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‡ School of Mathematics, University of Bristol, Bristol BS8 1TW, UK.

E-mail: desposti@dm.unibo.it, stephen.okeefe@bristol.ac.uk, winn@dm.unibo.it

Abstract. We investigate the semi-classical properties of a two-parameter family of piece-wise
linear maps on the torus known as the Casati-Prosen or triangle map. This map is weakly
chaotic and has zero Lyapunov exponent. A correspondence between classical and quantum
observables is established, leading to an appropriate statement regarding equidistribution of
eigenfunctions in the semi-classical limit. We then give a full description of our numerical study
of the eigenvalues and eigenvectors of this family of maps. For generic choices of parameters
the spectral and eigenfunction statistics are seen to follow the predictions of the random matrix
theory conjecture.

PACS number: 05.45.Mt

AMS classification scheme numbers: 81Q50, 81S05

Submitted to: Nonlinearity

1. Introduction and notations

Quantum chaology is concerned with the semi-classical study of systems whose classical
counterparts are chaotic. This study has focused on the behaviour of energy levels and
corresponding eigenfunctions in the classical limit. It turns out that the semi-classical behaviour
of these quantities is markedly different if the system is chaotic, compared with an integrable
system. For the spectrum of energy levels two important conjectures are the Bohigas-Giannoni-
Schmit conjecture [12] that classically chaotic systems exhibit correlations in the quantum spectrum
like those in eigenvalues of random matrices; and the conjecture [7] of Berry and Tabor, that for
classically integrable systems the energy levels are completely uncorrelated. For eigenfunctions one
has the semi-classical eigenfunction hypothesis [6, 44]. Put simply this asserts that a particular
phase-space representation of the energy eigenfunctions, (the Wigner distribution) semi-classically
converges to the Dirac delta distribution supported on the region of phase space explored by typical
trajectories in long times. For a chaotic (so in particular, ergodic) system, this set is the whole
surface of constant energy. For an integrable system, motion is confined to tori in phase space, so
the semi-classical eigenfunction hypothesis in this case implies that the Wigner function condenses
onto these tori in the classical limit.

A wide variety of chaotic systems have been investigated, both numerically and analytically, in
the intervening 20-or-so years, and we are now convinced that these conjectures give an accurate
picture of the behaviour of generic systems.

Nevertheless, the term “chaotic” contains a whole hierarchy of behaviours such as: ergodicity,
mixing, hyperbolicity, et cetera, and it is of interest to know which of these properties are necessary
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to recover generic effects. As an example we mention the skew translations. These are ergodic maps
of the torus, which possess no stronger chaotic properties. They are not strongly or weakly mixing.
In [40] it was proved that when quantised all eigenfunctions of the corresponding quantum map
equidistribute in the classical limit. The spectral statistics, however, fail to obey the predictions of
random matrix theory [2]. Most systems which are believed to behave generically with respect to
the Bohigas-Giannoni-Schmit conjecture have quite strong chaotic properties. The original study
in [12] was of the quantised Sinai billiard which is a K-system. As an example of quantum maps
with random matrix statistics we mention the family of perturbed cat maps [4] which are Anosov
systems, so strongly mixing, with exponential proliferation of periodic orbits and positive entropy.

In the present work we present a family of maps with much weaker chaotic behaviour, which
nevertheless for certain choices of the governing parameters seem to behave generically with respect
to the Bohigas-Giannoni-Schmit conjecture. The map is conjectured to be ergodic and strongly
mixing, but with a sub-exponential decay of correlations, and zero Lyapunov exponent. There are
no periodic orbits. We believe this to be currently the weakest chaotic map for which random
matrix statistics are observed in the quantum spectrum. For other choices of parameters the
chaotic properties are reduced further and we observe a class of intermediate statistics which have
also been observed for other weakly chaotic maps. In all cases we have equidistribution of a density
one subset of eigenfunctions, provided only that the parameters are chosen such that the map is
ergodic.

1.1. The Casati-Prosen triangle map

We work on the torus T := R/Z. We define for α, β ∈ R the family of area-preserving torus maps
Fα,β : T2 → T2 by

Fα,β

(
q
p

)
:=

(
q + 2(p + β + αθ(q))

p + β + αθ(q)

)
mod 1, (1.1)

where θ : T→ {−1, 1} is defined by

θ(q) :=
{

1, 0 6 q < 1
2 ,

−1, 1
2 6 q < 1.

(1.2)

This map coincides with the map introduced in [17] but for the factor of 2 which appears.
This factor simplifies the quantisation procedure without fundamentally altering the dynamical
properties of the map. This is a parabolic, piece-wise linear map with discontinuities at the lines
q = 0 and q = 1/2. The map is related to the Poincaré map of a particle inside a triangular billiard
with one very small angle, and for this reason is often referred to as the triangle map.

We observe that Fα,β can be written as a composition of three simpler maps,

Fα,β = B ◦Rβ ◦Gα, (1.3)

where the constituent maps are defined by:

B

(
q
p

)
:=

(
1 2
0 1

)(
q
p

)
mod 1, (1.4)

Rβ

(
q
p

)
:=

(
q

p + β

)
mod 1, (1.5)

Gα

(
q
p

)
:=

(
q

p + αθ(q)

)
mod 1. (1.6)

In fact Rβ and Gα commute because they only act in the p direction. Gα is the discontinuous part
of the map. It cuts the torus along the lines q = 0 and q = 1/2, and translates the two pieces in
opposite directions parallel to the cuts. The map Rβ is simply a translation in the p direction, and
B is a parabolic skew translation, which causes a linear stretching. The overall map is marginally
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Figure 1. A single iteration of the triangle map.

stable; points that are initially close and separated by a non-zero vertical distance separate linearly
until one of them reaches a discontinuity (see figure 1).

When α = 0 the discontinuous part of the dynamics is switched off and the map is a continuous
skew translation. In this case if β is irrational then the map is uniquely ergodic [15, 28], and there
are no other chaotic features. All interesting behaviour in the triangle map for α 6= 0 can then be
traced back to the action of cutting the torus.

There are surprisingly few rigorous results about ergodic or topological properties of the map
when α 6= 0. We rely on numerical experiments and conjectures in this discontinuous case. If α
and β are both non-zero, and independently irrational, the motion is numerically conjectured to
be ergodic and mixing [17]. The correlations of a typical classical function decay according to a
power law, 〈f(t)f(0)〉 ∝ t−γ , with exponent γ ≈ 3/2. The spectral density, the inverse Fourier
transform of the correlation function, is a continuous but not continuously differentiable function.
In this regime, the map has no periodic orbits.

The map in this regime also exhibits exponential decay of Poincaré recurrences. This property
is usually associated with hyperbolic maps, and its existence for a parabolic map marks out the
triangle map for study. This phenomenon is conjectured to be related to the absence of periodic
orbits [17]. Recently it has been found, numerically and supported by heuristic arguments, that the
triangle map admits the universal decay of temporal correlations associated with systems lacking
exponential sensitivity to initial conditions [19].

For α 6= 0 and β = 0, there are two distinct cases. If α is rational, the motion is pseudo-
integrable. For irrational α, the motion is weakly ergodic, i.e. the rate of ergodicity is slow compared
to the β 6= 0 regime. For example, the number of different values of the momentum coordinate
pn taken by an orbit up to time T , with 0 6 n < T and n ∈ Z, grows at the same rate as
log T . We again have a power law decay of correlations, with γ small, numerically γ ≈ 0.1. It
is conjectured [17] that the true value is γ = 0, so that there is no decay of correlations—that is
that the mixing property does not hold in this regime, but it has not yet been fully rejected by
numerical experiment.

We are mainly interested in the cases where α is irrational, and the two regimes; β irrational and
independent of α, and β = 0. We can further classify the motion in these regimes by considering
the walk determined by the function θ(qn) for n ∈ N. We define the walk as follows. Let φα,β be
defined as the sequence

φα,β

(
q0

p0

)
:= (θ(q0), . . . , θ(qn), . . .)
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where (qn, pn) are the nth iterates of the initial point (q0, p0) under Fα,β . For β 6= 0, the walk
φα,β has a diffusion growing like

√
T after T steps, like a classical random walk with independent

identically distributed steps sizes. For β = 0, one observes a strongly dependent walk, characterised
by logarithmic diffusion [21]. These observations have been made from numerical simulations of
the walk.

Given a map on the torus, now considered as a (compact) phase space, one looks for a quantum
version, a quantum map. There is no mechanical procedure for constructing a quantum map
from a given classical map. In practice one needs to treat each case individually, motivated by
the correspondence principle, that in the classical limit quantum and classical evolution should
commute. Nevertheless, such quantum maps have proved to be a useful testing ground for the
conjectures of quantum chaos [23]. We describe a quantisation procedure for the Casati-Prosen
map in section 2, here mentioning only the important fact that for any map the compact phase
space implies that Planck’s constant can only take values that are the of the form ~ = 1/2πN for
N ∈ N.

Just about the only rigorously-known and universal result in quantum chaology is the
Schnirelman theorem, or quantum ergodicity. This result can be traced back to [43] where it
was stated without proof, that almost all eigenfunctions of a system whose classical counterpart
is ergodic equidistribute over the energy shell in phase space in the classical limit. This allows
for a density zero set of eigenfunctions which fail to equidistribute, and, for example, localise
around periodic orbits of the system. This conjecture has been proved for Hamiltonian flows
[43, 45, 16, 34, 29, 48] and for maps [13, 46, 47, 24], where one gets in fact equidistribution of
a density one subset of eigenfunctions over the whole torus. For smooth systems the proof is
robust in the sense that it requires no detailed information about either the eigenfunctions, or the
dynamical properties of the system; only a correspondence principle between classical and quantum
evolution, or Egorov theorem, and ergodicity of the dynamics. For discontinuous systems there can
be diffraction effects, and one additionally needs good control over any discontinuities of the map.
This point is discussed more fully in subsection 2.2. For maps with sharply divided phase space
into ergodic and non-ergodic components an analogue of the Schnirelman theorem has been proved
[39] where a subset eigenfunctions localise on the ergodic component and almost all members of
the subset equidistribute over this region. It is also known that the Schnirelman theorem implies a
weakened version of the semi-classical eigenfunction hypothesis for ergodic systems, provided one
restricts to the subsequence of density one [3].

Regarding the eigenvalues of the quantum triangle map, we are guided by the Bohigas-Giannoni-
Schmit conjecture [12]. This asserts that for a generic chaotic map, the eigenvalue distributions
of the corresponding quantum map will follow those of a random matrix ensemble with the same
symmetry properties as the map (see [32] for a discussion of the relevant symmetries). Known
violations of the Bohigas-Giannoni-Schmit conjecture for quantum maps include the unperturbed
cat maps [36] and the skew translations [2]. In these cases, deviations from random matrix theory
are entirely due to strong number-theoretical properties of the quantum maps.

A study [30] has recently been made of the quantised skew translations with a slightly more
general quantisation scheme to that in [40, 2]. This is particularly relevant because, as we recall,
the skew translations are equivalent to the triangle map with α = 0. The results of [30] are
dependent on the number-theoretical properties of the parameter β. For rational choices of β the
spectral statistics were found to be of intermediate type. For β irrational, statistics similar to those
of random matrices were observed for certain choices of Planck’s constant, but these statistics do
not appear to be stable, and it is not possible to say that these statistics are limiting as ~→ 0.

We now state our main results and findings to be presented in the following pages. In section
2 we introduce a method of quantising the triangle map as a map of the torus, and prove a
correspondence principle (or Egorov theorem) between the classical and quantum observables. This
enables us to state the appropriate Schnirelmann theorem for this map. In section 3 we review the
symmetries of the classical and quantum map, which determine the eigenvalue distributions. This
discussion also allows us to generate real eigenvectors for which we can define nodal domains in
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analogy with those for billiards [8]. Sections 4 and 5 give an account of our numerical investigation
of the eigenvalues and eigenvectors respectively of the quantum triangle map. We find for α and β
irrational and linearly independent that the map behaves very much like a generic random matrix,
both with respect to the eigenvalue statistics, and, for suitable choices of α and β some eigenvector
statistics. For α irrational and β = 0 the map displays intermediate spectral statistics, and the
nodal domain distribution also deviates from the random matrix theory prediction, although the
value distributions of eigenvectors are indistinguishable between the two regimes.

Throughout this paper we make use of standard asymptotic notation Oa(f(N)) which represents
some quantity bounded by a constant multiple of f(N) for sufficiently large N (and the constant
may depend on the parameter a). We also define e(x) := e2πix and eN (x) := e(x/N). Other
unfamiliar notations and concepts will be defined as and when they arise.

2. The quantum triangle map

The quantisation of an area-preserving map on the torus T2 is a unitary operator U acting on an
N -dimensional Hilbert space HN , where N = (2π~)−1. That N be an integer imposes a restriction
on allowed values of ~, and the classical limit is re-cast as the limit N →∞. Historically the first
torus quantisation was given in [33]. For further details we refer the reader to [23] and references
therein. (See also [20] for a pedagogical introduction to the subject.)

A quantisation recipe also needs to associate to classical observables f ∈ C∞(T2) a
corresponding quantum observable f̂ which is a Hermitian operator on HN . We use a variant
of the Weyl quantisation although other schemes are available. The observable to be quantised f
is expanded as a Fourier series

f(q, p) =
∑

n∈Z2

ane(n1q + n2p) (2.7)

and f̂ is then defined by

f̂ :=
∑

n∈Z2

anT (n), (2.8)

where T (n) are the quantised characters defined in the following way. We denote the canonical
orthonormal basis of HN by {|`〉 : ` = 0, . . . , N − 1}, and occasionally use the convention that

|mN + `〉 = |`〉, for m ∈ Z. (2.9)

Then

T (n) := eN

(n1n2

2

)
tn2
2 tn1

1 (2.10)

where t1 and t2 act by

t1|`〉 = eN (`)|`〉
and

t2|`〉 = |` + 1〉.
We briefly recall a few facts about these operators. The canonical commutation relations become

t1t2 = eN (1)t2t1

which gives the relationship

T (m)T (n) = eN

(
m1n1 − n2m2

2

)
T (m + n). (2.11)
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The N ×N Fourier transform matrices FN are defined by the matrix elements

(FN )jk :=
1√
N

eN (−jk). (2.12)

Then we have the following intertwinings between t1 and t2,

FN t1F−1
N = t2 (2.13)

FN t2F−1
N = t−1

1 . (2.14)

Under the Weyl quantisation the commutator of two quantised observables f̂ and ĝ respects the
Poisson bracket of f and g in the classical limit,

∥∥∥∥
2πN

i
[f̂ , ĝ]− {̂f, g}

∥∥∥∥ = Of,g(N−1) as N →∞. (2.15)

This is a kinematic version of the correspondence principle. Analogously we present a quantisation
of Fα,β which respects evolution of the map in the classical limit (see theorem 2.4 below).

2.1. Quantising B

We define the quantisation of B by

B̂ := F−1
N DFN , (2.16)

where D is the diagonal matrix with entries

Djk = eN (k2)δjk. (2.17)

In general a quantisation Â of a map A is said to satisfy an Egorov estimate if the following is true
for some class of observables f ,

lim
N→∞

‖Â−1f̂ Â− f̂ ◦A‖ = 0. (2.18)

The Egorov estimate is the dynamical analogue of (2.15). In fact, for the map B, Egorov is exact
for all N with the quantisation (2.16) as demonstrated in the following lemma (see [40]).

Lemma 2.1. Let f ∈ C∞(T2). Then

B̂−1f̂ B̂ = f̂ ◦B. (2.19)

Proof. Note that B̂−1 = F−1
N D−1FN , so

B̂−1f̂ B̂ = F−1
N D−1FN f̂F−1

N DFN .

By (2.8) it suffices to consider for n ∈ Z2,

FNT (n)F−1
N = eN

(n1n2

2

)
FN tn2

2 F−1
N FN tn1

1 F−1
N

= eN

(n1n2

2

)
t−n2
1 tn1

2 using (2.13) and (2.14) (2.20)

= eN

(
−n1n2

2

)
tn1
2 t−n2

1 using (2.11)

= T (−n2, n1). (2.21)

But now

(D−1FNT (n)F−1
N D)|k〉 = eN

(n1n2

2

)
D−1t−n2

1 tn1
2 D|k〉 using (2.20)

= eN

(n1n2

2
+ k2 − n2(k + n1)− (k + n1)2

)
|k + n1〉
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= eN

(
−n1(2n1 + n2)

2

)
eN (−(2n1 + n2)k)|k + n1〉

= eN

(
−n1(2n1 + n2)

2

)
tn1
2 t−2n1−n2

1 |k〉
= T (−2n1 − n2, n1)|k〉
= FNT (n1, n2 + 2n1)F−1

N |k〉,
giving

B̂−1T (n)B̂ = T (n1, n2 + 2n1). (2.22)

Finally

B̂−1f̂ B̂ =
∑

n∈Z2

anB̂−1T (n)B̂

=
∑

n∈Z2

anT (n1, n2 + 2n1)

=
∑

n∈Z2

an1,n2−2n1T (n)

and an1,n2−2n1 are the Fourier coefficients of f(q + 2p, p). This proves the claim. ¤
It will prove convenient in our later discussion of quantum symmetries (section 3) to establish

the following proposition.
Proposition 2.2. For N ≡ 0 mod 4 the matrix B̂ has the chessboard form

B̂ =




∗ 0 ∗ 0 · · · 0
0 ∗ 0 ∗ · · · ∗
∗ 0 ∗ 0 · · · 0
0 ∗ 0 ∗ · · · ∗
...

...
...

...
. . .

...
0 ∗ 0 ∗ · · · ∗




, (2.23)

where ∗ denotes non-zero (but not necessarily equal) entries. If N ≡ 2 mod 4 then B̂ has the
complementary form to (2.23) (i.e. with the 0’s and ∗’s exchanging positions). For other values of
N all entries of B̂ are non-zero in general.

Proof. We can simplify the expression for B̂ by multiplying out the matrices in (2.16),

B̂jk =
1
N

N−1∑

`=0

N−1∑
m=0

eN (j`)eN (`2)δ`meN (−mk)

=
1
N

N−1∑
m=0

eN (m2 + (j − k)m)

=
1
N

eN

(
− (j − k)2

4

) N−1∑
m=0

eN

((
m +

j − k

2

)2
)

. (2.24)

We now consider the parity of j − k. If j − k is even, then (j − k)/2 ∈ Z so by re-indexing the
summation, we arrive at

B̂jk =
1
N

eN

(
− (j − k)2

4

) N−1∑
n=0

eN (n2). (2.25)

The summation is now a classical Gauss sum, and may be evaluated explicitly (see for example
[5]). The result is

B̂jk =
1√
N

εNeN

(
− (j − k)2

4

)
(2.26)
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where εN is given by

εN :=





1, if N ≡ 1 mod 4,
0, if N ≡ 2 mod 4,
i, if N ≡ 3 mod 4,

1 + i, if N ≡ 0 mod 4.

(2.27)

On the other hand, if j − k is odd, then by re-indexing the best we can do is

B̂jk =
1
N

eN

(
− (j − k)2

4

) N−1∑
n=0

eN

((
n +

1
2

)2
)

. (2.28)

Nevertheless, this summation can also be evaluated (see [5], exercise 1.23), giving

B̂jk =
1√
N

ε′NeN

(
− (j − k)2

4

)
(2.29)

where ε′N is given by

ε′N :=





i, if N ≡ 1 mod 4,
1 + i, if N ≡ 2 mod 4,

1, if N ≡ 3 mod 4,
0, if N ≡ 0 mod 4.

(2.30)

So from (2.27) and (2.30) we see that for N odd there are no zero entries, and if N is even there are
zero entries along the odds diagonal if N ≡ 0 mod 4 and along the even diagonals if N ≡ 2 mod 4.
¤

2.2. Quantising Rβ and Gα

The map Rβ is a translation on T2. Nevertheless simply setting‡ 〈j|R̂β |k〉 = e(βk)δjk does not
give a quantisation satisfying an Egorov estimate for arbitrary f . This is due to a “quantum
discontinuity” at the line q = 0 [24]. One possible resolution proposed in [40] was a quantisation
in which β is replaced by a rational approximation of the form βN = bN/N such that βN → β as
N →∞. Making this choice, gives another exact Egorov estimate.

In fact for many applications, such as proving equidistribution of almost all eigenvectors (see
corollary 2.5) it is only necessary to prove an Egorov estimate for a restricted class of observables.
Two different approaches to this can be found in the literature; in [24] applied in the case of the
quantum baker and sawtooth maps, and [39] in a more general setting. The method we outline
below follows the spirit of [39]. To be precise, we can take observables that are supported away
from the set {0}×T. In fact since the set {0, 1/2}×T is the set of discontinuity of the map Gα so
it is convenient to quantise Rβ and Gα together, and take observables supported away from this
set of discontinuity.

Let Hα,β := Rβ ◦ Gα. We define the quantisation of Hα,β by Ĥα,β which is a matrix with
entries

〈j|Ĥα,β |k〉 = e

(
−N

(
β

{
k

N

}
+ α

{
k

N

}
θ

(
k

N

)))
δjk (2.31)

where {·} is the fractional part function. This quantisation respects the periodicity (2.9), since

Ĥα,β |mN + `〉 = Ĥα,β |`〉. (2.32)

‡ We shall occasionally use the Dirac notation 〈j|A|k〉 to denote the jkth entry of a matrix A, for notational
simplicity.
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In order to prove a semi-classical version of lemma 2.1 for Ĥα,β we make use of the observation in
[39] that the quantisation recipe (2.8) can be equivalently expressed as

f̂ |`〉 =
∑

m∈Z
b

(
`

N
+

m

2N
,m

)
|` + m〉, (2.33)

where b(q, m) are the Fourier coefficients of the function f expanded only in the p-variable,

b(q, m) :=
∫ 1

0

f(q, p)e(−mp)dp.

(For a proof of this fact see [41].)

Lemma 2.3. Let f ∈ C∞(T2) be compactly supported away from the set {0, 1/2} × T. Then for
any R > 0,

∥∥∥Ĥ−1
α,β f̂ Ĥα,β − ̂f ◦Hα,β

∥∥∥ = OR,f (N−R), (2.34)

as N →∞.

Proof. Define V (x) := β{x}+ α{x}θ(x). Then using (2.33),

Ĥ−1
α,β f̂ Ĥα,β |`〉 =

∑

m∈Z
b

(
`

N
+

m

2N
,m

)
e

(
−NV

(
l

N

)
+ NV

(
` + m

N

))
|` + m〉. (2.35)

On the other hand, expanding the composed map in a Fourier series

f ◦Hα,β(q, p) =
∑

m∈Z
b̃(q, m)e(mp)

the coefficients are

b̃(q, m) =
∫ 1

0

f(q, p + β + αθ(q))e(−mp)dp

= e(mβ + mαθ(q))b(q, m). (2.36)

Hence

̂f ◦Hα,β |`〉 =
∑

m∈Z
b̃

(
`

N
+

m

2N
,m

)
|` + m〉

=
∑

m∈Z
e

(
mβ + mαθ

(
`

N
+

m

2N

))
b

(
`

N
+

m

2N
,m

)
|` + m〉. (2.37)

So from (2.35) and (2.37) it follows that

(Ĥ−1
α,β f̂ Ĥα,β − ̂f ◦Hα,β)|`〉 =

∑

m∈Z
b

(
`

N
+

m

2N
,m

)(
e

(
−NV

(
`

N

)
+ NV

(
` + m

N

))

− e

(
mβ + mαθ

(
`

N
+

m

2N

)))
|` + m〉, (2.38)

and by splitting the range of summation and applying the triangle inequality

‖Ĥ−1
α,β f̂ Ĥα,β − ̂f ◦Hα,β)|`〉‖ 6 2

∑

|m|>N1/2

∣∣∣∣b
(

`

N
+

m

2N
,m

)∣∣∣∣ (2.39)

+
∑

|m|<N1/2

∣∣∣∣e
(
−NV

(
`

N

)
+ NV

(
` + m

N

))

− e

(
mβ + mαθ

(
`

N
+

m

2N

))∣∣∣∣
∣∣∣∣b

(
`

N
+

m

2N
,m

)∣∣∣∣ .
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To handle the first term in (2.39) we note that since f ∈ C∞(T2) for any R > 0 there exists a
constant CR which does not depend on q such that

|b(q, m)| 6 CR

(1 + |m|)2R+2
. (2.40)

Then ∣∣∣∣b
(

`

N
+

m

2N
,m

)∣∣∣∣ 6 CR

(1 + |m|)2R+2

6 1
(1 +

√
N)2R

CR

(1 + |m|)2

6 1
NR

CR

(1 + |m|)2 , (2.41)

and
∑

|m|>N1/2

1
(1 + |m|)2 < ∞. (2.42)

For m < N1/2 we note that for N sufficiently large either b

(
`

N
+

m

2N
,m

)
= 0 if `/N is close to

0 or 1/2 because of the restriction on the support of f , or otherwise

θ

(
`

N

)
= θ

(
`

N
+

m

2N

)
= θ

(
`

N
+

m

N

)
(2.43)

and
{

`

N

}
=

`

N
and

{
` + m

N

}
=

` + m

N
. (2.44)

In this case

e

(
−NV

(
`

N

)
+ NV

(
` + m

N

))
= e

(
−β`− α`θ

(
`

N

)
+ β(` + m) + α(` + m)θ

(
` + m

N

))

= e

(
mβ + mαθ

(
`

N
+

m

2N

))
, (2.45)

so that for sufficiently large N the second sum in (2.39) vanishes identically. The required estimate
now follows easily. ¤

We remark that the matrix Ĥα,β can be written itself as a product Ĥα,β = R̂βĜα, where R̂β

and Ĝα are the diagonal matrices

〈j|R̂β |k〉 := e

(
−Nβ

{
k

N

})
δjk (2.46)

and

〈j|Ĝα|k〉 := e

(
−Nα

{
k

N

}
θ

(
k

N

))
δjk, (2.47)

respectively defined to be the quantisations of the individual maps Rβ and Gα.

It is now a simple matter to prove the Egorov estimate for the Casati-Prosen map.
Theorem 2.4. Let f ∈ C∞(T2) be compactly supported away from the set B−1({0, 1/2} × T).
Then for any R > 0,

∥∥∥U−1
α,β f̂Uα,β − ̂f ◦ Fα,β

∥∥∥ = OR,f (N−R) (2.48)

as N →∞, where

Uα,β := B̂Ĥα,β . (2.49)
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Proof. Let h = f ◦ B, so that f ◦ Fα,β = h ◦Hα,β . Then h ∈ C∞(T2) since f, B ∈ C∞(T2) and
moreover h is supported away from the set {0, 1/2} × T. So by lemma 2.3, for any R > 0

∥∥∥Ĥ−1
α,β ĥĤα,β − ̂h ◦Hα,β

∥∥∥ = O(N−R) (2.50)

as N →∞ where the implied constant can depend on R and the choice of f . Now,∥∥∥U−1
α,β f̂Uα,β − ̂f ◦ Fα,β

∥∥∥ =
∥∥∥Ĥ−1

α,βB̂−1f̂ B̂Ĥα,β − ̂f ◦ Fα,β

∥∥∥

6
∥∥∥Ĥ−1

α,βB̂−1f̂ B̂Ĥα,β − Ĥ−1
α,β f̂ ◦BĤα,β

∥∥∥ +
∥∥∥Ĥ−1

α,βĥĤα,β − ̂h ◦Hα,β

∥∥∥

=
∥∥∥B̂−1f̂ B̂ − f̂ ◦B

∥∥∥ + O(N−R) from (2.50)

= O(N−R),

by lemma 2.1. ¤
The proof of an Egorov estimate and good control over the singularities are all we need to prove

equidistribution of almost all eigenvectors, assuming ergodicity of the classical map. Methods for
handling singularities are based on ideas from [48] and were adapted to maps in [24]. An equivalent
approach was presented in [39]. Thus we have the following Schnirelman theorem, stated as a
corollary.

Corollary 2.5. Let α and β be such that the map Fα,β is ergodic with respect to Lebesgue measure
µ. Then for each N there exists a subset JN ⊆ {0, . . . , N − 1} of density one (i.e. satisfying
limN→∞#JN/N = 1), such that for any observable f ∈ C∞(T2),

lim
N→∞

〈ψjN
|f̂ |ψjN

〉 =
∫

T2
f(q, p)dµ, (2.51)

where jN ∈ JN , and |ψj〉 is a normalised basis of eigenvectors of Uα,β.

Proof. We refer the reader to the proof mutatis mutandis of corollary 8.2 in [39] and references
therein. ¤

We note that the existence of such α and β in corollary 2.5 is, to the best of our knowledge,
still a conjecture.

3. Symmetries

Before studying the spectral statistics of the Casati-Prosen map, it is necessary to consider the
symmetries of the map. An important question is whether or not the quantised map admits an
anti-unitary symmetry, such as quantum time-reversibility. But also other symmetries can lead to
non-generic spectral statistics, and we demonstrate an example of such a symmetry in subsection
3.2.

3.1. Time reversal symmetry

A map M has an anti-canonical symmetry under the map τ̃ if the following relation holds

τ̃ ◦M ◦ τ̃ = M−1, with τ̃2 = id.

The most well known example of such a symmetry is time reversal τ which is the map defined by

τ :
(

q
p

)
7→

(
q
−p

)
.
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In fact the individual maps B, Rβ and Gα are time reversal symmetric;

τ ◦B ◦ τ = B−1, (3.52)
τ ◦Rβ ◦ τ = R−β = R−1

β , (3.53)

τ ◦Gα ◦ τ = G−α = G−1
α , (3.54)

as may be easily checked.

The Casati-Prosen map is not time reversal symmetric, but does admit an anti-canonical
symmetry given by

τ̃ := R−β/2 ◦G−α/2 ◦ τ ◦Gα/2 ◦Rβ/2. (3.55)

This follows from the fact that the symmetrised map

F sym
α,β := Rβ/2 ◦Gα/2 ◦B ◦Gα/2 ◦Rβ/2 (3.56)

is time reversal symmetric—an easy consequence of (3.52)–(3.54).

The quantum analogue of τ is T the complex conjugation operator,

Tψ = ψ̄,

so we define the quantum version of τ̃ to be

T̃ := R̂−β/2Ĝ−α/2TĜα/2R̂β/2. (3.57)

Then in an analogous way it follows that T̃ is an anti-unitary symmetry of Uα,β , i.e.

T̃Uα,βT̃ = U−1
α,β . (3.58)

The relevance of anti-unitary symmetry for quantum maps is that their presence, or absence,
determines the universality class for the Bohigas-Gianonni-Schmit conjecture. In generic quantum
maps with an anti-unitary symmetry, the semi-classical spectral statistics are conjectured to be
those of the circular orthogonal ensemble of random matrix theory [38], while in systems where
anti-unitary symmetry is absent, the statistics should be the same as those of the circular unitary
ensemble [42].

3.2. Other symmetry

The rotation R1/2 commutes with Fα,β . We investigate the implications of this for the quantised
map. By (2.46) we see that R̂1/2 has a particularly simple matrix representation; in the canonical
basis the elements are

〈j|R̂1/2|k〉 = (−1)kδjk. (3.59)

Also R̂1/2 is self-inverse; R̂2
1/2 = IN where IN is the N × N identity matrix. Thus, by (3.59),

conjugating any matrix A with R̂1/2 gives a result with entries

〈j|R̂−1
1/2AR̂1/2|k〉 = 〈j|R̂1/2AR̂1/2|k〉 = (−1)j+kAjk. (3.60)

Since Ĥα,β is diagonal, for N even Uα,β inherits the chessboard structure of B̂ (2.23) in proposition
2.2. This means that if N is even with N ≡ 0 mod 4 then R̂1/2 commutes with Uα,β and if
N ≡ 2 mod 4 then R̂1/2 and Uα,β anticommute. If N is odd then R̂1/2 and Uα,β do not commute.

We consider first the case that N ≡ 0 mod 4. Then R̂1/2 and Uα,β have a joint basis of
eigenvectors. Since R̂1/2 is self-inverse, the only eigenvalues are ±1. So the eigenvectors (and
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correspondingly eigenvalues) ψj of Uα,β can be divided into two parity classes according to whether
R̂1/2ψj = ψj or R̂1/2ψj = −ψj . Eigenvectors in the first class will have the form

ψj = (∗, 0, ∗, 0, . . . , 0) (3.61)

and eigenvectors of the second class have the form

ψj = (0, ∗, 0, ∗, . . . , ∗). (3.62)

In the case that N ≡ 2 mod 4, we have

R̂−1
1/2Uα,βR̂1/2 = −Uα,β , (3.63)

so that R̂1/2 commutes with U2
α,β . If eiφj is an eigenvalue of Uα,β with eigenvector ψj then,

Uα,βR̂1/2ψj = −R̂1/2Uα,βψj = −eiφj R̂1/2ψj . (3.64)

So R̂1/2ψj is an eigenvector of Uα,β with eigenvalue −eiφj . This means that eigenvalues of Uα,β

again come in pairs separated by an angle π. Another consequence is that the eigenspace of the
eigenvalue e2iφj of U2

α,β is spanned by the vectors ψj and R̂1/2ψj . So if χ is in this eigenspace then

χ = c1ψj + c1R̂1/2ψj

for some constants c1, c2. Since R̂1/2 commutes with U2
α,β then R̂1/2χ = ±χ, and this fixes the

ratio c1/c2 = ±1. Then χ is necessarily of the form (3.61) or (3.62) described above.

4. Eigenvalues

Since Uα,β has an anti-unitary symmetry, according to the Bohigas-Giannoni-Schmit conjecture
[12], if the Casati-Prosen map behaves generically we would expect that the statistics of eigenvalues
of Uα,β converge to the statistics of the circular orthogonal ensemble of random matrix theory
(COE), as N →∞. On the other hand, recent studies [30] of similar maps have revealed spectral
statistics which are of intermediate type or deviate in some manner from random matrix theory.

The eigenvalue statistics that we consider are the nearest-neighbour spacing distribution and the
pair-correlation form factor. If the matrix Uα,β has the set of eigenvalues {eiφj : j = 0, . . . , N − 1}
(each eigenvalue counted according to its multiplicity) then we consider the re-scaled angles

λj :=
N

2π
φj ,

where we first sort the angles so that 0 6 φ0 6 · · · 6 φN−1 < 2π. The average spacing of the λj is
then 1. The nearest neighbour density is defined as the probability density P (s) (if it exists) such
that

lim
N→∞

1
N

N−1∑

j=1

h(λj − λj−1) =
∫ ∞

0

h(s)P (s)ds

for some class of test functions h. For random matrices chosen from the COE, the corresponding
density PCOE(s) is well-known [38]. The closed form is complicated, given in terms of integrals of
Painlevé functions [27], but is known to be numerically well-approximated by the Wigner surmise
given by

PCOE(s) ≈ πs

2
e−πs2/4. (4.65)

The pair correlation form factor is defined to be the density K2(τ) such that

lim
N→∞

∫ ∞

−∞
K2(τ,N)h(τ)dτ =

∫ ∞

−∞
K2(τ)h(τ)dτ,
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if it exists for some class of test functions h, where K2(τ, N) is defined by

K2(τ, N) :=
1
N

∣∣∣∣∣
N−1∑
n=0

e(λnτ)

∣∣∣∣∣

2

.

At rational times τ = n/N it follows that K2(τ, N) = 1
N | tr(Un

α,β)|2. We note that K2(τ) is not a
probability density. For the COE, this quantity can be calculated exactly [38],

KCOE
2 (τ) =





2|τ | − |τ | log(1 + 2|τ |), for |τ | 6 1,

2− |τ | log
(

2|τ |+ 1
2|τ | − 1

)
, for |τ | > 1.

The nearest-neighbour spacing density is a local statistic, in the sense that it gives a measure
of correlations only on the scale of the mean separation. The pair correlation form factor, on the
other hand, measures correlations on all scales.

In figure 2 we show these statistics calculated numerically for a realisation of the quantum
Casati-Prosen map with α and β irrational, together with the exact curves calculated for the
COE. The size of the matrix in the numerical study is N = 7001. For the form factor, the data
has been averaged, so that each data point in the plot is the average of 10 computed values. For
both statistics good agreement is seen, suggesting that for these choices, the Casati-Prosen map
behaves generically with respect to the Bohigas-Gianonni-Schmit conjecture. For other choices
of irrational and linearly independent α and β similar agreement with COE was observed. The
experiment was also repeated with even N , in which case the symmetry discussed in section 3.2
means that it is correct to consider the statistics of the subspectra of eigenvalues seperately. Within
these subspectra, the statistics also conformed well to COE predictions, although the data is less
“clean” because the effective value of N is reduced by half.
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Figure 2. Spectral statistics for α = (
√

5 − 1)/2 and β =
√

2, N = 7001. On the left is the
nearest neighbour density, and on the right the form factor.

In figure 3 we show an example of a realisation with β = 0 and α irrational, also for N = 7001.
This numerical data does not follow the COE curves, neither for the nearest-neighbour spacing,
nor for the form factor. The data appears to give spectral statistics that are “between” those of
the COE and those for independent random events of a Poisson process. Such statistics are called
intermediate statistics [9].

At this point, it would be interesting to see how these statistics behave as N is increased
further§. On decreasing N we notice that the intermediate statistics become “further” from COE.

§ We thank an anonymous referee for suggesting this.
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In particular the intercept K2(0) moves further from the COE point KCOE
2 (0) = 0. This at least

suggests the possibility that for much higher values of N , these statistics approach those of the
COE, but at N = 7001 we have reached the limits of computation with technology available to us,
and have no way of checking further.

We have fitted the statistics in figure 3 to the ansatz [10] for the nearest-neighbour density,

P int(s) =
bb

Γ(b)
sb−1e−bs, (4.66)

with parameter b. For example, b = 2 gives the semi-Poisson distribution, and b = 1 gives the
exponential density of the Poisson process. We have found that the fitted parameter b is different
for different irrational α, and for fixed α, different values of N give different values of b.
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Figure 3. Spectral statistics for α = (
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5−1)/2 and β = 0, N = 7001. On the left is the nearest
neighbour density, and on the right the form factor.

Intermediate statistics are not new, and have been much studied in recent years, particularly
when arising out of certain billiards in rational polygons [9, 18, 10, 11, 31]. Intermediate statistics
conforming to the distribution (4.66) were found in [30], for a map equivalent to the triangle map
with α = 0 and β rational.

Also in [30] for β irrational, deviations from random matrix theory were found for certain values
of N . To be specific we define the parameter ε(β) by

ε(β) := inf
m∈Z

{|Nβ −m|}. (4.67)

For choices of N such that ε(β) = O(N−1/2) as N → ∞ highly non-random matrix spectral
statistics were observed and explained using perturbation theory. The deviations in this case are
not of intermediate type but something much more singular. Since such bad N can occur infinitely
often (see below) there is not a limiting density for the nearest neighbour spacing distribution of
random matrix type in this case.

We recall that a vector ααα = (α1, . . . , αk) ∈ Rk, k > 1, is said to be badly approximable if there
exists a constant C > 0 such that

max
16i6k

{
inf

m∈Z
{|nαi −m|}

}
>

C

n1/k
. (4.68)

The exponent 1/k in (4.68) is the best possible. Badly approximable vectors exist: see [25] for a
proof.
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In the case k = 1 no matter what choice of β is made, there are always infinitely many choices
of N such that ε(β) is arbitrarily much smaller than 1/

√
N . However the situation is different if

we have a pair of parameters to simultaneously control.

Consider α, β 6= 0 and independently irrational. If we chose (α, β) to be a badly approximable
pair in the sense of (4.68), the quantities ε(α)

√
N and ε(β)

√
N are both bounded below by a

non-zero constant, and cannot become arbitrarily small. This could account for the robust results
found for various values of N , taking into account symmetries. It appears as though the weakly
chaotic action of the cutting, and shearing is sufficient to “break” the number theoretical properties
of the skew-translations leading to non random-matrix spectral statistics. In the same way as a
non-linear perturbation of the cat maps [4] breaks the number theoretical symmetries leading to
non-generic spectral statistics in the unperturbed maps [33, 36]. However we emphasise that in
the case of cat maps, both the perturbed and unperturbed maps are strongly chaotic. The triangle
map does not possess such strong chaotic properties.

For β = 0, α irrational, there are infinitely many choices of N with small ε(α)
√

N . If we
group together subsequences of N with ε(α)

√
N approximately constant, then the value of the

parameter b giving the best fit is approximately the same for most of the elements within each
grouping. However there appears to be a small number of values of N in each group, for which
the fitting parameter is significantly different to the others. This points to some other number
theoretical effect for which we do not currently have an explanation.

We note that in the case k = 1 the most badly approximable numbers are the quadratic integers,
which have periodic (and hence bounded) partial fraction coefficients. For the case k = 2 less is
understood though in [35] it is conjectured that the “most” badly approximable pair of irrationals‖
is (x−1

0 , x−2
0 ) where x0 is the unique real root of the polynomial

x3 − x− 1. (4.69)

We make use of this observation by picking (x−1
0 , x−2

0 ) as the parameter pair (α, β) for some
numerical simulations in the next section. As we will see, it turns out that the eigenvector statistics
appear to be much more sensitive to the approximability of parameters than the eigenvalues.

5. Eigenvectors

We also investigate the eigenvector statistics of the Casati Prosen map. Although the Bohigas-
Giannoni-Schmit conjecture refers only to eigenvalues, there is some evidence to suggest that
generic quantum maps also have eigenvector statistics which agree with those of the appropriate
ensemble of random matrices. For example in [1] good agreement was seen between the value
distribution of eigenvectors of perturbed cat maps, and random matrix theory. In [37] the nodal
domain distribution, also of the eigenvectors of perturbed cat maps, was seen to agree well with
the corresponding random matrix model.

Since, for example, the nodal domain distribution, is only defined for real eigenvectors, we
considered for our numerical results the eigenvectors of the symmetrised map U sym

α,β . These
eigenvectors are related to the eigenvectors of Uα,β by a linear transformation, but because the
quantised operator U sym

α,β is unitary and symmetric, its eigenvectors have real components.

Given a (normalised) eigenvector c = (c0, . . . , cN−1) of a matrix drawn at random from one of
the circular ensembles, the value distribution is the probability distribution p(η) (if it exists) such
that

lim
N→∞

E(h(|c0|2)) =
∫ ∞

0

h(η)p(η)dη. (5.70)

(Of course the index 0 in the left hand side of (5.70) could be replaced by any other index.) The
expectation is with respect to the probability measure of the random matrix ensemble. For the

‖ by which we mean that the constant C in (4.68) is as large as possible
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COE it is the uniform measure supported on the surface of an N -dimensional unit sphere [14, 32].
This gives that the density for the value distribution of eigenvectors of the COE is

pCOE(η) =
1√
2πη

e−η/2, (5.71)

known as the Porter-Thomas density. In figure 4 we present the numerical calculations of the value
distribution for the components of one of the eigenvectors of the quantum Casati-Prosen map for
matrices of size N = 4001. In fact, in both regimes β 6= 0 and β = 0, we get good agreement
with the COE curves. Because of the simplicity of the assumptions that lead to the derivation of
(5.71) it appears that this statistic is too crude to differentiate between random matrix behaviour,
and the eigenvectors of non-generic unitary matrices. We also numerically measured the rate of
convergence to the limiting density as N increases and found that this also does not indicate any
clear difference in the two regimes.

 0.0

 0.5

 1.0

 1.5

 2.0

 0  1  2  3  4  5
 0.0

 0.5

 1.0

 1.5

 2.0

 0  1  2  3  4  5

 0.001

 0.01

 0.1

 1.0

 10.0

 0  1  2  3  4  5  6
 0.001

 0.01

 0.1

 1.0

 10.0

 0  1  2  3  4  5  6

Casati-Prosen Map COE

p(η) p(η)

η η

Casati-Prosen Map COE

Figure 4. Value distribution of eigenvectors for α = (
√

5 − 1)/2 and β =
√

2 (left) and
α = (

√
5 − 1)/2 and β = 0 (right), at N = 4001. The inset plots are of the same data on a
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The number of nodal domains has recently been proposed as an interesting eigenvalue
statistic. Originally defined in the context of billiards [8], a nodal domain is a region where an
eigenfunction has constant sign. The distribution of the normalised number of such domains over
all eigenfunctions distinguishes between systems that are classically integrable, and those which are
chaotic in the large wavenumber limit. This statistic was extended in a natural way to quantum
maps [37] where the number of nodal domains is defined to be the number of sets of consecutive
eigenvector components with the same sign. In fact this quantity is given by the formula

ν =
1
2

N−1∑

j=0

(1− sign(cj) sign(cj+1)). (5.72)

Following [37] we define the nodal domain density V (N, x) by

1
N

N−1∑
n=0

h
(νn

N

)
=

∫ ∞

−∞
h(x)V (N,x)dx, (5.73)

where νn is the number of nodal domains of the nth eigenvector. The expected value of the nodal
domain distribution approaches 1/2 so it is convenient to rescale, and look at the quantity

Ṽ (N,h) :=
1
N

N−1∑
n=0

h

(√
N

(
νn

N
− 1

2

))
. (5.74)
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In [37] it was proved that for random matrix eigenvalues from the COE, the limiting distribution
of the rescaled nodal domains is that of a normal random variable with mean 0 and variance 1/4,
as a consequence of the central limit theorem of probability, i.e.

lim
N→∞

Ṽ (N, h) = 2
∫ ∞

−∞
h(x)n(2x)dx (5.75)

where n(x) := e−x2/2/
√

2π is the density of a standard normal random variable. For perturbed cat
maps, the nodal domain distribution was seen to agree with (5.75). For unperturbed cat maps,
the distribution also appeared to be Gaussian, but with a different variance to that in the random
matrix case.

To investigate this statistic we calculated the distribution of number of nodal domain of
eigenvectors of the Casati-Prosen map for several odd values of N around N = 3760 and plotted
the average distribution. In figure 5 we show this data for the parameters (α, β) chosen to be
the badly-approximable pair (x−1

0 , x−2
0 ). For single values of N the data were not so smooth,

necessitating the averaging. This particular choice of parameter pair gives the curve closest to
the COE distribution, but even here there is some deviation. The data fit better to a Gaussian
with variance ≈ 0.22 rather than the 1/4 predicted by random matrix theory. This is seen most
clearly in the plot of the integrated density (figure 5:right). For the values of N that we looked at,
statistical indicators such as the sample variance still vary considerably, suggesting that we have
still not yet reached the limiting regime. To check if one really does get convergence to COE for
this statistic would therefore require tests at larger N . We note that if one really has convergence
to the distribution for COE it must be slower than in the case of perturbed cat maps for which
better agreement was noted for smaller values of N [37].

For other (presumable less well-approximable) pairs of parameters α, β but still irrational and
linearly independent the nodal domain density is better fitted by a Gaussian with variance different
much further from 1/4. For example with α =

√
5−1
2 , β =

√
2, the sample variance is ≈ 0.8, at

N = 4001. If there is really convergence to random matrix theory, it must be even slower for
these values of paramters. It is in this sense that we note that the eigenvector statistics are more
sensitive to the approximability of the parameters α and β.
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Figure 5. Averaged nodal domain density for α = x−1
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0 (left) and the corresponding

integrated density (right), Ĩ(x) :=
R x
−∞ Ṽ (y)dy. We include the curves for COE, and a Gaussian

distribution with variance 0.22, denoted N(0, 0.22).

In the cases with β = 0, the picture is somewhat different. The variance of the nodal domain
distribution does not appear to be stablising as N →∞. In figure 6 we plot the integrated density
for the Casati-Prosen map with α = x−1

0 and β = 0, for different values of N . It is seen clearly
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that the density is spreading out as N increases. We computed the sample variance of the density
V (N,x) for α = x−1

0 and α =
√

5−1
2 . In both cases we found the sample variance to vary like N−δ

with δ numerically calculated to be ≈ 0.7. For a limiting density to exist we would have δ = 1.

We can speculate that this result is related to the classical decay of correlations for the
underlying map. In [26] a study was made of the variance σ2 of the distribution of fluctuations of
diagonal matrix elements 〈ψ|f̂ |ψ〉, about the mean. In this work, the scaling of the variance was
related to the classical decay of correlations. For non-hyperbolic systems the correct scaling was
found to be σ2 ∝ ~δ for classical decay of correlations ∝ t−γ , γ 6= 1. In the case γ > 1, or faster-
than-algebraic decay, we have δ = 1. For γ < 1 we have δ < 1. Notice that since ~ = (2πN)−1 for
quantum maps this implies, in situations with fast decay of correlations such as perturbed cat maps
and (conjecturally) the Casati-Prosen map with non-zero α and β, the quantity 〈ψ|f̂ |ψ〉 should be
scaled by

√
N to get a non-trivial limiting density. This is what one would näıvely expect since

there are N terms in the inner-product, each proportional to N−1 (by normalisation). However,
since for β = 0 we expect that there is no decay of correlations, scaling by

√
N should not lead to

a non-trivial limiting density. Indeed we might expect that the density distribution becomes wider
as the variance increases as N →∞.

To relate this to nodal domain distribution we can consider taking f to be the observable e(kp)
for k ∈ Z, in which case we get f̂ = T (0, k) = tk2 . So for real eigenvectors,

〈ψ|f̂ |ψ〉 =
N−1∑

j=0

ψ(j)ψ(j + k) (5.76)

which is the correlation between eigenvector components, and the component k places away. For
nodal domains, we are interested in a sum of the form, cf. (5.72),

N−1∑

j=0

sign(ψ(j)ψ(j + 1)). (5.77)

Note the similarity to (5.76) with k = 1. We might expect that correlations which cause the central
limit theorem to fail in (5.77) are reflected by the correlations in (5.76). Thus we might expect
some coincidence between the rate of growth of the variances in the sums (5.76) and (5.77).

As observed in [37] perturbed cat maps have nodal domain distribution which conforms well to
random matrix theory, and by [26], the conjectural decay of correlations of t−3/2 puts the Casati-
Prosen map with α and β non-zero into the same scaling regime, so it would not be so surprising
that the nodal domain distribution converges to the random matrix result. In the case β = 0 we
might expect that the nodal domain distribution becomes wider as N increases, even after scaling,
which agrees with our observations.
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