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Abstract: We consider a non-linear perturbation of a symmetric double-well potential
as amodel for molecular localization. In the semiclassical limit, we prove the existence of
a critical value of the perturbation parameter giving the destruction of the beating effect.
This value is twice the one corresponding to the first bifurcation of the fundamental state.
Here we make use of a particular projection operator introduced by G. Nenciu in order
to extend to an infinite dimensional space some known results for a two-level system.

1. Introduction

As it is well known, quantum double-well problems exhibit some caracteristic features
such as “splitting of the energy levels”, “delocalization” and “beating effect”. It is also
known that certain molecules, e.g. the ammonia one,Ntfe such that one of the
nuclei (the nitrogen nucleus N in the case of ammonia), in the Born—Oppenheimer
approximation, moves according to a double-well effective potential. The beating effect
for such molecules, related to the periodic motion of a state passing from localization
at one of the wells to localization at the other one, appears as an “inversion line” on the
spectrum.

For non-isolated molecules we have the “red shift” of the “inversion line”, and, if the
ammonia gasis at a pressure large enough (about 2 atmospheres) the inversion line disap:
pears, thev nucleus becomes localized: the well known pyramidal shape of the molecule
(molecular structure) appears. Thus, we see classical behaviors of microscopical sys-
tems. The cause of this phenomenon should be the polarity of the pyramidal molecule
which polarizes the environement, so that the reaction field stabilizes the molecular
structure.

We consider a standard model for molecular structure: a symmetric double-well
potential with a non-linear perturbation [5]. In previous research [6, 7] a critical value of
the perturbation parameter has been found giving a bifurcation of the fundamental state
and new asymmetrical states.
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The present research shows that for such a value of the parameter the dynamics is not
qualitatively changed with respect to the unperturbed case; in particular the beating effect
is unchanged. On the other side, here we found another critical value of the parameter
at which we have the destruction of the beating effect. In particular, beating motion
exists for any value of the parameter smaller than the critical one, at the limit of the
critical value, the period of this motion diverges, and for larger values of the parameter
the beating effect is absent (see Theorem 2 and Corollary 1). Curiously enough, this
second critical value of the parameter is nearly (exactly in the limit considered) twice
the previous one. The factor 2 between the critical values of the parameter is explained
by the similar role played by two different “energy” invariants belonging to the original
problem and to the linearized one respectively.

Our work is based on the reduction of the problem to a bi-dimensional space in the
semiclassical limit and it makes use of the known results about the dynamics of the
reduced two level problem [13,17]. The paper is organized in the following way. In
Sect. 2 we describe the model and we give the main results. In Sect. 3 we prove the
theorems. In particular in Sect. 3.2 the reduction of the time-dependent problem into
a bi-dimensional space in the semiclassical limit is given. In Sect. 3.3 we recall some
known results about the bi-dimensional problem, concerning the trajectories and the
frequencies of the motion for different values of the parameter. Finally, in Sect. 3.4 we
prove the stability result and the existence of the critical parameter in the full problem.

2. Description of the Model and Main Results

We consider here the time-dependent non-linear Schrddinger equation

{m% = Hoy + f(, )V,  Hop = —o Ay + V)Y, )
0
Y, o= v (x)
whereV (x), x € R", is a double-well symmetric potential:
V', —x) =V, x=0"x)eR", x' =@1...,%-1),
and
S, ¥) = (Y, W) Wix), )

wherec is areal parameteraid € C(R") isagivenreal-valued, bounded, odd function:
W', —xp) = =Wx), x =" x,). 3)

Insuch acas#® locally represents the position operatpand Eq. (1) would describe
the effect of the spontaneous symmetry breaking for a symmetric molecule [4—7,12].

It is well known [2] that when the nonlinear term has a form given by (2) then we
have the conservation of tleaergy defined below:

1 1
H = (Hov, V) + € (v, Wy)? = (Hoy®, v°) + Eewf", w02,

Hereafter(-, -) and|| - || respectively denote the scalar product and the norm in the
Hilbert spacel.2(R").
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Remark 1. If we consider the locally linear problem defined as

. 0 l
h— = H'My,
! Jat 4

where
H™y = Hoyr + f (e, ¥O¥, [, %) = ey WyO)w,
then we have the conservation of the energy defined as
£ =0 H"™yO®) = (Hoy ¥ + ey Wy 2.

Let o (Hp) be the spectrum of the self-adjoint realizationHyf on the Hilbert space
L?(R", dx). We assume that the discrete spectrurifgfs not empty and leE, < E_
be the two lowest eigenvalues #f, with associated normalized eigenvectpisand
¢—. Itis well known [8,14,15] that, under very general conditionslarthe splitting
between the first two eigenvalues, defined as

w=E_— E+,
satisfies to the following asymptotic behavior:
C/has h— 0, (4)

w~e
for some positive constadt (hereaftelC denotes any generic positive constant). In the
same limit we also have

1

+(x) ~ —=[go(x) £ po(—x)], as i — 0,
@ NG [ @ ]
wheregp(x) is a function localized within one well, for instance the right-hand one
corresponding to positive values of. We also assume that
dist[{E4, E_},0(Ho) \{E1+, E_}] ~ Ch, as h — 0, (5)

for some positiveC.
Now, let

1 1
=—(p+ +¢-) and ¢ = — (p+ —¢-),
YR /2 Y+ T @ oL /2 Y+ —9
they are normalized functions such that

Yr(x) ~ @o(x) and ¢ (x) ~ ¢o(—x), ash — 0. (6)

That is¢g, the so-calledight-hand well wave-function, is localized within the right-
hand well andyp;,, the so-calledeft-hand well wave-function, is localized within the
other well.

The solution of Eq. (1) can be written in the form

Y(t,x) =ar(®)er(x) +ar e (x) + Y(t, x), ag,(t) €C, (7)

wherey, = II.¢ is the projection ofyy on the eigenspace orthogonal to the two-
dimensional space spanneddy andg; ; that is:

Me=1—(,9r)pr — (-, QL)PL.
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It is well known that when the perturbation terfis absent in Eq. (1) then a state,
initially prepared on the two lowest states, tha,t/[éz 0, generically makes experience
of a beating motion between the two wells with periadi4w and the expectation value

(W) =@, ), WOPE, )

has an oscillating behavior within the interyal|w|, |w|], w = (pr, WoR).

Now, we are going to consider the effect of the perturbatfoon these beating
motions in the semiclassical limit.

In the following we assume that the perturbation strength is of the same order of the
splitting and we introduce the non-linearity parameter defined as

w=_-0@1, ash— o0, 8)
w

where

c=2w?=2p¢, w=(pr, Wor) = (p+, Wo_) = po,

the choice ofp+ can be made such tha € R — {0}.
We state our main results:

Theorem 1. For any ¥° € H?(R"), Eq. (1) admits a unique solution ¢ € C*!
(Ri; L2R™)) N €O (R;; HA(R™)) such that v (0, x) = y°(x). Moreover, for all € R
we have that

1y ()1 = 1v°Ol. 9)
Theorem 2. If 0 = I1,.¢° = 0 and if
‘M_l‘ s Q= S(E, 4 E).
w 2

for somes > Ofixed and any 2 small enough; then there exists Tz and a positive constant
C independent of 7 and € such that for any o < 1

‘lﬁ (t+ 2%7 ) - K”(t’ )H = O(Cba)v Vi € [0’ t*]’

for i small enough, where

w w

= t—;ln <i) and t* = (« — 1)/C.

In particular, the expectation value (W)’ is, up to an error of order O (%), a periodic
function with pseudo-period T = 275 /@ and:
@) if
21 — Q|
—_— <
w

for some § > 0 and any i small enough, then there exists g > 0 such that for any
K € N and n > 0fixed then

1-35 (10)

(WY >0, to+n+kT <t <tog+*k+1/2)T —n,
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and
(WY <0, t0+*k+21/2T+n<t<to+*k+1DT — 1

foranyk =0,1,..., K and /i small enough;
(i) in contragt, if
2/H — Q|
_— >
w

for some§ > 0 and any 7 small enough, then

146 (11)

(WY £0, Vvt el0,r].

Remark 2. Condition (10) implies that{ € (E1, E_) and condition (11) implies that
H¢[Es, E_]

Remark 3. For an expression of the pseudo-period we refer to Sect. 3.3; in particglar,
is given by Eq. (45) in the case (10) anglis given by Eqg. (46) in the case (11).

For what concerns the dynamics of a state initially prepared on one well, e.g. the
right-hand one, we have that:

Corollary 1 (Beating Destruction: Thecritical parameter). Let 0 = ¥z and ioo #
+2,whereu = pso+0(1),asi — 0. Thenthe statereturnsnear to theinitial condition
after a pseudo-period T of order 1/w; that isfor any o < 1andany K € N fixed then:

¥ ((kT, ) —yrO)Il = O0@*), foranyk=12 ... K.
Moreover, if:

(i) lpool <2, then
I ((k+1/T, ) =YLl = O@), k=1,2,... K,

and we have the beating motion between the two wells as in the unperturbed case;
(il) |nool > 2, then

(W) >0, vt el0,1t*],
that isthe state v islocalized within the right-hand well.

3. Proof of the Theorems

3.1. Proof of Theorem 1. We denote
7= eitHo/hI// and W = eitHo/hyy p—itHo/h
Then Eq. (1) is equivalent to:
ih— = F({), (12)

where
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satisfies to the following Lipschitz-type estimate: for ahy V> € L2(R") we have that

IF) = F@2)I = Ce (1912 + 1921) 19 = Tl (13)

for some positive constaat. Therefore, foe small enough, alocal existence and unicity

result follows from Cauchy’s theorem. Moreover, for any solutiprf (12) we have
that

vz o -\ o
> _zm<¥,w>—2h S(F(), ¥) =0

hence,||¥ || is constant with respect to As a consequenc % remains uniformly

bounded on any open interval of time where it is defined and thus the global existence
in time follows from standard arguments. Finallyyi® € H2(R") one also has that
¥ € C®(R,; H?(R™) and thusy € €1 (R;; L2(R™)) N CO (R, H2(RM)).

3.2. Reduction to a two-level system. Here, we prove a stability result which allows us
to reduce the analysis of Eq. (1) to a bi-dimensional space. To this purpose we make use
of some ideas contained in [10,11] and [16]. Now, let

w 1
»=— and Hy = —Hy, 14
o= 1=+ Ho (14)

Whereg—h = O(1) ash — 0. We treatv as a new semiclassical parameter. We have that:
Theorem 3. Let
V(t,x) =ar()pr(x) +ar )L (x) + Y1, x), ar,r(t) €C, Y.=TIy,

be the solution of Eq. (1) satisfying the initial condition /0 = 0. Then there exists a
positive constant C such that

| Hovell < CeC®, |||l < CieC®! (15)
and

(aR, L() — e EHE2 g b (12| < CpeCO (16)

for 7 small enough and any ¢+ € R™, where Ag ; (t) are the solutions of the non-linear
system

{iA/R = —AL +2v0p0AR  Ag.1(0) = ag..(0) (17)

iA] = —Ag —2v0p0AL " AR+ AL =17

where’ means the derivative with respect to r and

€
vo = vo(7) = %pouAR(r)F — AL, po= (p+, Wo_).
In particular, for any & € (0, 1), then

|Hoyell < Co%, Iyl < Co* (18)
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and
ag.p(t) — e EFEDZh AL 1 (1 )20)| < C*

foranyt € [0, t*], t* = (* /@) In(1/®), t* = (« — 1)/ C.

Proof. In order to prove the theorem we investigate the solutfoaf (1) with initial
data:

vO=alps +a%¢, 1ad1P +1a0P = 1. (19)

In order to do that, we make the change of time scale:

which transform (1) into (for the sake of simplicity still denotes the solution of the
new equation):

iwdy €
> Hy + 7 (W, Wy )Wy (20)

Our first aim is to construct an approximationypfas® — 0*. Let us define
Ixllo=llxll. x € LR, and |xll1 = Hixll. x € D(Hy),
where
Hi = Hi+ c11, c1 issuchthatA; > 1, (21)
and therefore
Ixllo < llxlls forany x € D(Hy.

We start by proving the following lemma.

Lemma 1. Let  be the solution of Eq. (20) with initial data (19). Let j = 0or j = 1,
¢ € CYR;; L2(R™") N COR,; H?(R™)) be such that |l¢(z, -)|| < C for some C > 0
and any t,

(0, ) — ¥20)|l; = O@)

and
iw 0 €
¢=<—7£+H1+E<§0, W‘P>W>€0 (22)
be such that
lp(z, )l = O (23)

uniformly for > 0 and @ small enough. Then, there exists C > 0 such that:

le(t, ) — ¥ (t, )l < CaeT, YT > 0. (24)
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Proof. In order to prove this lemma, first considge 0. Let us denote

¢ = eZirHl/&)(p’ IZ _ eZirHl/d)lﬂ, (13 _ eZirHl/g)(]ﬁ, uU=¢—y

and
W = p2iTHI /0y ,~2iTH /&
We have
id)’—e( W)W W)W ) — é
' == (0. WoIWg — (v W) Wir) - ¢
and therefore
) 2
‘ e ]
ot
=43-S (1. W WG — (0. Wi W) — 2=,
~ P \re " OO 26"
= € (Iul? +allul) < € (Jul? +a?) (25)

foranyr > 0 and for some constagt > 0 since (8), (23) andb < %az + %bz for any
a,b > 0. As aresult it follows that

0
-~ (T 1uI?) = ce™C7a2,
and thus, since|,_qg = O(®):
e T u|? < Ca? (26)

for someC > 0. Then (24) immediately follows.
Moreover, we have that (24) is still true when we replace the usual tigrinby

lxlli=llHix|l, x € D(H1), whereHy = Hi + c11 > 1 for somecs. Indeed, lets, ¥,
W and¢ as above and let now

ur = Hi(@ —¥).
Then
i , € f L .
uy == (0. Wo) LW — (v, W) FaW) — g

and

=4

dlurl?
ot

L. e - 1 - .
“s% (t0. W) LW — (yr. Wy FaW ) — = . u1>
= C (sl + @lual) = € (Jual® + &?)

for some constar@ > 0 since (8), (23) andi; W H; * andH; * are bounded operators,
uniformly with respect tav. As above, it follows that (26) is true, from which (24)
follows. O
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Now, in order to prove Theorem 3 we explicitly construct a solutisatisfying the
assumptions of Lemma 1. We re-write Eq. (22) as:

0
(—%a——l—Hl—i—a)vW)(p:d), (27)

where

€ €
v=1v(T) = ﬁ((ﬂ, Wo), = O@Q), ash — 0,

and wherep and¢ must satisfy the conditions

@0, ) — ¥ < Ca,
le(z, )l < C, VT >0, (28)
lé(z, )1 < C&?, VYt >0,

for someC > 0, ¥? is given by (19).
We denote by[1p = 1 — I1. the orthogonal projection ont@y; @ Cy_, that is:

o= f(c—Hl)ldc
T[l

wherey is a simple complex loop encirclinb%E+, %E_} leaving the rest of (Hy)
in its exterior and such that (see (5))

dist(y, o (Hy)) > C,

for some constanf > 0. We also set:
1
My = Tf (¢ —H) "W - H) tdg (29)
Tl y

and, for any € C1(R),
) = Io + wv(r)I;. (30)

From the definition, from (5) and (21) and since
1
HuMly = ~Wilo+ 5 — (¢ — Hy 'Wic — e,
Tl y

then it follows that

IMaxl1 < Clixl1, (31)

foranyy € D(Hj).
We look for a solutiory of the linear equation (27) of the form

9(t) = My [b4+ (Do + b_(T)e-]. (32)

For such a choice oﬁ and from the definition ob we have

v = 2= (0. We) = = i+ dae@) + Ppv0)| . (39)

|
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where
2
Vo = Z bsoybsen (@), Wesy) = 20 (b1-b—po)
L, 0'=1

s(1) = + ands(2) = —, since (3), and(r) and () are functions independent &f
given by:

2 2
a= Z bsnbs sy sy, B= Z bsnbs)Bse),s0)»
¢, =1 ¢, =1
where
a++ = [(p+, WH1iet) + (Mg, Woi)], B+ = (M1ps, Wiigs).

From this fact and sincg= = O(1), it follows that||¢(z, -)|| < C andv satisfies the
following behavior:

v, v = O(), uniformlyw.r.to @ > 0 small enough and > 0, (34)

provided that the unknown functiohs and their first derivative are bounded uniformly
with respect tar anda.
Now, observing that:

io 9 ~
|:——— + H1 4+ ovW, l'I,,i| =K,

2 01
where
ia? s ~2 2
K = —TV IT1 + wv ([Ha, IT1] + [W, IIg]) + 0®v[W, I11]
is such that
IKxll1 < Ca?lix
since (34),

[Hy, 1] + [W, IIg] = O,

by definition ofI14, and sinceﬁlwﬁl‘l is a bounded operator. By inserting (32) into
(27) we obtain thab, () andb_ (t) must satisfy to the following equation:

i E ~
My {erpr +c—p-t=¢, cx = —719; + (% + va) by, (35)

where

{b:t(o) =a+ + O(w),
¢=—Kbips +b_op ), ¢z, )1 <Ca? V>0,

andv = ;=(p, Wo) = vo + O(®) has to satisfy (34).
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Now, we have that
My (Wes) = oWt + ov(t) M1 Wes,
where
HoWoir = (@1, Woir)oy + (0, Woi)o-
and
[ov(D)T1Weil1 < Co|Wo+|1 < Co,
since (31). Moreover, let

(¢ —H) 1Ky
= -Hi—aovW) t— (¢ —-H) T~ (¢~ H) Tavw (¢ — H) !

where
~ 17t ~ 1
Ki= [1 — oW (¢ — Hy)~ ] — 1 — VW (¢ — H1)™
-1
= &2 (¢ — H) W (¢ = H) W [1-avW (¢ — H)™Y]
is such that for any € y then

IKixll1 < C&?x Il

From this it follows that
1 . _
M) = 5 75 (€ — Hy — avW)~Ydg + Ko,

where||Kax |1 < C&?|x l1; hence we can write that:
M2, = My + Ka, [Kaxll < Co?lx 1

Therefore:

i, (E+ .
Mmerer =The | -5 by + - Tovw by o4

) i, (Ei .
:Hv(r) —7b++ 7+va b+ (p++¢]_

i 1 )
=) [(-7% + 5E+b+) ¢+ + ovbi(p-, W<p+><p} + ¢2,

201

where||¢¢ll1 < C@?, € = 1,2, and(p,, We,) = 0. Therefore, (35) can be re-written

as:
io

1 ~
> b;: + —E4+b4 + wvpob=,

Moy {dyor +d-o_} = ¢3, dy =— P

where

b+ (0) =al + O@), lps(r, )1 = 0@, ¥t >0,
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with pg = (¢4, We_) € R. As aresult it is enough to finbl., bounded together with
their first derivative for any, such that

—2p, + YE by + @vopob_ =0
~2p +2E_b_ + @vopoby =0 . (36)
b+(0) =a2, vo=2;5NR(byb_po)

Setting:
R = (b++b) and L = (b+—b)
a [ pp— a e pp—
«/E «/E

the system (36) becomes

i/ E_+E 1~ ~
—Zap = ———tag + 5@ay — ®VoPoaR

i ./ E_+E 1~ ~
—5ay, = —=—tay + 50ag + ovopoar

: (37)

|m

vo = 7= po(lagrl?® — lar|?)
ar(0) = %(ag +a%) and a;(0) = \%(ag —a%

and we look for a solution of the form:
ag(v) = Ap(@)e " FHHEITE gy (2) = Ap (r)eT P EDTA®

with A and A; independent ofv. Then (37) is transformed into the correspondent
system:

A, = —A1 + 2vgp0A
{l R L 000AR (38)

iA/L = —AR - ZV0,00AL ’
where

vo = ~=po(lArl2 = 1AL ). ArL(0) = ar.L(0).
It easy to verify thatA (z)|°+|Ag(t)|? = 1sincepp € R; hence, the solutiongr 1 (1)
exist for anyr and they are bounded, together with their first derivative, uniformly with
respect ta andw small enough sincg= = O(1). Then (34) will be satisfied uniformly
with respect tow (actually (38) is independent @). From these facts and by (30),
(32) and Lemma 1 then the solution of (19)—(20) satisfies the estimates (15) and (16).
Theorem 3 is proved. O

3.3. Dynamics of the two-level system. In order to study the system of Eqgs. (17) we
re-write it in the form

iAy = —AL +2u|Ag|?Ar  Ag.1(0) = ag 1(0) (39)
iA] = —AR+2ulALPAL T IAR@IP+ AL =1
where’ denotes the derivative with respecttpc = 2p§, w = % plays the role
of the parameter of non-linearity and we re-defig ; (t) up to a phase factor, i.e.

AR.L(T) = Ag 1 (T)eT.
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Remark 4 (Gross-Pitaevskii equation). If the perturbation term has the form

FOx, ) = el (0)]PW (x), (40)

where W (x) is a given real-valued even functiol (x’, —x,) = W(x), then Eq. (1)
takes the form of the Gross—Pitaevskii equation [1] and we have the conservation of the
energy defined below:

1
H = (Hoy, ¥) + Eewz, Wy?).

In particular, the same arguments given above prove that the two-level system for the
Gross—Pitaevskii equation takes the form (39), whete (pr, Wpr|2¢r) and where
the functionW is such that this scalar product is defined.

In discussing two-level systems we have characterized the states in terms of
Ar(®) = p()“™ and AL(r) = g(0)e??, (41)

wherep, ¢, « and 8 are real-valued functions, 8 p < 1 and 0< ¢ < 1. From the
redundancy of the common phase factor we have that the state can be described now by
means of a vector in an abstract Euclidean three-dimensional space with components
(p, g cogB—a), g Sin(B—a)). In particular, from the normalization conditipf+¢2 =

1, it belongs, in such an Euclidean space, to the surface of the sphere. Hence, in order to
study the solution of the two-level system (39) we represent the surface of the sphere by
means of aercator-type chart; that is by means of two real coordinatsz), where

P = p? € [0, 1] is the square of the modulus df; andz =« — 8 € T = R/27Z =

[0, 27) belongs to the one-dimensional torus and represents the difference between the
phases ofAp andA (see Ch. 13, [9]). We underline that this representation is singular
atP = 0andP = 1;in fact, for P = O (respectivelyP = 1) and anyz we have
localization on the left-hand (respectively right-hand) well.

If the non-linear term is absent in Eq. (39), their) is a periodic function with
periodx and, if initially P(0) = 0 or P(0) = 1, thenP(z) periodically assumes the
values 0 and 1.

The system of equations (39) has been recently studied [13]. Here, we recall the most
relevant results.

Lemma?2. et P(t) = p%(r) and z(r) = a(r) — B(1); then P(r) and z(r) satisfy the
following system of ordinary differential equations:

P =2J/PJ1=Psinz ”
4 =(1—2P)[2M+ﬁﬁCOSZ]. (42)

Equations (42) have four stationary solutions

I (P=1/2,2=0),
an (p=1/2,z =m),

/1 2
any (P:wﬂzz[l—i_m_l})’ if || > 1,
I

2
_ _ 2
av) (le— ‘/121/“,z— [1+MD, if |l > 1,
n

N
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where, forju| < 1, (1) and (1) arecenter pointswhile, foru > 1 (respectivelyx < —1),
the stationary solutions (I) (respectively (11)), (1) and (IV) atenter points and the
stationary solution (Il) (respectively (1)) issaddle point.

Moreover, the function

I=1(P,z,p) =vPJ1I—P [uﬁ«/l “ P+ c05z] (43)

is an integral of motion and the dynamics of the two-level system, with initial condition
(Po, zo), could be described by means of the integral path defined by the implicit equation
I(P,z, u) = I(Po, z0, 1). In particular, we consider the following two behaviors:
[C1] P(7)isaperiodic continuous function, with given perigg, such thatP (t) = %

for r = %, ¥ + g, for somet, andP(v) < 1 and P(r + 375) > 3 for any

T e (F, T+ p).
[C2] P(7)is a periodic continuous function such thatr) # % foranyr.

We have that:

Lemma 3. Let (Po, zo) € [0, 1] x 7 betheinitial state in the two-level representation.
We have:

(i) if|u] < 1,then P(7) hasatimebehavior of type C1for anyinitial condition (Po, zo),
but the ones corresponding to the stationary solutions (I) and (1) (see Fig. 1);

0.8

0.6

0.4t

0.2

e)
d’“ KQ—/
ol
T

1 0 1 2 3
z

Fig. 1. Integral paths of the equatiah( P, z, 1) = I for some values of and fory = —3 fixed. The bold

line represents the integral path of the beating motion, that is the transition from localization on a well to
localization on the other one. Localization on the right-hand (respectively left-hand) well occRrs-at
(respectivelyP = 0) for anyz
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o
¥

041
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Fig. 2. Integral paths of equatioh(P, z, ) = I for some values of and fory = —3 fixed. We observe the

stability of the beating motion (bold line) despite the appearance of the bifurcation of one fixed point. Broken
lines represent the two sepratrices; inside the region enclosed by these lines we have closed paths, around the
asymmetrical stationary state originated from the bifurcation of the fundamentals state, representing periodic
oscillations within only one well

(i) if|ju| > 1,let D = D(u) bethe bounded open set enclosed by the path with equation

|l 1+2uP(1—P)—p/2
1+ — |+ 44
°T 2[ * M} arccos[ 2VPJ1-P } K

and containing the stationary solutions (IIl) and (1V); then for any (Po, zo) € D,
(Po, zo) different fromthe stationary solutions (111) and (IV), P (r) hasabehavior of
type C2; incontrast, if (P, zo) ¢ D, where D denotesthe closure of D, and (Po, zo)
isdifferent fromthe stationary solution (1), then P (t) hasa behavior of type C1 (see
Figs. 2 and 3).

Remark 5. Let (Po, zo) be such thaty = 0 or Py = 1. Then!(Po, zo, 1) = 0 and
(Po, zo0) € D, if |u| > 2, and(Po, zo) ¢ D, if |u| < 2. Hence, foju| < 2 we observe
the beating motion, such th&i(r) periodically assumes the values 0 and 1 (see the bold
line in Fig. 2). The beating motion corresponds to the path with equatiBnz, u) = 0;

that is:

=75 [1— M} + arccos[|u|«/_\/ﬁ]

In contrast, for 2< || we have that the beating motion between the two wells is not
possible (see the bold line in Fig. 3, where= —g); in particular, if initially P(0) = 1
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Fig. 3. Integral paths of equatioh(P, z, ) = I for some values of and foru = —% fixed. We observe the
destruction of the beating motion. The trajectory (bold line) starting from the localization point corresponding
to P = 1 (respectivelyP = 0) stays in the regior? > 1 (respectivelyP < %) and it encircles one
asymmetrical stationary state originated from the bifurcation of the fundamental state

(respectivelyP (0) = 0) then during the motion we have thA{r) > % (respectively
P(t) < 3)foranyz.
As a result of Lemma 3, it follows that we generically observe a periodic motion

with periodzp that depends on the parameteand on the initial conditiotiPo, zo). In
particular:

Lemma. If (Po, zo) ¢ D, where the set D is defined in Lemma 3, then the beating
motion between the two wells has period given by

V(—4I+2)(u—41-2)
Ex (“ 12— (L1 4n])2 )

A+ VIt auh2— 2’

where I = I (Po, zo; 1) and Eg isthe complete elliptic integral of the first kind.

p=13(I,n) =4 (45)

We close this section with the following remarks.
Remark 6. If (Pg, zg) € D then we have a periodic motion within one well with period:

whereE r denotes the incomplete elliptic integral of the first kind and where

x1=pu?—4—8ul +16I% and x» = u? — (1 + /4ul + 1)2.
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Remark 7. The frequencyw/? = 1/t/? of the beating motion, corresponding to the
valuel = 0 of the integral of motion, depends ¢m| and monotonically decreases and
vanishes afu| = 2; indeed, we have that

P
4Ek (W/M)

which is a monotone decreasing functionas [0, 2). From formulas (106.02) and
(112.01) [3], it follows that

1
UbeE as |ul— 2°.

1
In@8/v/4— 11?)

We remark also that the range of frequencies is givetwvih, vmaxl, where

oo [ FVISTulL i el <1
™o if > 1

(@]

and

1
Vmax = —+/ 1+ |u|, forany u.

T

In particular we observe that the interahin, vmax] broadens ag increase.

3.4. Beating destruction for large non-linearity. Now, we complete the proof of Theo-
rem 2 and of the corollary. To this end we remark thatetergy has the form

1
H = (Y, Hov) + Se(, Wi)?,
where, in order to take into account the contribution due to the ternwe observe that

W) = W) = (la 2 = lac?) (¢r, Wer) + RL+ R,

where
R1 = agap{pr, WoL) + agrar{er, Wor)
+lap > (oL, Wor) + (9r. WeR)) .
Ro = (Yre, W) + ar{or, Wibe) + ar{¥e, Wor)
+arp{pr, W) +ap (e, Wor),
and
2 2, 1 . .
(¥, Hoyr) = Q(lar|® + laL|®) — zw(aRaL +arag) + Rs,
where

R3 = (Y, Hove).
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From Theorem 3 we have thag(r) anday (¢) are such that for any < 1,
1= (lar®)2 + lar OF) = (2, )] = 0G*)
for anyr € [0, (t*/®@) In(1/®)], for some fixedr*, and

sup lar.L ()] — 1AR.L(3/2)]| = 0@,
t€l0,(z* /@) In(1/®)]

whereAr 1 (7) are computed in Sects. 3.3. From (3) and since the wave-funetipps
are localized on just one well [8], it follows that

R1 = O(w), ash — 0, 47
for anyr > 0. Moreover, making use of Theorem 3, we have that
Ro = 0O@*) and R3= 0(&%) (48)

foranyt € [0, (t*/@) In(1/®)] and for some* > 0. From these facts and from (41)
then it follows that for any € [0, (t*/®) In(1/®)] we have that

(W)' = (2P — 1) (pr, WoR) + O(&"),

where P = |Ag|? is the periodic solution given in Lemma 3. Théw) is, up to an
error of order® (&%), a periodic function with period given in Lemma 4. If we remark
that

1
H =9+ jou—ol (P2, 1)+ O@%),

where we choose > % then we have that (11) implies thé®o, zo) ¢ D. From this
fact and from the stability result the beating motion between the two wells follows. In
contrast, (10) implies thatPo, zo) € D; hence, the beating motion disappears.

In particular, we observe that tleaergy corresponding to the beating motion with
initial condition Py = 0 (or Py = 1) is such tha#{ s, ~ Q + %,uw. Hence, the beating
motion disappears fdy| > 2. Theorem 2 and the corollary are proved.
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