη|AL|2AL +RL

(33)

and {
B′
R = iBL − iη|BR|2BR,

B′
L = iBR − iη|BL|2BL,

(34)

satisfying the same initial condition

BR,L(0) = AR,L(0) = aR,L(0).

Due to (24) and (29), they are such that

|BR(τ)|2 + |BL(τ)|2 = 1, |AR(τ)|2 + |AL(τ)|2 ≤ 1.(35)

In a more concise way, with an obvious meaning of notation, we can write (33) and (34)
as

A′ = f(A) +R and B′ = f(B), A(0) = B(0) = a(0),(36)

where A,B ∈ S2 since (35), S2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1}.
Lemma 4. The function f : S2 → C2 satisfies the Lipschitz condition

|f(A)− f(B)| ≤ L|A−B|, L = 1 + 3η.(37)

Proof. According to the notation (4) we have

|f(A)− f(B)| = max [|fR|, |fL|] ,
where |A| ≤ 1 and |B| ≤ 1 since A,B ∈ S2, and where

fR = (AL −BL)− η(|AR|2AR − |BR|2BR),

fL = (AR −BR)− η(|AL|2AL − |BL|2BL).

Then (37) immediately follows since

fR = (AL −BL)− η
[|BR|2(AR −BR) +AR(|AR|+ |BR|)(|AR| − |BR|)

]
,

where ||AR| − |BR|| ≤ |AR − BR|, and where the other term fL will be treated the
same way.

Lemma 5. Let

β = max[cε, ω],

where c is defined in (27). Let ψc = Πcψ, where ψ is the solution of (22); it satisfies
the uniform estimate

‖ψc‖ ≤ Cβ�
−3/2

[
exp[C�

−1/2(εt/�)] + 1
]

∀t ∈ R(38)



1170 ANDREA SACCHETTI

for some positive constant C independent of �, ε, and t.
Proof. As a first step we consider the following raw estimates:

‖ψc‖p ≤ C�
− p−2

4p ∀p ∈ [2,+∞], ∀t ∈ R(39)

and

|rR,L| ≤ C�
−1/2 ∀t ∈ R.

Indeed, (39) immediately follows from the Minkowski inequality and from (21):

C�
− p−2

4p ≥ ‖ψ‖p ≥ − (|aR(t)|‖ϕR‖p + |aL(t)|‖ϕL‖p) + ‖ψc‖p,
where |aR,L(t)| ≤ 1, and where ϕR,L satisfy the bound (6). In the same way, from
Lemma 2 and Theorem 2, it follows that

|rR| ≤ C‖ϕRψ2‖ · ‖ψ‖+ ‖ϕR‖4
4

≤ C‖ϕR‖∞‖ψ‖2
4‖ψ‖+ C‖ϕR‖4

4

≤ C�
−1/2,

and similarly for |rL|.
Now, in order to prove the estimate (38) we make use of the third equation of

(25), from which it follows that

ψc(·, t) = −i
ε

�

∫ t

0

e−i(H0−Ω)(t−s)/�Πc|ψ(·, s)|2ψ(·, s)ds

since ψ0
c = Πcψ

0 = 0 from Hypothesis 2.
Let ψ = ϕ+ ψc, where ϕ = aRϕR + aLϕL. Then

|ψ|2ψ = ϕI + ψcϕII + ψ̄cϕIII ,




ϕI = |ϕ|2ϕ,
ϕII = 2|ϕ|2 + 2ψ̄cϕ+ |ψc|2 + ϕ̄ψc,

ϕIII = ϕ2.

Therefore, we can write

ψc = −i
ε

�
[I + II + III] ,

where

I =

∫ t

0

e−i(H0−Ω)(t−s)/�ΠcϕIds,

II =

∫ t

0

e−i(H0−Ω)(t−s)/�ΠcψcϕIIds,

III =

∫ t

0

e−i(H0−Ω)(t−s)/�Πcψ̄cϕIIIds.

For the first term we have, by integrating by parts, that

I =
[
−i�e−i(H0−Ω)(t−s)/�[H0 − Ω]−1Πc|ϕ|2ϕ

]t
0

+ i�

∫ t

0

e−i(H0−Ω)(t−s)/�[H0 − Ω]−1Πc
∂|ϕ|2ϕ

∂s
ds.
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Let us emphasize that from Lemma 1 it follows that the following operators, from L2

into L2, are bounded:∥∥∥e−i(H0−Ω)(t−s)/�

∥∥∥ = 1, ‖�[H0 − Ω]−1Πc‖ ≤ C.

Also, from Lemma 2 and (24), (26), and (27), we have the following uniform estimate
for any t ∈ R:

‖ϕ̇‖p ≤ (|ȧr|+ |ȧL|) (‖ϕR‖p + ‖ϕL‖p) ≤ C�
−1 max[cε, ω, ε�− 1

2 ]�− p−2
4p

≤ C�
−1β�

− p−2
4p .

Then we have that

‖I‖ ≤ C max
s∈[0,t]

{‖ϕ3(s, ·)‖+ t‖ϕ̇(s, ·)ϕ2(s, ·)‖}
≤ C max

s∈[0,t]

{‖ϕ(s, ·)‖3
6 + t‖ϕ̇(s, ·)‖ · ‖ϕ(s, ·)‖2

∞
}

≤ C
{

�
−1/2 + t�−1β�

−1/2
}
.

For the other two terms we have that

‖II‖ ≤
∫ t

0

‖ψc‖ · ‖ϕII‖∞ds ≤ C�
−1/2

∫ t

0

‖ψc‖ds

since ‖ϕII‖∞ ≤ C�
−1/2, and similarly

‖III‖ ≤
∫ t

0

‖ψc‖ · ‖ϕIII‖∞ds ≤ C�
−1/2

∫ t

0

‖ψc‖ds.

Indeed, from Lemma 2 and (39) it follows that

‖ϕII‖∞ ≤ C
{‖ϕ‖2

∞ + ‖ψc‖∞‖ϕ‖∞ + ‖ψc‖2
∞
} ≤ C�

−1/2

and

‖ϕIII‖∞ ≤ ‖ϕ‖2
∞ ≤ C�

−1/2.

Collecting all these results and denoting

g(t) = ‖ψc(·, t)‖
we have that g(t) is a positive real-valued function satisfying the estimate

g(t) ≤ C
ε

�

{
�
−1/2

∫ t

0

g(s)ds+ �
−1/2

(
1 + t�−1β

)}

≤ a

∫ t

0

g(s)ds+ a+ abt, a = C
ε

�3/2
, b =

β

�
.

From this estimate, since ψc(0) = 0, and from Gronwall’s lemma (see [10], page 19)
it follows that

g(t) ≤ a+ abt+ a

∫ t

0

ea(t−s)(a+ abs)ds = −b+ aeat + beat

≤ Cβ

�3/2

[
eCεt�

−3/2

+ 1
]
,
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proving the result.
From the inequality (8) and from assumption (11) it follows that for any fixed

τ ′ > 0 there exists C > 0 satisfying the second inequality in (32).
Lemma 6. For any fixed τ ′ > 0 the remainder terms rR and rL satisfy the

uniform estimate

max [|rR|, |rL|] ≤ Cβ�
−2eC�

−1/2 ∀t ∈ [0, τ ′
�/ω]

for some positive constant C independent of �, ε, and t.
Proof. Let us consider only the term |rR|; the other term |rL| could be treated

the same way. By definition, and since max[|aR|, |aL|] ≤ 1, it follows that

|rR| ≤ +
∣∣〈ϕRϕ̄L, |ψ|2〉∣∣(40)

+
∣∣〈ϕR|ψ|2, ψc〉∣∣(41)

+
∣∣〈|ϕR|2, |φL|2 + aRϕRφ̄L + āRϕ̄RφL〉

∣∣ ,(42)

and we estimate separately each term.
From Lemma 3, equation (13), and the Hölder inequality, it follows that the term

(40) satisfies the estimate∣∣〈ϕRϕL, |ψ|2〉∣∣ ≤ ‖ϕRϕ̄L‖∞ · ‖ψ2‖1 ≤ Cω.

From Lemma 5 and the Hölder inequality, it follows that the term (41) satisfies
the estimates ∣∣〈ϕR|ψ|2, ψc〉∣∣ ≤ ‖ϕR‖∞ · ‖ψ2‖ · ‖ψc‖ ≤ Cβ�

−2eC�
−1/2

and that the term (42) satisfies the estimate∣∣〈|ϕR|2, |φL|2 + aRϕRφ̄L + āRϕ̄RφL〉
∣∣

≤ C
[‖ϕRϕL‖∞ + ‖ϕ2

R‖∞‖ψc‖2 + ‖ϕRϕL‖∞‖ψc‖
] ≤ Cω.

Collecting all these estimates, we obtain the proof of the lemma.
The proof of the theorem is almost complete. Indeed, equations (36) can be

rewritten in the integral form

A(τ) = A(0) +

∫ τ

0

f [A(s)]ds+

∫ τ

0

Rds

and

B(τ) = B(0) +

∫ τ

0

f [B(s)]ds,

from which, and from Lemmas 4 and 5, it follows that for any τ ∈ [0, τ ′],

|A(τ)−B(τ)| ≤
∫ τ

0

|f [A(s)]− f [B(s)]| ds+
∫ τ

0

|R|ds

≤ a

∫ τ

0

|A(s)−B(s)| ds+ bτ, a = L, b = C
εβ�

−2eC�
−1/2

ω
.
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From this inequality and by means of Gronwall’s lemma we finally obtain that

|A(τ)−B(τ)| ≤ bτ + ab

∫ τ

0

ea(τ−s)sds =
b

a
[eaτ − 1]

≤ C

L

εβ�
−2eC�

−1/2

ω
,

proving (32) since

ω + ε

C ′ω
≤ L = 1 + 3η ≤ C ′ω + ε

ω

for some C ′ > 0, which implies that β
Lω ≤ C for some C > 0.

Remark 6. Since ω = O(e−Γ/�) the above theorem implies that for any α < 1
and for any τ ′ > 0, there exists C such that

|bR,L(t)− aR,L(t)| ≤ Cωα and ‖ψc(·, t)‖ ≤ Cωα ∀t ∈ [0, �τ ′/ω].

6. Destruction of the beating motion for large nonlinearity.

6.1. The unperturbed case ε = 0. Under Hypothesis 2 it follows that the
solution of the unperturbed equation

i�ψ̇ = H0ψ, ψ(0, x) = ψ0(x)

is simply given by

ψ(t, x) = e−iΩt/�

[
c1 + c2√

2
cos(ωt/�) + i

c2 − c1√
2

sin(ωt/�)

]
ϕR(x)

+ e−iΩt/�

[
c1 − c2√

2
cos(ωt/�)− i

c1 + c2√
2

sin(ωt/�),

]
ϕL(x),

where

c1,2 = 〈ϕ1,2, ψ
0〉, |c1|2 + |c2|2 = 1.

Hence, ψ(t, x) is, up to the phase factor e−i(Ω−ω)t/�, a periodic function with period
T = π�/ω.

In particular, if ψ initially coincides with a single-well state, e.g., ψ0 = ϕR, then

ψ(t, x) = e−i(Ω−ω)t/�

[
e−iωt/� cos(ωt/�)ϕR(x)− ie−iωt/� sin(ωt/�)ϕL(x)

]

and the state ψ(t, x) performs a beating motion. That is, the state, initially localized
on the well BR, is localized on the other well BL after half a period and, after a whole
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period, it returns to the initial well, and so on. In particular, let us consider the
motion of the center of mass defined here as

〈X〉t = 〈Xψ,ψ〉 =
∫
r
X(x)|ψ(t, x)|2dx,

where X ∈ C(R) ∩ L2(R) is a given bounded function such that X(−x) = −X(x).
We have that

〈X〉t = X0

[
cos2(ωt/�)− sin2(ωt/�)

]
,

where

X0 = 〈ϕR, XϕR〉 =
∫
r
X(x)|ϕR(x)|2dx.

Hence, 〈X〉t is a periodic function which periodically assumes positive and negative
values; i.e., we have the well-known beating motion for the double-well problem.

6.2. The perturbed case ε �= 0. In such a case it follows that the center of
mass is given by

〈X〉t = X0[|aR(t)|2 − |aL(t)|2] + r,

where X0 has been previously defined and the remainder term r satisfies the uniform
estimate

|r| = 2 |� [aRāL〈XϕR, ϕL〉+ 〈Xψ,ψc〉]|
≤ 2 [‖ϕRϕL‖∞ + ‖X‖∞‖ψ‖‖ψc‖]
≤ Ce−C�

−1 ∀t ∈ [0, �τ ′/ω].

If we denote by z(t) the imbalance function defined in (30), then, in the semiclassical
limit, it follows that

|aR(t)|2 − |aL(t)|2 ∼ z(t) ∀t ∈ [0, �τ ′/ω];

hence

〈X〉t ∼ X0z(t) ∀t ∈ [0, �τ ′/ω].

Then we have the following.
Theorem 4. Let Hypotheses 1 and 2 be satisfied. Let k2 be defined as in (31),

depending on the initial wave function ψ0. Let τ ′ > 0 be fixed, and let 〈X〉t, up to a
remainder term, be a periodic function for any t ∈ [0, �τ ′/ω]. In particular, if

(i) k2 < 1, then 〈X〉t periodically assumes positive and negative values (i.e., the
beating motion still persists);

(ii) k2 > 1, then 〈X〉t has a definite sign (i.e., the beating motion is forbidden).
Remark 7. Let us close by emphasizing that when the wave function is initially

prepared on just one well, e.g., ψ0 = ϕR, then

I = −1

4
η and k2 =

1

16
η2.

Therefore, from the theorem above it follows that for |η| larger than the critical
value 4 the beating motion is forbidden (see Figure 1). In such a way, we put on a
fully rigorous basis the results obtained by [19] in the two-level approximation.
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Fig. 1. Absence of the beating motion of the center of mass for nonlinearity larger than a
critical value. Here, we plot the imbalance function z(τ) for different values of the nonlinearity
parameter η, where τ = ωt/� denotes the slow time. For η = 0 (point line) and η = 3.8 (broken
line) we still have a beating motion; in contrast, for η larger than the critical value 4, e.g., η = 6.5
(full line), the beating motion is forbidden.
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