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Abstract

We study microlocal analytic singularity of solutions to Schrödinger
equation with analytic coefficients. Using microlocal weight estimate
developped for estimating the phase space tunneling, we prove microlo-
cal smoothing estimates that generalize results by L. Robbiano and C.
Zuily. We suppose the Schrödinger operator is a long-range type per-
turbation of the Laplacian, and we employ positive commutator type
estimates to prove the smoothing property.

1 Introduction

It is well-known that solutions to the Schrödinger equation have infinite
propagation speed, and hence we cannot expect propagation of singularity
theorems similar to that for the wave equation. Instead, local smoothing ef-
fect has been used to study the local smoothness of solutions to Schrödinger
equations. The smoothing effects for the Schrödinger equation has been
a very rich source of investigations during the last past years: see, e.g.,
[Ze, Sjl, Yam, Yaj1, HaKa1, Yaj2, GiVe, KPV, KaSa, CKS, KaTa, KaYa,
KRY, HaKa2, Wu, RoZu1, RoZu2, KaWa, MRZ, Do1, RoZu3, HaWu, Na2,
Na3, Do2]. In particular, Craig, Kappeler and Strauss [CKS] showed that
this effect may be considered as a microlocal phenomenon, and this obser-
vation inspired series of investigations, both in the C∞-case (in particular
[Wu, HaWu]) and in the analytic case ([RoZu1, RoZu2, RoZu3]). While the
papers [Wu, HaWu, RoZu3] address the case of the Laplacian associated to a
certain generalization of asymptotically flat metrics (the so-called scattering
metrics, defined on a compact manifold with boundary, where the boundary
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plays the role of the infinity), the papers [RoZu1, RoZu2] concentrate more
specifically on the case of asymptotically flat metrics on Rn. In all of these
five papers, the perturbations are assumed to be of short-range type (in the
sense that σ > 1 in Assumption A). Their methods rely on a special notion
of wave front set (the quadratic scattering wave font set) for which results of
propagation are proved by using constructions of microlocal parametrices.
As it is often the case with such a method, construction and the computa-
tions are relatively complicated. Nakamura [Na2] gave a simpler proof in the
case of asymptotically flat metrics with long-range C∞-class perturbations,
using a different notion of wave front set (the homogeneous wave front set)
for which the result of propagation is obtained through positive commutator
type argument (which is similar to the original proof of the propagation of
singularity theorem by Hörmander [Ho]). More precise characterization of
the C∞-wave front set of solutions to Schrödinger equations is studied in
[Na3] using an Egorov theorem type argument.

The purpose of this paper is to prove a theorem similar to [Na2] for
the analytic singularity. The proof is relatively simple, and we recover the
results of [RoZu1, RoZu2] without using a construction of parametrix, but
rather using microlocal energy estimates in the same spirit as in [Ma2]. We
note this method has been employed to give simpler argument to study the
analytric wave front set, or, more generally, of the microsupport of solutions
of analytic partial differential equations (see, e.g., [Ma2] Chapter 4). In
this paper, we apply a generalization of the method to study the analytic
homogeneous wave front set and analytic smoothing effects.

It is not completely clear to us whether our notion of wave front set co-
incides exactly or not with that of [RoZu1, RoZu2], but we will see that the
results of these papers can be recovered from our main theorem. Moreover,
our argument allows us to generalize these results to the case of long-range
perturbations in a sense similar to that of [Na2] (that is, the perturbation
is not only assumed to decay more slowly, but the coefficients of the lower
order terms are indeed allowed to have some polynomial growth at infinity).
In addition, we can also relax the assumptions of analyticity on the coeffi-
cients of the operator, in the sense that we assume that they can extended
holomorphically to a strip in Cn around Rn (rather than a complex sector
as in [RoZu1, RoZu2]).

In the next section we specify our assumptions, introduce the notion of
analytic homogeneous wave front set, and state our main results. Section 3 is
devoted to a discussion of microlocal exponential weight estimate, in a spirit
similar to that of [Ma2], but with a Bargmann transform that involves an
additional parameter. In Section 4, we prove our main results, and we give
the details on the argument to recover the result of [RoZu2] in Appendix A.
The other 3 appendices discuss proof of technical lemmas.

Acknowledgments A.M. would like to thank L. Robbiano and C. Zuily
for valuable discussions on the subject and for enlightening explanations on
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their own works. The authors would also like to thank M. Zworski for the
interest he has shown for this work and stimulating discussions.

2 Notations and Main Result

We consider the analytic wave front set of solutions to Schrödinger equation
with variable coefficients. Namely, we set

P =
1
2

n∑
j,k=1

ajk(x)DjDk +
n∑
j=1

aj(x)Dj + a0(x)

on H = L2(Rn), where Dj = −i∂xj . We suppose the coefficients {aα(x)}
satisfy the following assumptions. For ν > 0 we denote

Γν =
{
z ∈ Cn

∣∣ |Im z| < ν
}
.

Assumption A. For each α, aα(x) ∈ C∞(Rn), the ajk(x)’s are real-valued
and the matrix (ajk(x))1≤j,k≤n is symmetric and positive definite. We set
bj(x) = Re aj(x), cj(x) = Im aj(x) for j = 0, 1, . . . , n and we assume ajk(x),
bj(x), cj(x) are extended to holomorphic functions on Γν with some ν > 0.
Moreover, there is σ > 0 such that for all β ∈ Zn+,∣∣∂βz (ajk(z)− δjk)

∣∣ ≤ Cβ〈z〉−σ−|β|, j, k = 1, . . . , n,∣∣∂βz bj(z)∣∣ ≤ Cβ〈z〉1−σ−|β|, j = 1, . . . , n,∣∣∂βz cj(z)∣∣ ≤ Cβ〈z〉−σ−|β|, j = 1, . . . , n,∣∣∂βz b0(z)∣∣ ≤ Cβ〈z〉2−σ−|β|,∣∣∂βz c0(z)∣∣ ≤ Cβ〈z〉1−σ−|β|

for z ∈ Γν with some Cβ > 0.

We consider the solution u(t) ∈ C([0, T ];L2(Rn)) to the time-dependent
Schrödinger equation: {

i∂u∂t = Pu (t ∈ (0, T ));
u |t=0 = u0 ,

(2.1)

where u0 ∈ L2(Rn). We denote the L2-norm by ‖ · ‖ without subscript.
In order to describe the analytic singularity, we use the flat FBI trans-

form (or the Bargmann transform with parameters, or the Gaussian wave
packet transform in physics literature). Let h, µ > 0, and we set

Th,µu(x, ξ) = ch,µ

∫
Rn

ei(x−y)·ξ/he−µ|x−y|
2/2hu(y) dy (2.2)

3



for u ∈ S(Rn), where ch,µ = 2−n/2µ−n/4(πh)−3n/4. It is well-known that Th,µ
is extended to an isometry from L2(Rn) to L2(R2n). Th,µ is also extended to
a continuous linear map from S′(Rn) to C∞(R2n). The analytic wave front
set is defined as follows:

Definition 1. Let (x0, ξ0) ∈ Rn×(Rn\0), and let u ∈ S′(Rn). Then, (x0, ξ0)
is not in the analytic wave front set of u (i.e., (x0, ξ0) /∈WFa(u)) if there is
δ, ε > 0 such that

‖Th,µu‖L2(Bε((x0,ξ0))) ≤ C exp(−δ/h), for 0 < h ≤ 1.

Here we denote the open ball of radius r > 0 with the center at X by Br(X):

Br(X) =
{
Y
∣∣ |X − Y | ≤ r

}
,

and µ > 0 is arbitrarily fixed.

Remark. WFa(u) is independent of the choice of µ > 0 since Th,µ′T ∗h,µ is
an integral operator on L2(R2n) with a Gaussian kernel. Hence we may fix
µ = 1. There are equivalent definitions of the analytic wave front set (cf.
[Sjs], [Ma2]). We choose this definition because it fits nicely to our argument.

We also use an analogue of the homogeneous wave front set introduced
in [Na2].

Definition 2. Let (x0, ξ0) ∈ Rn×(Rn\0), and let u ∈ S′(Rn). (x0, ξ0) is not
in the analytic homogeneous wave front set of u (i.e., (x0, ξ0) /∈ HWFa(u))
if there is δ > 0 and a neighborhood Σ of (x0, ξ0) which is conic with respect
to the group of variables (x, ξ) ∈ R2n, and such that

‖eδ(|x|+|ξ|)T1,µu‖L2(Σ) <∞,

where µ > 0 is fixed.

Remark. The definition of HWFa(u) is independent of the choice of µ as
well as WFa(u). Thus we may set µ = 1, but it is often convenient to use
various µ > 0. We can unify the notion of WFa and HWFa using the
Fourier-Bros-Iagolnitzer transform T defined by,

Tu(x, ξ) :=
∫
e
i(x−y)ξ− 〈ξ〉

〈x〉 (x−y)
2

u(y)dy.

This can be seen by using the techniques of analytic microlocal analysis
introduced in [Sjs] (in particular the proof of Proposition 6.2).

To state our main result, we recall notations of the Hamiltonian flow
generated by the Riemannian metric {ajk(x)}. Let

p(x, ξ) =
1
2

n∑
j,k=1

ajk(x)ξjξk, (2.3)

4



and let γ = {(y(t), η(t)) ; t ∈ R} be a corresponding integral curve of the
Hamilton flow, that is, a solution of

ẏ(t) =
∂p

∂ξ
(y(t), η(t)), η̇(t) = −∂p

∂x
(y(t), η(t)).

We say that γ is backward nontrapping if |(y(t), η(t))| → ∞ as t→ −∞. If γ
is backward nontrapping, it is well-known that the asymptotic momentum,

η− = lim
t→−∞

η(t)

exists, provided Assumption A is satisfied (cf., e.g., [CKS]). Our main result
is the following one:

Theorem 2.1. Suppose Assumption A, and suppose γ is backward nontrap-
ping. Let η− be the asymptotic momentum as t→ −∞. Suppose there exists
t0 > 0 such that

(−t0η−, η−) /∈ HWFa(u0), (2.4)

then

((t− t0)η−, η−) /∈ HWFa(u(t)) for 0 < t < min(t0, T ), (2.5)

and moreover, if t0 < T , then,

γ ∩WFa(u(t)) = ∅, (2.6)

for all t close enough to t0.

Remark. Actually, we prove a stronger result than (2.6). Namely, the state-
ment holds true also for the uniform analytic wave front set as defined in
[RoZu1, RoZu2].

Now we can recover and generalize the following two results of Robbiano
and Zuily (we note σ > 1 and decaying condition on lower-order coefficients
are assumed in [RoZu1, RoZu2]):

Corollary 2.2. Assume Assumption A and γ is backward nontrapping.
Moreover assume that eδ0|x|u0 ∈ L2(Σε0) for some δ0, ε0 > 0, where

Σε0 :=
⋃
s≤0

{
x
∣∣ |x− y(s)| ≤ ε0(1 + |s|)

}
.

Then we have
γ ∩WFa(u(t)) = ∅

for any t > 0.

Indeed, in this case (2.4) is satisfied for any t0 > 0, since |ξ| = O(|x|) on
any small enough conic neighborhood of (−t0η−, η−).
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Corollary 2.3. Assume Assumption A and γ is backward nontrapping.
Moreover, assume that u0(x) = a(x)eiψ(x) where a ∈ L2(Rn); ψ is real-
valued and analytic on Rn; and for some m ≥ 1, a and ψ admit holomorphic
extensions on a set of the form

Σ̃ε0 :=
{
x ∈ Cn

∣∣ Re x ∈ Σε0 , |Im x| < δ0|Re x|min(m−1,1), |x| > R
}

and verify the following estimates on this set:

|ψ(x)| = O(|x|m), |a(x)| = O(|x|M )

with some M ≥ 1. In the case m = 1, assume also |∇ψ(x)| = O(1) on the
same set. Moreover, assume there exist t0 > 0 and a positive constant C
such that, ∣∣∇ψ(−λt0η−)− λη−

∣∣ ≥ λm−1

C
(2.7)

for all λ > 0 sufficiently large. Then,

γ ∩WFa(u(t)) = ∅

for any t > 0.

In this case (2.4) is satisfied with this value of t0 (see Appendix A).

3 Exponential weight estimates

Here we discuss a key estimate of the proof of Theorem 2.1. We assume
0 < σ ≤ 1 without loss of generality and, for simplicity, we write T = Th,µ.
Let ψ(x, ξ) ∈ C∞

0 (R2n) be an (h, µ)-dependent function such that there
exists C1 > 1 such that

supp[ψ] ⊂
{

(x, ξ)
∣∣∣∣ 1
C1

≤ |ξ| ≤ C1,
1
C1µ

≤ 〈x〉 ≤ C1

µ

}
and that for any multi-indeces α, β ∈ Zn+,∣∣∂αx ∂βξ ψ(x, ξ)

∣∣ ≤ Cαβ µ
|α|, x, ξ ∈ Rn,

uniformly with respect to h, µ ∈ (0, 1]. We also suppose

sup
x,ξ

|∂xψ(x, ξ)| < ν, sup
x,ξ

|∂ξψ(x, ξ)| < ν (3.1)

for any h, µ ∈ (0, 1]. We let f ∈ C∞
0 (R2n) such that

supp[f ] ⊂
{

(x, ξ)
∣∣∣∣ 1
C2

≤ |ξ| ≤ C2,
1
C2µ

≤ 〈x〉 ≤ C2

µ

}
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with C2 > C1 and that
f = 1 on supp[ψ].

Moreover, we suppose that for any α, β ∈ Zn+,∣∣∂αx ∂βξ f(x, ξ)
∣∣ ≤ C ′

αβ µ
|α|, x, ξ ∈ Rn,

and that f ≥ 0,
√
f ∈ C∞

0 (R2n) and
√
f satisfies the same estimates. We

denote

p̃(x, ξ) = h−2 1
2

n∑
j,k=1

ajk(x)ξjξk + h−1
n∑
j=1

aj(x)ξj + a0(x),

p̃ψ(x, ξ) = p̃(x− ∂µψ(x, ξ), ξ + iµ∂µψ(x, ξ)),

where
∂µ = µ−1∂x + i∂ξ

Then we have:

Theorem 3.1. Let ψ and f as above and suppose 0 < h/µ ≤ d with some
d > 0. Then there exists C > 0 such that∣∣〈eψ/hTu, feψ/hTPu〉 − 〈eψ/hTu, f p̃ψeψ/hTu〉

∣∣
≤ C

(
h−1µ1+σ + µσ + hµσ−1

)∥∥√feψ/hTu∥∥2 + C
(
h−1µ+ µσ + hµσ−1

)
‖u‖2

for any u ∈ L2(Rn).

By elementary computations, we can estimate Im p̃ψ as follows:

Lemma 3.2. There exists C > 0 such that∣∣Im p̃ψ(x, ξ)− h−2Hpψ(x, ξ)
∣∣ ≤ C

(
h−2µ2 + h−1µσ + µσ−1

)
,

where Hpψ =
∂p

∂ξ
· ∂ψ
∂x

− ∂p

∂x
· ∂ψ
∂ξ

, and p is the principal symbol of H defined

by (2.3).

Combining these, we have the following key estimate in the proof of
Theorem 2.1:

Corollary 3.3. Under the same assumption as Theorem 3.1, there exists
C > 0 such that∣∣Im 〈eψ/hTu, feψ/hTPu〉 − 〈eψ/hTu, f (h−2Hpψ)eψ/hTu〉

∣∣
≤ C

(
h−2µ2 + h−1µσ + µσ−1

)∥∥√feψ/hTu∥∥2

+ C
(
h−1µ+ µσ + hµσ−1

)
‖u‖2.
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We prove Theorem 3.1 in the remainder of this section. We follow the ar-
gument of [Ma2], [Na1], with an additional parameter µ and different symbol
classes. We note µ may be considered as a scaling parameter with respect
to x, whereas h is a scaling parameter with respect to ξ. We sometimes use
the abbreviation: Tψ = eψ/hT . In the following, we always assume

0 < h/µ ≤ d

with some constant d > 0. We denote

p2(x, ξ) =
1
2

n∑
j,k=1

(ajk(x)− δjk)ξjξk,

p1(x, ξ) =
n∑
j=1

aj(x)ξj −
1
2i

n∑
j,k=1

∂xjajk(x)ξk,

p0(x, ξ) = p0(x) = a0(x)−
1
2i

n∑
j=1

∂xjaj(x)−
1
8

n∑
j,k=1

∂xj∂xk
ajk(x).

Then we have

P =
1
2
h−2(hDx)2 + h−2pW2 (x, hDx) + h−1pW1 (x, hDx) + p0(x), (3.2)

where aW(x, hDx) denotes the Weyl-Hörmander quantization of a:

aW(x, hDx)u(x) = (2πh)−n
∫ ∫

e(x−y)·ξ/ha(x+y2 , ξ)u(y) dy dξ

for u ∈ S(Rn) (cf. [Ho] Section 18.5). Note p1, p0 contain quantization error
terms.

We set

qj(x, ξ, x∗, ξ∗) = pj(x− ξ∗, x∗), x, ξ, x∗, ξ∗ ∈ Rn, j = 0, 1, 2.

As in [Ma1], we have
TPj = QjT,

where Pj = pWj (x, hDx) and Qj = qWj (x, ξ, hDx, hDξ). We denote

Φ(x, ξ, x∗, ξ∗) =
√

1 + |x|2/〈ξ∗〉2 Ψ(x, ξ, x∗, ξ∗) =
√

1 + |ξ|2/〈ξ − x∗〉2,

and let g̃ be a metric on R4n defined by

g̃ =
dx2

Φ2
+
dξ2

Ψ2
+
dx∗2

Ψ2
+
dξ∗2

Φ2
.

We use the S(m, g) symbol class notation of Hörmander [Ho] Section 18.5.
In particular, OPS(m, g) is the space of pseudodifferential operators with
thier symbol in S(m, g).
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The next two lemmas are fundamental in the pseudodifferential operator
calculus on Ran[eψ/hT ]. They imply that polynomials of 〈hDx−ξ〉 and 〈hDξ〉
are uniformly bounded as quadratic forms on Ran[eψ/hT ] (the reader will
find their proof in Appendix B). We denote by g0 the flat metric on R4n,
i.e., g0 = dx2 + dξ2 + dx∗2 + dξ∗2.

Lemma 3.4. Suppose Q ∈ OPS(〈ξ − x∗〉m〈ξ∗〉`, g0) with some m, ` ∈ R.
Then there exists C > 0 such that∣∣〈eψ/hTu,Qeψ/hTu〉∣∣ ≤ C

∥∥eψ/hTu∥∥2

for u ∈ S(Rn).

Lemma 3.5. Suppose Q ∈ OPS(〈ξ〉a〈x〉b〈ξ−x∗〉m〈ξ∗〉`, g̃) with some a, b,m, ` ∈
R. Then, for any N > 0, there exists C > 0 such that∣∣〈eψ/hTu, fQeψ/hTu〉∣∣ ≤ C

(
µ−b

∥∥√feψ/hTu∥∥2 + µ−b‖u‖2
)

(3.3)

for u ∈ S(Rn).

Given the above two lemmas, it is convenient to consider the symbols
qj ’s in the following symbol classes.

Lemma 3.6. For j = 0, 1, 2, one has,

qj ∈ S(mj , g̃),

with mj = 〈ξ〉j〈x〉2−j−σ(〈ξ − x∗〉j〈ξ∗〉|2−j−σ|).

Proof. We recall
pj ∈ S(〈ξ〉j〈x〉2−j−σ, g),

where g = dx2/〈x〉2 + dξ2/〈ξ〉2. Hence, by the definition of qj , we have

qj ∈ S
(
〈x∗〉j〈x− ξ∗〉2−j−σ, dx2

〈x− ξ∗〉2
+

dξ2

〈x∗〉2
+
dx∗2

〈x∗〉2
+

dξ∗2

〈x− ξ∗〉2

)
for j = 0, 1, 2. On the other hand, it is easy to see

max(1, C−1〈ξ〉〈ξ − x∗〉−1) ≤ 〈x∗〉 ≤ C〈ξ〉〈ξ − x∗〉,
max(1, C−1〈x〉〈ξ∗〉−1) ≤ 〈x− ξ∗〉 ≤ C〈x〉〈ξ∗〉

with some C > 0. Combining these, we conclude the assertion.

Thanks to Assumption A and (3.1), we have the standard result,

Rj := eψ/hQje
−ψ/h −Qjψ ∈ OPS(h2Φ−2Ψ−2mj , g̃)
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and thus

Rj ∈ OPS
(
h2〈ξ〉j−2〈x〉−σ−j

(
〈ξ − x∗〉j+2〈ξ∗〉|σ−2+j|+2

)
, g̃
)
, (3.4)

where

qjψ(x, ξ, x∗, ξ∗) = qj(x, ξ, x∗+i∂xψ, ξ∗+i∂ξψ) = pj(x−ξ∗−i∂ξψ, x∗+i∂xψ),

and Qjψ = qWjψ(x, ξ, hDx, hDξ).
Applying Lemma 3.5 to Rj , we have∣∣〈eψ/hTu, fRjeψ/hTu〉∣∣ ≤ Ch2µσ+j

(∥∥√feψ/hTu∥∥2 + ‖u‖2
)
. (3.5)

It remains only to estimate 〈eψ/hTu, f Qjψ eψ/hTu〉 for j = 0, 1, 2. We de-
note

pjψ(x, ξ) = qjψ(x, ξ, ξ − µ∂ξψ, µ
−1∂ξψ) = pj(x− ∂µψ, ξ + iµ∂µψ)

for j = 0, 1, 2.

Lemma 3.7. There exists C > 0 such that

(i) ∣∣〈eψ/hTu, feψ/h{1
2(hDx)2 − 1

2(ξ + iµ∂µψ(x, ξ))2 + n
4µh

}
Tu
〉∣∣

≤ Chµ
(
µ
∥∥√feψ/hTu∥∥2 + ‖u‖2

)
,

(ii) ∣∣〈eψ/hTu, f{Qjψ − pjψ(x, ξ)
}
eψ/hTu

〉∣∣
≤ Chµj−1+σ

(∥∥√feψ/hTu∥∥2 + ‖u‖2
)
,

for u ∈ S(Rn), j = 0, 1, 2, and h, µ ∈ (0, 1] such that h/µ ≤ d.

Proof. (i) By Lemma C.1, we have

〈eψ/hTu, feψ/h(hDx)2Tu〉
=
〈
eψ/hTu,

[
(ξ + iµ∂µψ + i

2hµ∂µ)
2f(x, ξ)

]
eψ/hTu

〉
=
〈
eψ/hTu,

[
(ξ + iµ∂µψ)2f − nhµ2 f

+ ihµ(ξ + iµ∂µψ)∂µf − 1
2hµ

2(∂2
µψ)f − 1

4h
2µ2∂2

µf
]
eψ/hTu

〉
,

and the claim follows immediately.
(ii) We consider the case j = 2 only. The claim for the other cases can

be shown similarly. We write

q2ψ(x, ξ, x∗, ξ∗)− q2ψ(x, ξ, ξ − µ∂ξψ, µ
−1∂ξψ)

= q
(1)
2ψ (x, ξ, x∗, ξ∗)(x∗ − ξ + µ∂ξψ) + q

(2)
2ψ (x, ξ, x∗, ξ∗)(ξ∗ − µ−1∂ξψ),
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where

q
(1)
2ψ (x, ξ, x∗, ξ∗)

=
∫ 1

0

∂q2ψ
∂x∗

(x, ξ, sx∗ + (1− s)(ξ − µ∂ξψ), sξ∗ + (1− s)µ−1∂xψ) ds,

q
(2)
2ψ (x, ξ, x∗, ξ∗)

=
∫ 1

0

∂q2ψ
∂ξ∗

(x, ξ, sx∗ + (1− s)(ξ − µ∂ξψ), sξ∗ + (1− s)µ−1∂xψ) ds.

It is easy to check

q
(1)
2ψ ∈ S(〈ξ〉〈x〉−σ(〈ξ − x∗〉3〈ξ∗〉σ), g̃),

q
(2)
2ψ ∈ S(〈ξ〉2〈x〉−1−σ(〈ξ − x∗〉2〈ξ∗〉1+σ), g̃).

We denote Q(j)
2ψ = q

(j)W
2ψ (x, ξ, hDx, hDξ). Then by the symbol calculus, we

have

R(2) := Q2ψ − q2ψ(x, ξ, ξ − µ∂ξψ, µ
−1∂xψ)

− 1
2
{
AQ

(1)
2ψ +Q

(1)
2ψA+BQ

(2)
2ψ +Q

(2)
2ψB

}
∈ OPS(h2〈x〉−2−σ(〈ξ − x∗〉4〈ξ∗〉σ+2), g̃), (3.6)

where A = hDx− ξ+µ∂µψ(x, ξ) and B = hDξ −µ−1∂xψ(x, ξ). Then, using
the equation (B.2), we compute

T ∗ψf
{
AQ

(1)
2ψ +Q

(1)
2ψA+BQ

(2)
2ψ +Q

(2)
2ψB

}
Tψ

= T ∗ψf
{
iµ[B,Q(1)

2ψ ] + (iµ)−1[A,Q(2)
2ψ ]
}
Tψ

+ T ∗ψ
{
([f,A] + iµ[B, f ])Q(1)

2ψ + ([f,B] + (iµ)−1[A, f ])Q(2)
2ψ

}
Tψ

=: T ∗ψL1Tψ + T ∗ψL2Tψ.

We note

[B,Q(1)
2ψ ] ∈ OPS(h〈x〉−σ(〈ξ − x∗〉4〈ξ∗〉σ), g̃),

[A,Q(2)
2ψ ] ∈ OPS(h〈ξ〉2〈x〉−2−σ(〈ξ − x∗〉3〈ξ∗〉σ+4), g̃).

Hence, by applying Lemma 3.5, we have∣∣〈eψ/hTu,L1e
ψ/hTu

〉∣∣ ≤ Chµ1+σ
(∥∥√feψ/hTu∥∥2 + ‖u‖2

)
.

On the other hand, by applying Lemma B.1, we also have∣∣〈eψ/hTu,L2e
ψ/hTu

〉∣∣ ≤ Chµ1+σ
(∥∥√feψ/hTu∥∥2 + ‖u‖2

)
.

Finally, by (3.6) and Lemma 3.5, we learn∣∣〈eψ/hTu, fR(2)eψ/hTu
〉∣∣ ≤ Ch2µ2+σ

(∥∥√feψ/hTu∥∥2 + ‖u‖2
)

Combining these we conclude the assertion (ii) for j = 2.
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Now we recall (3.2). Combining Lemma 3.7 with (3.5), we conclude
Theorem 3.1.

4 Proof of Theorem 2.1

We suppose γ =
{
(y(t), η(t))

∣∣ t ∈ R
}

is backward nontrapping, t0 >
0, and let η− = lim

t→−∞
η(t) as in the assumptions of Theorem 2.1. We

suppose (−t0η−, η−) /∈ HWFa(u0), hence we can find a conic neighborhood
of (−t0η−, η−) : Γ ⊂ R2n and δ1 > 0 such that∥∥eδ1(|x|+|ξ|)T1,1u0

∥∥
L2(Γ)

<∞.

For (x′, ξ′) ∈ R2n and a1, a2 > 0, we denote a neighborhood of (x′, ξ′) of size
(a1, a2) by

B(x′, ξ′; a1, a2) =
{
(x, ξ) ∈ R2n

∣∣ |x− x′| < a1, |ξ − ξ′| < a2

}
.

Then, for sufficiently small δ ∈ (0, |η−|), we have∥∥T1,1u0

∥∥
L2(B(−h−1t0η−,h−1η−;h−1δt0,h−1δ))

≤ Ce−δ/h

for h ∈ (0, 1]. By a change of integration variables, it is equivalent to∥∥Th,hu0

∥∥
L2(B(−h−1t0η−,η−;h−1δt0,δ))

≤ Ce−δ/h.

We use the following weight function. Let χ ∈ C∞
0 (R+) such that χ(r) = 1

if r ≤ 1/2, χ(r) = 0 if r ≥ 1, and that χ′(r) ≤ 0 for r > 0. We set δ1 = δ/4
and,

ϕ(t, x, ξ) := χ
(
|x− tξ|
δ1|t|

)
χ
(
|ξ − η−|
δ1

)
, x, ξ ∈ Rn, t < 0.

Since (∂t+Hξ2/2)|x−tξ| = 0, Hp = Hξ2/2+O(〈x〉−σ|ξ|)∂x+O(〈x〉−σ−1|ξ|2)∂ξ,
and |x| ≥ δ|t|/2 while |ξ| = O(1) on the support of ϕ, we immediately obtain,

∂ϕ

∂t
+Hpϕ =

|x− tξ|
δ1|t|2

χ′
(
|x− tξ|
δ1|t|

)
χ
(
|ξ − η−|
δ1

)
+O(|t|−1−σ),

and thus,
∂ϕ

∂t
+Hpϕ ≤ C|t|−1−σ, (4.1)

for some constant C > 0. Now we set

ψ(t, x, ξ) = δϕ(h−1t, x, ξ),

and we note,

supp[ψ(t, ·, ·)] ⊂ B(h−1tη−, η−;h−1δ|t|/2, δ/2)).
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Hence, we have ∥∥eψ(t,x,ξ)/hTh,hu0

∥∥ ≤ C <∞ (4.2)

for t ∈ [−t0 − ε1,−t0 + ε1] with sufficiently small ε1 > 0. We then set

µ(t) =
−t0
t
h

for t < 0. We note µ(t) is monotone increasing and µ(t) ≥ h for t ∈
[−t0, 0). It is elementary computation to confirm that ψ(t, x, ξ) satisfies the
conditions of Section 3, since 〈x〉−1 = O(h|t|−1) = O(µ) on the support of
ψ(t, ·, ·).

Then, we choose f ∈ C∞(R−;C∞
0 (R2n)) of the form,

f(t, x, ξ) = χ1(|µ(t)x|)χ1(|ξ|),

where χ1 ∈ C∞
0 ((2A)−1; 2A), χ1 = 1 on [A−1, A], with A > 0 sufficiently

large in order to have f = 1 on the support of ψ. In particular, f satisfies
to the conditions of Section 3.

Now, we set

F (t) =
∥∥√f(t, ·, ·)eψ(t,·,·)/hTh,µ(t)u(t+ t0)

∥∥2

for t ∈ [−t0, 0), and we are find a differential inequality satisfied by F (t).
Setting ũ(t) = u(t+ t0), and writing T instead of Th,µ(t), we compute,

d

dt
F (t) =

〈
eψ/hT (−iP )ũ, feψ/hT ũ

〉
+
〈
eψ/hT ũ, feψ/hT (−iP )ũ

〉
+
〈
eψ/hũ, 2h−1f( ∂∂tψ)eψ/hT ũ

〉
+
〈
eψ/h[ ∂∂t , T ]ũ, feψ/hT ũ

〉
+
〈
eψ/hT ũ, feψ/h[ ∂∂t , T ]ũ

〉
+
〈
eψ/hT ũ,

(∂f
∂t

)
eψ/hT ũ

〉
= F1 + F2 + F3 + F4. (4.3)

At first, we have

F1 = 2Im
[〈
eψ/hT ũ, feψ/hTP ũ

〉]
= 2
〈
eψ/hT ũ, f(h−2Hpψ)eψ/hT ũ

〉
+ r(t),

where r(t) is estimated by Corollary 3.3. Hence we learn

F1 + F2 = 2h−2
〈
eψ/hT ũ, f

(
h ∂
∂tψ +Hpψ

)
eψ/hT ũ

〉
+ r(t)

≤ Ch−1+σ|t|−1−σF (t) + r(t) (4.4)

using the inequality (4.1).

Lemma 4.1. There exists C > 0 such that

F3(t) ≤ C
{
h−1µ′(t)F (t) + µ′(t)‖ũ‖2

}
.

13



Proof. We note[
∂
∂t , T

]
ũ = ch,µ

∫ (
−µ′(t)

2h

)
|x− y|2ei(x−y)·ξ/h−µ|x−y|2/2hũ(y)dy

= (2h)−1µ′(t)
∫
h24ξe

i(x−y)·ξ/h−µ|x−y|2/2hũ(y)dy

= 1
2hµ

′(t)4ξT ũ.

Hence we have

F3 = 1
2hµ

′(t)
〈
T ũ,

(
4ξfe

2ψ/h + feψ/h4ξ

)
T ũ
〉

= hµ′(t)
〈
T ũ,

{√
feψ/h4ξ

√
feψ/h +

∣∣∇ξ

(√
feψ/h

)∣∣2}T ũ〉
≤ h

{
h−2

〈√
feψ/hT ũ, |∇ξψ|2

√
feψ/hT ũ

〉
+
〈
T ũ,

(
2∇ξ

√
f · h−1∇ξψ +

∣∣∇ξ

√
f
∣∣2)T ũ〉}

≤ Ch−1µ′(t)
∥∥√feψ/hT ũ∥∥2 + Cµ′(t)‖ũ‖2,

since ∇ξ

√
f is supported away from supp[ψ].

For the last term, we easily have

F4 =
〈
T ũ,

(∂f
∂t

)
T ũ
〉

= O(|t|−1).

We note
µ′(t) = t0ht

−2 = O(h|t|−2).

Combining Lemma 4.1 with (4.3) and (4.4), we obtain the following estimate:

Lemma 4.2. There exists C > 0 such that

d

dt
F (t) ≤ A(t)F (t) +B(t)‖ũ‖2,

where
A(t) = C(h−1+σ|t|−1−σ + |t|−2), B(t) = C|t|−1.

By Gronwall’s inequality, we have

F (t) ≤ e
∫ t
−t0

A(s)ds
(
F (−t0) +

∫ t

−t0
e
−

∫ s
−t0

A(τ)dτ
B(s)‖ũ‖2ds

)
≤ e

∫ t
−t0

A(s)ds
(
F (−t0) +

∫ t

−t0
B(s)ds · ‖ũ‖2

)
.

for t < 0. For each t ∈ (−t0, 0), this immediately implies

F (t) =
∥∥√feψ(t,x,ξ)/hTh,|t0/t|hũ(t)

∥∥2 = O(eC(t)h−1+σ
)
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as h→ 0, with some C(t) > 0. Since

ψ(t, x, ξ) = δ on B(h−1tη−, η−;h−1δ1|t|/4, δ1/4)

if h is sufficiently small, this implies (tη−, η−) /∈ HWFa(ũ(t)). This proves
the first claim of Themrem 2.1.

Moreover, by elementary computation, we obtain∫ −Rh

−t0
A(t)dt ≤ C ′h−1R−σ

for R ≥ 1. We fix R > 0 so that

0 < C ′R−σ ≤ δ/2,

and hence ∫ −Rh

−t0
A(t)dt ≤ δh−1/2 as h→ 0.

Similarly, we have ∫ −Rh

−t0
B(t)dt = O(| log h|) as h→ 0.

Combining these estimates, we learn F (−Rh) = O(eδ/h) as h → 0, and
hence,

e−δ/hF (−Rh) =
∥∥√fe(ψ(−Rh,x,ξ)−δ/2)/hTh,µ(−Rh)ũ(−Rh)

∥∥2 ≤ C <∞.

We recall µ(−Rh) = t0/R and

ψ(−Rh, x, ξ) = δϕ(−R, x, ξ) = δ χ
(
|x+Rξ|
δ1R

)
χ
(
|ξ − η−|
δ1

)
.

By standard estimates on the flow, we also know that | − Rη− − y(−R)| =
O(R1−σ) and |η− − η(−R)| = O(R−σ). Thus, increasing R if necessary, we
obtain ∥∥Th,t0/Rũ(−Rh)∥∥2

L2(B(γ(−R);δ1R/8,δ1/8))
≤ Ce−δ/h.

Moreover, in the above argument, we may replace − t0 by t in a small
neighborhood of − t0, e.g., t ∈ [−t0 − ε1,−t0 + ε1] with some ε1 > 0. Then,
we learn ∥∥Th,t0/Rũ(s−Rh)

∥∥2

L2(γ(−R);δ1R/8,δ1/8))
≤ Ce−δ/h (4.5)

uniformly for s ∈ [−ε1, ε1]. In particular, this implies γ(−R) /∈ WFa(ũ(s))
for s ∈ [−ε1/2, ε1/2]. Then, we use the following variation of the propagation
of the microsupport theorem:
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Lemma 4.3. Let u(t) be a solution to the Schrödinger equation for t in a
neighborhood of 0. Then, if the following condition:

∃δ, ε > 0 such that
∥∥Th,1u(ht)∥∥L2(B(γ(t);δ,δ))

= O(e−ε/h) as h→ 0 (4.6)

holds for some t, it holds for all t ∈ R.

This lemma is an immediate consequence of [Ma2], Chapter 4, Exer-
cise 9, after a scaling of the variable t: t 7→ ht. We give a concise proof in
Appendix D for completeness. Now the estimate (4.5) implies that for any
t ∈ R, s ∈ [−ε0, ε0], there is δ, ε > 0 such that∥∥Th,1ũ(s− hR+ ht)

∥∥
L2(B(γ(t−R);δ,δ))

= O(e−ε/h).

In particular, setting t′ = t−R and s′ = s+ht′, we learn γ(t′) /∈WFa(ũ(s′))
for any t′ ∈ R and s′ ∈ [−ε0/2, ε0/2]. This completes the proof of Theo-
rem 2.1.

A Proof of Corollary 2.3

It is enough to show that T1,1u0 = O(e−δ〈ξ〉) for some δ > 0, uniformly for
(x, ξ) in a conic neighborhood of (−t0η−, η−), where

T1,1u0(x, ξ) = c

∫
ei(x−y)·ξ+iψ(y)−|x−y|2/2a(y)dy, (A.1)

(with c := 2−n/2π−3n/4).
We first assume m ≥ 2. For λ ≥ 1, we set (xλ, ξλ) := (−λt0η−, λη−)

and ηλ := ∇ψ(xλ). Then, for y ∈ Cn such that |y − xλ| ≤ 2ελ (with ε > 0
small enough), using the analyticity of ψ, standard Cauchy estimates, and
the fact that ψ is real on the real, by a second-order Taylor expansion at
xλ, we see that,

Im ψ(y) = Im (y · ηλ) +O(ελm−1|t Im y|)

uniformly for λ ≥ 1 and ε > 0 small enough.
Now, we apply the following change of contour of integration in (A.1):

Rn 3 y 7→ z := y − iδλ
ξ − ηλ
|ξ − ηλ|

χ(λ−1|y − xλ|),

(where χ ∈ C∞
0 ([0, 2ε)), χ = 1 on [0, ε], and ε ≥ δ > 0 are small enough).

On this contour, we have,

Re
(
i(x− z)ξ + iψ(z)− |x− z|2/2

)
= Im z · (ξ − ηλ)− |x− y|2/2 + |Im z|2/2 +O(ελm−1|Im z|)
= −δλ|ξ − ηλ|χ− |x− y|2/2 + δ2λ2χ2 +O(εδλmχ).
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In particular, using (2.7), we obtain for λ−1ξ close enough to η−,

Re
(
i(x− z) · ξ + iψ(z)− |x− z|2/2

)
≤ −δλmχ/(2C)− |x− y|2/2 + δ2λ2χ2 +O(εδλmχ)

and thus, by choosing first ε small enough, and then δ small enough (and
since m ≥ 2),

Re
(
i(x− z) · ξ + iψ(z)− |x− z|2/2

)
≤ −δλmχ/(4C)− |x− y|2/2. (A.2)

As a consequence, for λ−1|x− xλ| ≤ ε/2, we obtain,

|T1,1u0(x, ξ)|

= O

(∫
|y−xλ|≤ελ

〈y〉Me−δλm/(4C)dy +
∫
|y−xλ|≥ελ

〈y〉Me−ε2λ2/16−|x−y|2/4dy

)
= O

(
λM+ne−δλ

m/(4C) + λMe−ελ
2/16

)
and the result for m = 2 follows.

In the case m = 1, we observe that ∇ψ(y) = O(1) and Hessψ(y) = O(1)
uniformly on

{
y ∈ Cn

∣∣ |Re y − xλ| ≤ ελ, |Im y| ≤ ε
}
, and thus, by a first-

order Taylor expansion, Im ψ(y) = O((1+ ελ)|Im y|) on this set. Therefore,
applying in (A.1) the following change of contour of integration:

Rn 3 y 7→ z := y − iδ
ξ

|ξ|
χ(λ−1|y − xλ|),

(with δ ≤ ε and χ as before), this time we obtain,

Re
(
i(x− z) · ξ + iψ(z)− |x− z|2/2

)
= −δ|ξ|χ− |x− y|2/2 +O(1 + εδλχ)

(A.3)
and thus, for λ−1(x, ξ) close enough to (−t0η−, η−), we obtain as before,

|T1,1u0(x, ξ)| = O
(
λM+ne−δλ/2 + λMe−ελ

2/16
)
,

and the result follows.

Remark. Actually, in the case m ≥ 2, we have indeed proved that T1u0 =
O(e−δ〈ξ〉

2
) for some δ > 0, uniformly for (x, ξ) in a R2n-conic neighborhood

of (−t0η−, η−).

B Proof of Lemmas 3.4 and 3.5

Proof of Lemma 3.4. We prove the lemma by induction in m and `. The
claim is obvious if m = ` = 0. We suppose the claim holds for (m, `) and
prove the claim for (m+ 1, `) and (m, `+ 1). We write

A = hDx − ξ + µ∂ξψ(x, ξ), B = hDξ − µ−1∂xψ(x, ξ). (B.1)
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We recall (cf. [Ma2], [Na1]):

(A− iµB)eψ/hTu = 0 for u ∈ S(Rn), (B.2)

which can be shown by straightforward computaion. If Q ∈ OPS(〈ξ −
x∗〉m+1〈ξ∗〉`, g0) we write

Q = Q̃(A+ i), Q̃ = Q(A+ i)−1 ∈ OPS(〈ξ − x∗〉m〈ξ∗〉`, g0).

Then we have

T ∗ψQ̃ATψ =
1
2
T ∗ψ
{
Q̃A+AQ̃+ [Q̃, A]

}
Tψ

=
iµ

2
T ∗ψ[Q̃, B]Tψ +

1
2
T ∗ψ[Q̃, A]Tψ.

It is easy to check [Q̃, A], [Q̃, B] ∈ OPS(h〈ξ−x∗〉m〈ξ∗〉`, g0). By the induction
hypotesis, we learn 〈Tψu, Q̃ATψu〉 ≤ C‖Tψu‖2.

Similarly, if Q ∈ OPS(〈ξ − x∗〉m〈ξ∗〉`+1, g0), then we write

Q = Q̃(B + i), Q̃ = Q(B + i)−1 ∈ OPS(〈ξ − x∗〉m〈ξ∗〉`, g0),

and we compute

T ∗ψQ̃BTψ =
1

2iµ
T ∗ψ[Q̃, A]Tψ +

1
2
T ∗ψ[Q̃, B]Tψ.

We note [Q̃, A] ∈ OPS(h〈ξ − x∗〉m〈ξ∗〉`, g0), and since h/µ ≤ d, we have

〈Tψu, Q̃BTψu〉 ≤ C(h/µ+ 1)‖Tψu‖2 ≤ C ′‖Tψu‖2

again using the induction hypothesis.

Proof of Lemma 3.5. Since 〈ξ〉 = O(1) and 〈x〉 = O(µ−1) on the support of
f , we may assume a = b = 0 without loss of generality. Analogously to the
above lemma, we prove the assertion by induction in m and `. At first, we
suppose Q ∈ S(1, g̃). Then

〈Tψu, fQTψu〉 =
〈√

fTψu,Q
√
fTψu

〉
+
〈
Tψu,

[
Q,
√
f
]√

fTψu
〉
.

The first term in the right hand side is bounded by C
∥∥√fTψu∥∥2 since Q

is bounded in L2(R2n). The second term is estimated using the following
lemma:

Lemma B.1. Let Q ∈ OPS(〈ξ〉a〈x〉b〈ξ − x∗〉m〈ξ∗〉`, g̃), and suppose the
symbol of Q has an asymptotic expansion supported in supp[∇f ]. Then for
any N > 0, there exists C > 0 such that∣∣〈eψ/hTu,Qeψ/hTu〉∣∣ ≤ C

(
hNµN

∥∥√feψ/hTu∥∥2 + µ−b‖u‖2
)

(B.3)

for u ∈ S(Rn).
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We postpone the proof of Lemma B.1, and proceed with the proof of
Lemma 3.5. Since the symbol of

[
Q,
√
f
]

has an asymptotic expansion
supported in supp[∇f ], we can apply Lemma B.1 to learn∣∣〈Tψu, [Q,√f]Tψu〉∣∣ ≤ C

(
hNµN

∥∥√fTψu∥∥2 + ‖u‖2
)
.

Thus the claim holds if m = ` = 0.
Now suppose Q ∈ OPS(〈ξ−x∗〉m+1〈ξ∗〉`, g̃). Denoting Q̃ = Q(A+i)−1 ∈

OPS(〈ξ − x∗〉m〈ξ∗〉`, g̃), we have

T ∗ψfQTψ = T ∗ψfQ̃ATψ + iT ∗ψfQ̃Tψ

=
iµ

2
T ∗ψf [Q̃, B]Tψ +

1
2
T ∗ψf [Q̃, A]Tψ +

1
2
T ∗ψ[f,A]Q̃Tψ

+
iµ

2
T ∗ψ[B, f ]Q̃Tψ + iT ∗ψfQ̃Tψ.

The first, the second and the last terms in the right hand side are estimated
by the induction hypotesis, and the third and the fourth terms are estimated
by Lemma B.1 to obtain the assertion for (m+ 1, `). The argument for the
case Q ∈ OPS(〈ξ − x∗〉m〈ξ∗〉`+1, g̃) is similar, and we omit the detail.

Proof of Lemma B.1. By the assumption on f , we can find f̃ ∈ C∞
0 (R2n)

such that (i) f̃ = 1 on supp[ψ]; (ii) f = 1 on supp[f̃ ]; (iii) for any α, β ∈ Zn+,∣∣∂αx ∂βξ f̃(x, ξ)
∣∣ ≤ Cαβµ

|α| (x, ξ ∈ Rn). We write

Q = (1− f̃)Q(1− f̃) +
{
f̃Q+Qf̃ − f̃Qf̃

}
= Q1 +Q2.

The symbol of Q2 has vanishing asymptotic expansion since supp[∇f ] ∩
supp[f̃ ] = ∅. In particular, since µ−N 〈x〉−N f̃ is uniformly bounded together
with all its derivatives, we can deduce,

Q2 ∈ OPS
(
hNµN−b〈ξ − x∗〉m+N 〈ξ∗〉`+N , g̃

)
for any N . Hence, by Lemma 3.4, we have

|〈eψ/hTu,Q2e
ψ/hTu〉| ≤ ChN 〈〈x〉b−Neψ/hTu, eψ/hTu〉

≤ ChNµN−b
{
〈eψ/hTu, feψ/hTu〉+ 〈eψ/hTu, (1− f)eψ/hTu〉

}
≤ ChNµN−b

(∥∥√feψ/hTu∥∥2 + ‖u‖2
)
.

On the other hand, we note Q1 ∈ OPS((µ−b+hN )〈ξ−x∗〉m+|a|〈ξ∗〉`+|b|, g̃) for
allN (where hN comes from the remainder term of the asymptotic expansion
of the symbol), and eψ/hQ1e

ψ/h = Q1. Hence, for h ≤ dµ, we have

|〈eψ/hTu,Q1e
ψ/hTu〉| = |〈Tu,Q1Tu〉| ≤ Cµ−b‖u‖2

again by Lemma 3.4. Combining these, we obtain the assertion.
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C Exponential weight formula for differential op-
erators

Here we prove an exponential weight formula for differential operators, which
was introduced in Introduction of [Ma1]. We reproduce the proof for the
reader’s convenience.

Lemma C.1. Suppose f ∈ C∞
0 (R2n), and we write T = Th,µ. Then for any

α ∈ Zn+,〈
eψ/hTv, feψ/hT (hDx)αu

〉
=

1
2
〈
eψ/hTv, [(ξ + iµ∂µψ + i

2hµ∂µ)
αf ]eψ/hTu

〉
for u, v ∈ S(Rn).

Proof. At first, we note

eψ/hT (hDx) = eψ/h(hDx)T = (hDx + i∂xψ)eψ/hT

= (A+ ξ + iµ∂µψ)eψ/hT

where A is defined in (B.1). On the other hand, by virtue of (B.2), we have〈
eψ/hTv, fAeψ/hTu

〉
=

1
2
〈
eψ/hTv, (Af + fA)eψ/hTu

〉
+

1
2
〈
eψ/hTv, [f,A]eψ/hTu

〉
=

1
2
〈
eψ/hTv, (−iµBf + iµfB)eψ/hTu

〉
+

1
2
〈
eψ/hTv, [f,A]eψ/hTu

〉
=

1
2
〈
eψ/hTv, [f,A+ iµB]eψ/hTu

〉
=

1
2
〈eψ/hTv, (ihµ∂µf)eψ/hTu〉.

Combining these, we learn〈
eψ/hTv, feψ/hT (hDx)u

〉
=
〈
eψ/hTv, [(ξ + iµ∂µψ + i

2hµ∂µ)f ]eψ/hTu
〉
.

Iterating this procedure, we conclude the assertion.

D Proof of Lemma 4.3

Let t0 < t1, and we suppose (4.6) is satisfied for t = t0. We choose
ϕ ∈ C∞

0 (B(γ(t0); δ, δ)) such that ϕ = 1 on B(γ(t0); δ/2, δ/2). By the as-
sumption, we have∥∥eεϕ(x,ξ)/hTh,1u(ht0)

∥∥ ≤ C <∞ as h→ 0,

for sufficiently small ε > 0. We then set

ψ(t, x, ξ) = ϕ(exp(t0 − t)Hp(x, ξ))
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for t ∈ [t0, t1], x, ξ ∈ Rn. We also choose f ∈ C∞
0 (R2n) so that

f(x, ξ) = 1 on
⋃

t0≤t≤t1

supp[ψ(t, ·, ·)].

Then we apply Theorem 3.1 with µ = 1 to obtain∣∣∣〈eεψ(t)/hTh,1u(ht), feεψ(t)/hTh,1Pu(ht)
〉

−
〈
eεψ(t)/~Th,1u(ht), p̃εψeεψ(t)/hTh,1u(ht)

〉∣∣∣
≤ Ch−1

(∥∥eεψ(t)/hTh,1u(ht)
∥∥2 + ‖u(ht)‖2

)
uniformly for t ∈ [t0, t1], ε ∈ (0, 1]. Analogously to Lemma 3.2, we have∣∣Im p̃εψ(x, ξ)− h−2εHpψ

∣∣ ≤ Ch−2ε2.

We note ∂
∂tψ +Hpψ = 0. Hence, analogously to Lemma 4.1, we have

h−1 d

dt
F (t) ≤ C(h−1 + h−2ε2)F (t) + Ch−1‖u(ht)‖2

for t ∈ [t0, t1], where F (t) =
∥∥√feεψ(t)/hTh,1u(ht)

∥∥2. Hence we learn

F (t1) ≤ C1ε
−C2eC3ε2/h

where C1, C2, C3 > 0 are independent of h and ε. Thus we obtain∥∥Th,1u(ht1)∥∥2

L2(B(γ(t1);δ′,δ′))
≤ C1ε

−C2e−(2ε−C3ε2)/h

with sufficiently small δ′ > 0. By choosing ε sufficiently small, we conclude
(4.6) for t = t1. Proof for the case t1 < t0 is similar, and we omit the
detail.
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