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Critical Metastability and Destruction of the Splitting
in Non-Autonomous Systems
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We study a periodically driven double well model. As in the case of autonomous
models, previously treated in a joint paper with A. Martinez, (7) we have the
destruction of the splitting for critical metastability. The relevance of the model
for the understanding of the red shift in the inversion line of the molecule of
ammonia is shortly discussed. We show that, in order to have a reasonable
behavior of the metastability as a function of the frequency, a non-monochromatic
perturbation is needed.

KEY WORDS: Resonances; localization; double well; time dependent
Hamiltonian; periodic external fields; quantum stability.

1. INTRODUCTION

In this paper we study the splitting destruction in a symmetric double well
model subjected to an external time dependent perturbation. The physical
motivation is the problem of the localization of symmetric molecules
induced by collisions, as observed in the ammonia molecule NH3 , with the
associated ``red shift effect,'' i.e., the gradual vanishing of the splitting for
increasing pressure (see ref. 8, see also the recent review paper on this
problem by Wightman(15)). Although our model is not completely physical,
in fact, we assume that the perturbation is periodic and we don't take into
account non-linear effects, it can be useful in order to understand if the
phenomenon of the vanishing of the splitting is already present in the simplest
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cases. We underline that our research is not in disagreement with the notion
of de-coherence (see ref. 6 for a review), very useful for understanding the
classical behavior of certain microscopic systems. Indeed, since our non-
autonomous model yields localization of the states, as in the classical case,
it can be considered as an explicit model for de-coherence.

Here, we make use of new techniques for the analysis of non-autono-
mous Hamiltonian systems recently developed by Soffer and Weienstein.(14)

By assuming that the state is initially prepared on the two ground states of
the double well, we compute the solution of the time-dependent Schro� dinger
equation with the rigorous control of the error (see Theorem 2 in Section 3).
In particular, we obtain that the time behavior of the wave function, for
times of the order of the unperturbed beating period, is described by means
of two complex eigenvalues of a matrix independent of time. The imaginary
part of the eigenvalues is related to the metastability of the state. Splitting
vanishing occurs when these eigenvalues coincide.

As appears in an explicit model (see Sections 5 and 6), for a fixed
strength of the perturbation, of the order of the square root of the unper-
turbed splitting, we have increasing metastability for increasing frequency
of the periodic perturbation in a certain range of values (see Theorem 5 in
Section 6). What it is peculiar to our research is the relevant role of the
metastability and the existence of a critical value for the metastability in
order to have the vanishing of the splitting. The general rule we have found
can be easily understood and can be stated in a simple way: the critical
value of the mean life is equal to the beating period of the unperturbed double well.

We underline that localization on one well, which is easy to obtain
with simpler static models, (4) appears here when the strength of the pertur-
bation is much larger than the square root of the splitting; in contrast, for
perturbations with strength smaller than the square root of the splitting
(Theorem 3), we observe the unperturbed beating effect.

We remark that, in order to obtain the desired results, we don't make
use of resonance effects and we don't need to assume that the external per-
turbation is monochromatic. Thus, our research is completely different
from others (see refs. 3 and 10, see also ref. 9 and the references therein) on
the same subject of destruction of the splitting.

The paper is organized as follows. In Section 2 we state the principal
assumptions on the potential and we introduce the notation. In Section 3
we state our main results (Theorems 1 and 2). In Section 4 we give the
proof of the theorems. In Section 5 we introduce a simple one-dimensional
model satisfying the technical assumptions of Section 2. In Section 6 we
explicitly compute the wave function for the model given in Section 5 and
we obtain the vanishing of the splitting (Theorem 5) for some values of the
frequency and of the strength of the perturbation.
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2. ASSUMPTIONS AND NOTATIONS

In this paper we consider the Schro� dinger equation

i�,4 =(H\+W ) ,, ,(t) # H, t # R (1)

where H is the Hilbert space L2(Rn, dx), n�1,

H\=&
�2

2m
2+V\

[H\]\ # I is a family of self-adjoint (time-independent) operators on the
domains D\/H, I�R+ and +� # I� where I� denotes the closure of I,
and W is a time-dependent perturbation.

Hypothesis H1: Assumption on V. We assume that the spectrum
of H\ is given by a _(H\)=[*\

1 , *\
2] _ [0, +�) where *\

1, 2 are two
negative simple eigenvalues *\

1<*\
2<0 such that

lim
\ � +�, \ # I

*\
1= lim

\ � +�, \ # I
*\

2=*� <0 (2)

Remarks.

�� We denote |\= 1
2 (*\

2&*\
1) and 0\= 1

2 (*\
2+*\

1), from (2) it follows
that |\ � 0 and 0\ � *� as \ � +�, \ # I;

�� In general, the above assumption is satisfied when V\ is a symmetric
double well potential such that:

lim
|x| � �

V\(x)=0

In particular, for a suitable choice of the potential we have that H\ has
only two eigenvalues and, in the limit of large barrier between the wells, we
have that |\

te&c\A where the Agmon distance \A between the wells goes
to infinity (see, for instance, ref. 7 and the references therein).

Hypothesis H2: Assumptions on W. The time-dependent per-
turbation W#W(t, x) has the form

W(t, x)='g(x)+=v(+t) f (x), =, '>0

where = and ' are small parameters and the frequency + is a parameter
belonging to a set M/(0, +�). We assume that:
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(i) f (x) and g(x) are real-valued piece-wise continuous functions
with compact support contained in a compact set U;

(ii) v(t) is a real-valued periodic function, with period L, such that
c0=0 (i.e., the mean value of v(t) is zero) and cn=0 for any |n|>N, for
some positive integer N, where cn , n # Z, are the Fourier coefficients of v(t);

(iii) the frequencies + # M are non-resonant, that is there exists d>0
such that

|n++0\|>d, \n=0, \1,..., \N, + # M and \ # I

In particular we have that |n++0\| # [d, D] for any n, + and \ and
some D>d.

Notation.

�� For the sake of simplicity, we make the choice of units such that
�=1, 2m=1 and L=2?;

�� & }&H and ( } , } ) H denote the norm and the scalar product of the
Hilbert space H, (x) =- 1+|x|2;

�� /A(x) denotes the characteristic function on the set A, i.e.,
/A(x)=1 if x # A and /A(x)=0 if x{A;

�� we drop the dependence on \, x, + and t when this does not cause
misunderstanding, in particular we denote |\ and 0\ by | and 0;

�� we set ;=max(', =) and ;� =max(;, |), we denote by C a generic
positive constant independent of t, ', = and \ which need not have the same
value throughout the paper;

�� we denote by Pc the projection operator on the eigenspace
associated to the essential spectrum of H\ , _ess(H\)=[0, +�): i.e., Pc=
1&�\

1(�\
1 , } )&�\

2(�\
2 , } ) where �\

1, 2 are the normalized eigenvectors of
H\ associated to *\

1, 2 ;

�� we formally denote

Km=[H\&(0+m++i0)]&1=w& lim
! � 0+

[H\&(0+m++i!)]&1

v let M be a generic 2_2 matrix, with elements denoted by M\, \ ,
and let A be a generic column matrix, with elements denoted by A\ , i.e.:

M=\M+, +

M&, +

M+, &

M&, &+ and A=\A+

A&+
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WM X and WAX respectively denote WM X=max |M\, \ | and WAX=
max |A\ |

�� let M(t) be a matrix-valued function defined for t�0, then we
denote

[M ](t)= sup
0�{�t

WM({)X

�� let .: R+ � H be a vector-valued function defined for t�0 and
such that (x) \_ .(t) # H, where _>0 is fixed, then we denote

(.)\(t)= sup
0�{�t

&(x) \_ .({)&H

By definition [M ](t) and (.)\(t) are monotone non-decreasing functions.
We state now our main assumptions:

Hypothesis H3: Time-decay assumptions. There exist _>0
and r>2 such that for any ,, such that (x) _ , # H, the following
estimates uniformly hold with respect to \ # I, * and t�0:

&(x) _ [H\&*]&1 Pc ,&H�C &(x) _ ,&H ,

\* # [&D, &d] (3)

&(x) &_ e&iH\ t Pc ,&H�C(t) &r+1 &(x) _ ,&H (4)

&(x)&_ e&iH\t[H\&(*+i0)]&1 Pc,&H�C(t) &r+1 &(x) _ ,&H (5)

for any * # [d, D]. Moreover, we assume also that for any ,1 and ,2 with
compact support then

|(,1 , [H\&*]&1 Pc,2) H |�C, \* # [&D, &d] _ [d, D] (6)

Remarks.

�� In fact, in order to prove our main result stated below it is suf-
ficient to assume the weaker condition that (4) and (5) uniformly hold for
any t # [0, T ] where T=T (\)=2?�|.

�� For any fixed \, condition (4) is true for any n�7 provided that
|V\(x)|�C(x) &s for some s>0 (see Theorem 2.1 in ref. 12)), and it is
generically true for any n (see ref. 11 and Theorem 7.6 in ref. 12) provided
that *=0 is neither an eigenvalue nor a resonance of H\ (property (5) can
be proved as a consequence of (4) as done in Appendix A in ref. 13). We
discuss in Section 5 the validity of the time-decay assumptions uniformly
with respect to \ for an explicit model.
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3. MAIN RESULTS

Let �1, 2 # H be the normalized eigenvectors of H associated to *1, 2

(let us drop the dependence on \); let

�\=
1

- 2
(�1\�2)

be the single-well ground states, they are such that

(�\ , �\) H=1, (�\ , ��) H=0 and H�\=0�\&|��

The solution ,(t) # H of the time-dependent Schro� dinger equation (1) can
be written as

,(t)=a+(t) �++a&(t) �&+,c(t) (7)

where ,c=Pc,, that is

(,c(t), �\) H=0, \t # R

We assume that the state is initially prepared on the two single-well ground
states:

Hypothesis H4. The initial state ,0=,(0) is such that ,0
c=Pc,0=0.

By substituting , by (7) in Eq. (1) and projecting the resulting equa-
tion on �\ and on the eigenspace associated to the essential spectrum, we
obtain the following system of equations for a\ and ,c :

ia* +=0a+&|a&+a+(�+ , W�+) H+a&(�+ , W�&) H

+(�+ , W,c) H{ ia* &= &|a++0a&+a+(�& , W�+) H

+a&(�& , W�&) H+(�& , W,c) H

i,4 c=H\,c+a+Pc W�++a& PcW�&+PcW,c

satisfying to the initial conditions

a0
\=(�\ , ,0) H , ,0

c=0

Let A\(t)=a\(t) ei0t, A be the column matrix with elements A\ ,
_1=( 0

1
1
0) be the first Pauli matrix, F and G be the 2_2 symmetric

matrices with elements

F\, \=(�\ , f�\) H and G\, \=(�\ , g�\) H
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Rc be the column matrix with elements Rc, \(t)=ei0t(�\ , W,c) H ; then
the above system can be written in the form

{iA4 =&|_1 A+'GA+=v(+t) FA+Rc

i,4 c=H\,c+a+PcW�++a&PcW�&+PcW,c
(8)

It is a matter of integration by parts and use of the second differential
equation of the system (8), to obtain the following preliminary result.

Theorem 1. Let ;=max(=, ') and

4m
\, \(+)=( f�\ , KmPc f�\) H , m{0 (9)

40
\, \=(g�\ , K0Pcg�\) H (10)

Let

,(t)=A+(t) e&i0t�++A&(t) e&i0t�&+,c(t)

be the solution of Eq. (1) where ,c(t)=Pc,(t). Then A=( A+
A&

) is the
solution of the equation

A4 =&iMA+iMper(+t) A+R (11)

where Mper(t) is a periodic 2_2 matrix, with period 2?, with mean value
zero and such that WMper(t)X�C; for some positive constant C independent
of \ and t; M is 2_2 matrix independent of t given by

M=&|_1+'G+=2U+'2S (12)

where the elements of U and S are given by

U\, \=& :
N

m{0, m=&N

|cm |2 4m
\, \(+), S\, \=&40

\, \

R=R(A4 , A, t) is a remainder term.
We consider, for the present, the linear differential equation with

periodic coefficient

B4 =[&iM+iMper(+t)] B, B(0)=A(0) (13)

It is well know (see Theorem 5.1, Chap. 3, ref. 5) that the solution of this
equation has the form B(t)=P(+t) e&iNtA(0) for some constant matrix N
and periodic matrix P. We assume that
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Hypothesis H5. Let n1, 2 be the eigenvalues of the matrix N and
let #=max[In1 , In2], we assume, in the limit of small perturbation and
large \, that #�C| and |P(t)|�C, for any t, for some C>0 independent
of \, = and '.

We state now our main result:

Theorem 2. Let + # M be fixed, let ;=max(', =) and ;� =max
(|, ;). From the above Hypotheses H1, H2, H3, H4, and H5, in the limit
of small perturbation and large \, \ # I, such that ;3�| � 0, then it follows
that the solution of (11) is given by

A(t)=B(t)+RA(t) (14)

where B(t) is the solution of Eq. (13) and where RA(t) is a remainder term
satisfying to the following uniform estimate

WRA(t)X�C WA(0)X ;� ;2�|, \t # [0, T ], T=
2?
|

(15)

for some positive constant C independent of =, ' and \. Moreover, it
follows also the estimate (,c)&(t)�C; WA(0)X for any t # [0, T ].

4. PROOF OF THE THEOREMS

The proof of the theorems follows the line of the paper, (14) adapted
here to our model. In particular, we obtain the estimate (15) uniformly
with respect to \.

Proof of Theorem 1. From the second equation of (8) we can write

,c(t)=&i[,0(t)+,+(t)+,&(t)+,d (t)

where

,0(t)=eiHt,c(0)#0

,d (t)=|
t

0
e&H(t&s)PcW(s, } ) ,c(s) ds (16)

,\(t)=|
t

0
e&iH(t&s)PcW(s, } ) a\(s) �\ ds (17)
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If we set hn(x)= f (x), #n==cn , n{0, and h0(x)= g(x), #0=', then we can
write

W(t, x)= :
N

n=&N

#n ein+thn(x) (18)

From this fact and assuming, for the present, that 0+n+ � _ess(H ), for any
n=0, \1,..., \N, then it follows that

,\(t)= :
N

n=&N

#&n |
t

0
e&i[H(t&s)+(0+n+) s]Pch&n A\(s) �\ ds

= :
N

n=&N

i#&n {&e&i(0+n+) tKnPch&n�\A\(t)

+e&iHtKnPch&n�\A\(0)

+|
t

0
e&i[H(t&s)+(0+n+) s]KnPch&n A4 \(s) �\ ds= (19)

by integrating by parts. If n is such that 0+n+ # _ess(H ), the above
formula is still true; indeed, it follows in the same way by taking n++i!,
!>0, and the limit ! � 0+. Let

Rc, \=ei0t(�\ , W,c) H=:\, ++:\, &+:d, \ (20)

where :\, +=&iei0t(�\ , W,+)H , :\, &=&ie i0t(�\ , W,&) H and
:d, \=&iei0t(�\ , W,d) H . From this and from (17) we have that

:\, += :
N

m=&N

&iei(0+m+) t#m(�\ , hm,+) H

=:0
\, +A+(t)+:1

\, + A+(t)+:2
\, +A+(0)+:3

\, +

where

:0
\, +=& :

N

m=&N

#m#&m(hm �\ , KmPch&m�+) H

:1
\, +=& :

N

n, m=&N, m{n

#m#&ne&i(n&m) +t(hm�\ , Kn Pch&n�+) H

:2
\, += :

N

m, n=&N

#m#&nei(0+m+) t(hm�\ , e&iHtKnPc h&n�+) H

:3
\, += :

N

m, n=&N

#m#&nei(0+m+) t

_|
t

0
(hm�\ , e&i[H(t&s)+(0+m+) s]Kn Pch&n �+) H A4 +(s) ds
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and a similar result for :\, & follows. From this equation then (11) follows
where the time independent matrix M is obtained by collecting the terms
|_1 , 'G and :0

\, \ , the periodic matrix Mper(t) is obtained by collecting
the terms v(+t) F and :1

\, \ , the remainder term R is obtained by collecting
the terms :2

\, \ , :3
\, \ and :d, \ :

R\=:2
\, +A+(0)+:2

\, &A&(0)+:3
\, ++:3

\, &+:d, \ (21)

We conclude the proof of Theorem 1 by underlining that Mper(t) is periodi-
cally dependent on t, with mean value 0 and it is such that WMper(t)X�C;
for some C>0 independent of =, ' and \ because of (6).

Proof of Theorem 2. Solution of (11), satisfying to the initial con-
dition A(0), is given by (14) where the term RA(t) is given by (see
Theorem 3.1, Chap. 3, ref. 5)

RA(t)=P(t) |
t

0
e&N(t&{)P&1({) R({) d{

In order to obtain a bound of the remainder term RA we give a sequence
of technical Lemmas.

Lemma 1. There exists a positive constant C, independent of t,
such that

WRA(t)X�Ct[R](t) and [RA](t)�Ct[R](t), \t # [0, T ] (22)

Proof. Let #=max[In1 , In2], where n1, 2 are the two eigenvalues
of N. From the definition of RA , from the facts that #�C| and WP(t)X�C
for any t, then it follows that

WRA(t)X�C |
t

0
e#(t&{) WR({)X d{�Ct[R](t)

proving the first inequality of (22). The second one immediately follows as
a result of the first one, indeed

[RA](t)= sup
{ # [0, t]

WRA({)X� sup
{ # [0, t]

C{[R]({)�Ct[R](t)

Lemma 2. For any ,: R � H, such that (x) _ ,(t) # H, and |*| #
[d, D] there exists a positive constant C independent of t and \ such that

|
t

0
&(x) &_ e&iH(t&s)Pc,(s)&H ds�C(,)+(t)
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and

|
t

0
&(x) &_ e&iH(t&s)[H&(*+i0)]&1 Pc,(s)&H ds�C(,)+(t)

Proof. From (4) it follows that

|
t

0
&(x) &_ e&iH(t&s)Pc,(s)&H ds�C |

t

0
(t&s) &r+1 ds(,)+(t)

�C(,)+(t)

for any t since r>2. In the same way the second estimate follows from (5),
when * # [d, D], and from (3) and (4) when * # [&D, &d].

Lemma 3. For any t>0 there exists a positive constant C independent
of t, ; and \ such that

(,c)&(t)�C;[A](t) (23)

Proof. Given the definition of ,c , given formulas (16) and (17), given
the Schwartz inequality and given the first estimate of Lemma 2, it follows
that

&(x)&_ ,c({)&H�&(x) &_ ,+({)&H+&(x) &_ ,&({)&H

+&(x) &_ ,d ({)&H

�C[A]({)[ sup
0�s�{

&(x) _ W(s, x) �+&H

+ sup
0�s�{

&(x)_ W(s, x) �&&H]

+C sup
0�s�{

&(x) _ W(s, x) ,c&H

�C;[A]({)+C sup
0�s�{

&(x) _ W(s, x) ,c&H

=C;[(,c)&({)+[A]({)]

since

sup
0�s�{

&(x) _ W(s, x) �\&H�C; sup
0�s�{

&(x) _ /U(x) �\&H�C;
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and

sup
0�s�{

&(x) _ W(s, x) ,c&H� sup
0�s�{

&(x)_ W(s, x)(x) _&H } &(x) &_ ,c&H

�;C sup
0�s�{

&(x) &_ ,c&H=;C(,c)&({)

because W(t, x) has compact support contained in U for any t. If we
remark that (,c)&(t) and [A](t) are monotone non-decreasing functions
then (23) follows.

Lemma 4. For ; small enough it follows that

[R](t)�C;2((t) &r+1 WA(0)X+;� [A](t)), where ;� =max(|, ;)

(24)

for some positive constant C independent of ;, \ and t.

Proof. In order to prove (24) we separately estimate the terms :2
\, \ ,

:3
\, \ and :d, \ defined in the proof of Theorem 1. In order to consider the

term :2
\, \ we set .n, \=KnPch&n�\ . Let, for the present, be n such that

n++0�&d, from (3) it follows that (x)_ .n, \ # H since (x) _ hn�\ # H;
from this fact and from (4) it follows that

|((x) _ hm�\ , (x) &_ e&iHtPcKnPch&n�\) H |

�&(x) _ hm�\&H &(x) &_ e&iHtPc.n, \&H

�C &(x) _ hm�\&H &(x) _ KnPch&n �\&H (t) &r+1

�C(t) &r+1

The same result directly follows from (5) in the case 0+n+�d. Therefore,
we can conclude that

|:2
\, \ |�C;2(t) &r+1 (25)

For what regards the term :3
\, \ we remark that from (11) it follows that

WA4 (s)X�C;� WA(s)X+WR(s)X , where ;� =max(|, !)

then, applying the result of Lemma 2 to the vector e&i(0+n+) sA4 \(s) h&n�\ ,
we obtain that

|:3
\, \ |�C;2 :

N

n=&N

(A4 \(s) h&n�\)+(t)�C;2(;� [A](t)+[R](t)) (26)
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For what concerns the last term :d, \ we apply Lemma 2 to ,=W,c

obtaining

|:d, \ |= }�(x) _ W�\ , (x) &_ |
t

0
e&iH(t&s)PcW(s, } ) ,c ds�H }

�C; |
t

0
&(x) &_ e&iH(t&s)PcW(s, } ) ,c &H ds

�C;2(/U ,c)+(t)�C;2(,c)
&(t)

since &(x)_ /U ,c&H�&(x) _ /U(x) _&H } &(x) &_ ,c&H . From this and
from Lemma 3 we finally obtain

|:d, \ |�C;3[A](t) (27)

Collecting the results (25), (26) and (27) and relation (21) we obtain

WR(t)X�;2C[(t) &r+1 WA(0)X+[R](t)+;� [A](t)]

from which Lemma 4 follows for ; small enough.

Lemma 5. In the limit of small perturbation and large \, such that
;3�|<<1, then there exists a positive constant C independent of \, = and
' such that

[A](t)�C WA(0)X, \t # [0, T ], T=
2?
|

(28)

Proof. From Eqs. (14), (22) and (24) and recalling that #�C| then
it follows that for any 0�t�T=2?�|

[A](t)�C[ sup
0�{�t

e#{ WA(0)X+[RA](t)]

�C[WA(0)X+t[R](t)]

�C[WA(0)X+;2t((t) &r+1 WA(0)X+;� [A](t))]

�C[WA(0)X(1+;2|r&2)+;� ;2|&1[A](t)]

for some positive constant C. From this the result follows since r>2 and
;� ;2|&1=max(;2, ;3|&1)<<1.
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Collecting all these results we are able to prove Theorem 2; indeed,
from Eqs. (22), (24) and (28) it follows that

WRA(t)X�Ct[R](t)

�C;2((t) &r+2 WA(0)X+;� t[A](t))

�C;� ;2|&1 WA(0)X , \t # [0, T ]

Finally, the bound of (,c)& it follows as a direct result of Lemmas 3 and 5.

5. THE EXPLICIT MODEL

In this section we consider the following explicit one-dimensional
model: the double well potential is given by means of two attractive delta
functions at x=\a with negative strength &b and one repulsive delta
function at x=0 with positive strength \:

V\=&b $(x&a)&b $(x+a)+\ $(x)

where a>0 and b>0 are fixed and \>0 is large enough. We recall that
the limit case \=+� corresponds to the case of two attractive $ functions
at x=\a with Dirichlet condition at x=0; that is H�=H +

D �H &
D where

H \
D is the Schro� dinger operator on the half line R\ with Dirichlet condi-

tion at x=0.(2) We prove now that this model satisfies to the assumptions
H1 and H3 of Section 2, and in particular the uniform bounds (3)�(6),
provided that ab>1 and \ # I=[\~ , +�) with \~ >0 large enough. Let

y1=a, y2=0, y3=a, Gk(x)=
i

2k
eik |x|, Ik>0

&\&
1
b

+
i

2k+ &
i

2k
eika &

i
2k

ei2ka

1\, k=\ &
i

2k
e ika &\1

\
+

i
2k+ &

i
2k

eika + (29)

&
i

2k
ei2ka &

i
2k

eika &\&
1
b

+
i

2k+
K\(x, y; k)=

i
2k

eik |x& y|&
1

4k2 :
3

r, s=1

(1&1
\, k)rs e ik |x& yr|eik | y& ys|
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we recall that the resolvent operator [H\&z]&1, where H\=&d 2�dx2

+V\ and z=k2, is an integral operator with kernel K\ (see ref. 2):

([H\&k2]&1 ,)(x)=|
R

K\(x, y; k) ,( y) dy (30)

In order to study the spectrum of H\ we introduce the functions f(w), such
that f(0)=1 and w f(w)=ew&1 for w{0, h(w)=1�ab&f(w) and g\(w)=
h(w)&1�a\ [w f(w)+2+w�ab]. By means of a simple computation it
follows that

det 1\, k=
a3

w
h(w) g\(w), where w=i2ka

and that the elements of the inverse matrix 1&1
\, k are given by

(1&1
\, k)1, 1=(1&1

\, k)3, 3=
&f(w)+1�a(1�b&1�\)&w�a2\b

ag\(w) h(w)

(1&1
\, k)1, 2=(1&1

\, k)2, 1=(1&1
\, k)2, 3=(1&1

\, k)3, 2=&
ew�2

ag\(w)
(31)

(1&1
\, k)2, 2=

2+w�ab+w f(w)
ag\(w)

(1&1
\, k)1, 3=(1&1

\, k)3, 1=
ew

a2\g\(w) h(w)

The discrete spectrum of H\ is given by the negative eigenvalues
*=&w2�4a2 where w are the real and negative solutions of the equations
h(w)=0 and g\(w)=0. If ab>1 and \ is large enough then the equation
h(w)=0 has only one real and negative solution w1 independent of \ and
the equation g\(w)=0 has only one real and negative solution w\

2 such
that w\

2&w1=O(\&1). Therefore hypothesis H1 follows.
We underline that when ab>1 then there exist a positive constant C

and \~ >0 such that

|h(0)|>C and |g\(0)|>C, \\ # I=[\~ , +�) (32)

in particular *=0 is neither an eigenvalue nor a resonance; moreover
_ess(H\)=_ac(H\)=[0, +�) (see ref. 2 again). We remark also that from
the above formulas (31) it follows that 1&1

� &1&1
\ =O(\&1) and

&[H�&k2]&1&[H\&k2]&1&�Ck \&1, Ik>0
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therefore H\ converges to H� as \ � +� in norm resolvent sense. Hence,
conditions (3) and (6) are uniformly true for any \ large enough.

In order to prove the bounds (4) and (5) uniformly with respect to \
we observe that a direct computation gives that

:
3

i=1

(1&1
\, k)j, i=wF\

j (w), j=1, 2, 3 (33)

where we set

F\
1(w)=F\

3(w)=
a\f(w) f(w�2)&2�ab&\�b f(w�2)+2f(w)

2a2\g\(w) h(w)
(34)

and

F\
2(w)=

a\h(w)[&f(w�2)+1�ab+f(w)]
a2\g\(w) h(w)

(35)

Let # be an anti-clockwise curve, surrounding the absolute continuous
spectrum _ac(H\)=[0, +�), with endpoints +�+i0 and +�&i0; the
spectral theorem gives that

(e&itH\Pc,)(x)=|
#

e&izt([H\&z]&1 ,)(x) dz

=i |
R+i0

2ke&ik2t dk |
R

K\(x, y; k) ,( y) dy

=|
R

U t
\(x, y) ,( y) dy

where

Ut
\(x, y)=i |

R+i0
2ke&ik 2tK\(x, y; k) dk

We prove that:

Lemma 6. Let a, b>0 such that ab>1 and let \~ >0 be large
enough in order to have (32). Then, the following asymptotic behavior
uniformly holds for any \�\~ :

Ut
\(x, y)=O([ut&1�2]3) where u=max((x) , ( y) ) (36)
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Proof. In order to prove the above proposition we set ur, s=|x& yr |
+| y& ys | and we remark that the Fourier transform of e&ik2t is
- ? eiu2�4t�- it , then

U t
\(x, y)=i |

R+i0
e&ik 2teik |x& y| dk+V t

\(x, y)

=
i - ?

- it
ei |x& y| 2�4t+V t

\(x, y)

V t
\(x, y)=

1
2

:
3

r, s=1
|
R+i0

e&ik2teik( |x& yr| +| y& ys| )(1&1
\, k)r, s

dk
k

=
1
2

:
3

r, s=1
|
R+i0

e&ik2teikur, s(1&1
\, k)r, s

dk
k

By means of the McLaurin series (1&1
\, k)r, s=(1&1

\, 0)r, s+k(1&1
\, 0)$r, s+

(1&1
\, k)R

r, s , where (1&1
\, k)R

r, s has a double (or higher) zero at k=0, we have
that Vt

\=V t
0, \+V t

1, \+V t
R, \ where

V t
0, \(x, y)=

1
2

:
3

r, s=1

(1&1
\, 0)r, s |

R+i0
e&ik2teikur, s

dk
k

V t
1, \(x, y)=

1
2

:
3

r, s=1

(1&1
\, 0)$r, s |

R+i0
e&ik2teikur, s dk

V t
R, \(x, y)=

1
2

:
3

r, s=1
|
R+i0

(1&1
\, k)R

r, s e&ik2teikur, s
dk
k

here $ denotes the derivative with respect to k. For what concerns the
computation of the first term V t

0, \ we remark that the Cauchy theorem
(where we perform the change of the path of integration k � e&i?�4k) gives:

|
R+i0

e&ik2te iku dk
k

=|
R+i0

e&k2tee i?�4ku dk
k

=&i?eiu2�4tW(ei?�4u�2 - t )

355Critical Metastability and Destruction



where W({)=(i�?) �R e&s2
(ds�({&s)), I{>0 (see formula (7.1.4), ref. 1) is

such that (see formula (7.1.8), ref. 1)

H t
r, s(x, y)=e iu2

r, s �4tW(ei?�4ur, s�2 - t )&1=_1+
iu2

r, s

4t
+O(u4�t&2)&

__1+
iei?�4ur, s

2 - t 1 (3�2)
+

(iei?�4ur, s)
2

(2 - t )2 1 (2)
+O([u�- t ]3)&&1

=
iei?�4ur, s

2 - t 1 (3�2)
+O([ut&1�2]3)

as ut&1�2 � 0. From this and from (33) it follows that

Vt
0, \(x, y)=

?
2i

:
3

r, s=1

(1&1
\, 0)r, s eiu2

r, s �4tW(ei?�4ur, s �2 - t )

=
?
2i

:
3

r, s=1

(1&1
\, 0)r, s[1+H t

r, s(x, y)]

=
?
2i

:
3

r=1

(wF\
r (w))w=0+

?
2i

:
3

r, s=1

(1&1
\, 0)r, s H t

r, s(x, y)

=
?

2i
:
3

r, s=1

(1&1
\, 0)r, s

iei?�4( |x& yr |+| y& ys | )

2 - t 1 (3�2)

+O([ut&1�2]3)

=
- ? ei?�4

2 - t _ :
3

r=1

( |x& yr |+| y& yr | )(wF\
{(w))w=0&

+O([ut&1�2]3)

=O([ut&1�2]3)

where u=max((x) , ( y) ). For what concerns the computation of the term
Vt

1, \(x, y) it follows that:

V t
1, \(x, y)=

1
2

:
3

r, s=1

(1&1
\, 0)$r, s |

R+i0
e&ik2teikur, s dk

=
- ?

2 - it
:
3

r, s=1

(1&1
\, 0)$r, s eiu2

r, s �4t
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For what regards the computation of the remainder term V t
R, \(x, y) we

observe that the functions (1�k)(1&1
\, k)R

r, s have a zero at k=0 and
asymptotically behaves like k&1 as k goes to infinity; from this fact, by
integrating by parts and by means of the stationary phase theorem, as
ut&1�2 � 0, it follows that V t

R, \(x, y)=O(u�t3�2). Collecting all these
results, it follows that:

U t
\(x, y)=

- ?

- it _iei |x& y| 2�4t&
1
2

:
3

r, s=1

(1&1
\, 0)$r, s eiu2

r, s �4t&+O([ut&1�2]3)

=
- ?

- it _i&
1
2

:
3

r, s=1

(1&1
\, 0)$r, s+O(u2t&1)&+O([ut&1�2]3)

=O([ut&1�2]3)

since (see formulas (33), (34) and (35))

:
3

r, s=1

(1&1
\, 0)$r, s=2i(2F1(0)+F2(0))=2i

We underline that the bound (36) is uniform with respect to \ as a result
of the uniform bound (32).

From (36) it follows the uniform bound (4) for a suitable _ large
enough. By applying the same arguments to

e&itH\[H\&(*+i0)]&1 Pc,

=|
#

e&izt

z&(*+i0)
[H\&z]&1 , dz, * # [d, D]

we obtain the uniform bound (5).

6. SPLITTING VANISHING AND LOCALIZATION

In this section we explicitly compute the solutions of Eq. (11) for the
double well model discussed in the previous section where, for the sake
of argument, we fix a=1 and b=2; for such values we have that
*1=&w2

1 �4a2=0.6351. We fix also the time-dependent perturbation such
that

g(x)=/(0, a)(x) and f (x)=/(0, a)(x)+$/(&a, 0)(x) (37)
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where &1<$<1 is a given parameter, and v(t) is a kicked-type function,
for instance

v(t)= :
N

n=&N, n{0

cneint, cn=
N
2n

sin(n?�N)(1&(&1)n), N=10

In order to satisfies Hypothesis H2 we assume + such that n++*1 {0,
n=0, \1, \2,..., \N, and \ large enough.

In particular, we consider here two cases: the case of small perturba-
tion regime, where the strength = of the periodic part of the perturbation
is of the same order of the splitting |; and the case of critical perturbation
regime, where = is of the same order of the square root of |. In the
following, the strength ' of the static part of the perturbation is assumed
to be of the same order of the splitting |.

As we will show, in the first case we observe that the periodic part of
the perturbation doesn't actually affect the dynamics, that is we observe
again the beating effect (see Theorem 3 and the following remark); in con-
trast, in the second case, we obtain the splitting vanishing for a critical
value of the parameters (see Theorem 5).

We remark that in the double well model considered in the previous
section and in the large barrier limit \ � +� (corresponding to the
Dirichlet condition at x=0) we have that *1, 2 t*D=&w2

1 �4a2 and
�\(x)t�D(\x), where *D is the eigenvalue of H +

D with associate
normalized eigenvector �D . From this fact and from (37) it follows that the
elements of the matrices F and G are such that

G+, + tg0 , G+, & tG&, + tG&, & t0

and

F+, + tf0 , F&, & t$f0 , F&, + tF+, & t0

in the large barrier limit, where

f0= g0=(�D , /(0, a) �D) H

In order to compute the terms (9) and (10), let

Pc f�\= f�\&�+(�+ , f�\) H&�&(�& , f�\) H
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then it follows that

( f�\ , KmPc f�+) H=( f�\ , Km f�+) H

&( f�\ , Km�+) H (�+ , f�+)H

&( f�\ , Km�&) H (�& , f�+)H

where an explicit computation gives

Km�+=
2|

m2+2&|2 �&+
2m+

m2+2&|2 �+

Recalling that |t0 and (�\ , f��) H t0 in the large barrier limit, then

( f�+ , KmPc f�+) H t( f�+ , Km f�+)H&
2m+

m2+2&|2 |( f�+ , �+) H |2

and

( f�+ , KmPc f�&)Ht( f�+ , Km f�&) H

&
2|

m2+2&|2 ( f�& , �&) H (�+ , f�+) H

t( f�+ , Km f�&) H

Therefore, in the large barrier limit

U\, \(+)tu\, \(+)= :
m{0

|cm | 2 ( f�\ , Km f�\) H (38)

where cm are the Fourier coefficients of v(t). Recalling that V is an even
function, then we have that Km=SKmS where (Sf )(x)= f (&x); hence

( f�+ , Km f�+) H=u+, m ( f�& , Km f�&) H=$2u+, m

( f�& , Km f�+) H=$u&, m ( f�+ , Km f�&) H=$u&, m

in the large barrier limit where we set

u+, m=(/(0, a) �D , Km/(0, a) �D) H

u&, m=(/(0, a) �D , KmS(/(0, a) �D)) H
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If we set u\=�m{0 |cm |2 u\, m then the matrices M and Mper have the
form

Mt|M 0+=2M1, M0=\'g0 �|
&1

&1
0 + , M 1=\ &u+

&$u&

&$u&

&$2u+ +
and

Mper
t=v(+t) M per, 0+=2Mper, 1(+t), Mper, 0=\ f0

0
0

$f0+ (39)

and Mper, 1(+t) is a bounded, uniformly with respect to \, = and ', periodic
matrix with mean value zero.

6.1. Small Perturbation Regime

We consider here the small perturbation regime where = is of the same
order of the splitting |. We underline that, in such a case, by means of a
perturbative argument, the assumptions H5 is true.

We have the following result.

Theorem 3. Let J(t)=e&i|M0tB(0), then, in the limit of small
perturbation and large \ such that =�| and '�| have a finite limit, we have
that

|B(t)&J(t)|�C|, \t # [0, T]

for some positive constant C independent of t, =, + and \.

Proof. In order to prove this theorem we simply apply the averaging
perturbative method to the Eq. (13), where the mean value of Mper is equal
to zero.

Remark. As a result of Theorems 2 and 3 it follows that we observe
again a beating motion with shorter period given by 2?�(- |2+'2g2

0�4).

6.2. Critical Perturbative Regime

We assume here that the strength = of the periodic perturbation is of
the same order of the square root of the splitting |; in particular we
assume the limit of small perturbation and large \ such that

=2�| � k # R+ and '�| � ` # R (40)
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In such a case we have that:

Theorem 4. Let J(t)=e&iMtB(0), then, in the limit of small pertur-
bation and large \ satisfying (40), we have that

|B(t)&J(t)|�C - |, \t # [0, T] (41)

for some positive constant C independent of t, =, + and \.

Proof. In order to prove this theorem we remark that Eq. (13) takes
the form

{.* =+
B4 =[&iM+iM per(.)] B, B(0)=A(0)

(42)

where Mt=2[k&1M0+M 1], k is such that =2�| � k, and Mper(.) is a
periodic matrix with order = and mean value equal to zero. Let

D=B+=K(.) B, K(.)=\K+, +(.)
K&, +(.)

K+, &(.)
K&, &(.)+ (43)

be a linear transformation where K is a bounded matrix defined below. For
= small enough it follows that this transformation is invertible with inverse

B=[1+=K(.)]&1 D=D+=K� (.) D (44)

for some bounded matrix K� . From (42) and from (43) it follows that

D4 =B4 +=K(.) B4 +=+
�K
�.

B

=_iMper(.)+=+
�K
�. & B+[&iM+i=K(.) Mper(.)] B&i=K(.) MB

Recalling that M per(.) is of order = and M is of order =2 then the first term
of the above equation is of order =, the second one is of order =2 and the
third one is of order =3. By choosing

K\, \(.)=&
i

+= |
.

0
M per

\, \(%) d% (45)
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we have that the above equation takes the form

D4 =[&iM+i=K(.) Mper(.)] B&i=K(.) MB

=[&iM+i=K(.) Mper(.)] D+S D

S==[&iM+i=K(.) Mper(.)] K� (.)&i=K(.) M(1+=K� (.))

where the first term is of order =2 and the second one, that is the matrix
S, is of order =3. We apply now the averaging perturbative method for any
t # [0, T], where T=2?�| is of order 1�=2, obtaining that

|D(t)&exp[&i(M&=KMper) t] D(0)|�C=2, \t # [0, T] (46)

for some positive constant C. The term KM per denotes the mean value of
the term K(.) Mper(.); by integrating by parts we have that

KM per=
1

2? |
2?

0
K(.) Mper(.) d.

=
&i
+=

1
2? |

2?

0 \|
.

0
Mper(%) d%+ Mper(.) d.

=
&i
+=

1
2? _|

.

0
Mper(%) d%&

2?

0

+
i

+=
1

2? |
2?

0
Mper(.) \|

.

0
Mper(%) d%+ d.

= &MperK

From this fact and since Mper and K are, up to a term of order, respec-
tively, =2 and =, diagonal matrices (see Eqs. (39) and (45)) then we have
that

KMper=O(=2) (47)

From (43), (44), (46) and (47) it follows that

|B(t)&e&iMtB(0)|�|B(t)&D(t)|

+|D(t)&e&iMt D(0)|+|e&iMt(D(0)&B(0))|�C=, \t # [0, T]

for some positive constant C.

Remarks. �� We underline that from the above result the validity
of assumption H5 follows too.
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�� As a consequence of equations (14), (15) and (41) it follows that
the localization phenomenon and the beating effect depend on the eigen-
values l1 and l2 of M. In particular, if |I(l1&l2)|�| is large enough then
we have a localization result; in contrast, if |I(l1&l2)|<<| then we
observe a beating effect depending on R(l1&l2).

Now, it turns out that when the time dependent perturbation is
asymettrical, i.e., ${ \1, then the phenomenon of the vanishing of the
splitting occurs. More precisely:

Theorem 5. For any non-resonant +*>+0 , for some +0>0 and
any \* # I large enough then there exist =*==*(+*, \*) and '*=
'*(+*, \*) such that we have the vanishing of the splitting of the two
eigenvalues of M, i.e., l1=l2 .

Proof. Indeed, recalling that the leading term of M has the form

Mt\ 'g0&=2u+

&|&=2 $u&

&|&=2 $u&

&=2 $2u+ + (48)

in the large barrier limit, then the eigenvalues l1, 2 of M are such that
l1, 2 t

1
2 |L1, 2 where

L1, 2=z&ku+(1+$2)\- (z&ku+(1&$2))2+4(1+k $u&)2

where '�| � `, z=`g0 and =2�| � k. Hence, we have that L1=L2 when

z*=z(k*)=2i(1+k* $u&)+k*u+(1&$2) (49)

and k* # R+ is such that Iz(k*)=0, i.e.,

k*=2�[2$Ru&+(1&$2) Iu+] (50)

In fact Ru& r0 and Iu+>0 for + not too small (see Fig. 1). By means of
a continuity argument the vanishing of the splitting, i.e., l1=l2 , follows for
some =* and '*.

Remarks. �� In Fig. 2 we fix \=105, in such a case we have that
*2=&0.6349, *1=&0.6351 and |=8.5_10&5. For +=+*=0.8 formulas
(49) and (50) give that k*=0.408 and z*=3.078. For such values of the
parameters we observe the exact crossing (see Fig. 2a).

363Critical Metastability and Destruction



File: 822J 429326 . By:XX . Date:15:02:01 . Time:07:57 LOP8M. V8.B. Page 01:01
Codes: 626 Signs: 233 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Broken and full lines represent, respectively, the functions Ru&(+) and Iu+(+). It
appears that the condition k+>0 (see Eq. (50)) is satisfied provided + is not too small;
indeed Ru&(+)r0 and Iu+(+)>0.
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File: 822J 429327 . By:XX . Date:08:01:01 . Time:14:55 LOP8M. V8.B. Page 01:01
Codes: 698 Signs: 345 . Length: 44 pic 2 pts, 186 mm

Fig. 2. We plot the real (broken line) and imaginary part (full line) of L1, 2 . In figure (a), for
+=+*, we have an exact crossing; vanishing of the real part of the splitting and avoided
crossing of the real part of the eigenvalues are observed, respectively, for +>+* (figure (c))
and +<+* (figure (b)).
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�� In the case of f symmetric, i.e., $=1, we don't have the vanishing
of the splitting because Ru&=0 (see Fig. 1). Because the perturbation term
appears at the second order, the same argument applies in the case $=&1
too.

�� We remark that, in the very large perturbation regime, i.e., =2>>|
(provided that |�=3<<1 in order to have Theorem 2), we have a localization
result. In particular, by assuming '=0 and $=0 for the sake of argument,
then we have l1 t0 and l2 t&=2u+ . From Theorem 2 we have that the
leading terms of the solutions A\(t) are given by:

A\(t)tc\, 1e&il1t+c\, 2e&il2t, \t # [0, T]

where

c+, 1=
l1 A+(0)&|A&(0)

l1&l2

c+, 2=
&l2A+(0)+|A&(0)

l1&l2

c&, 1=
&|A+(0)&l2A&(0)

l1&l2

c&, 2=
|A+(0)+l1A&(0)

l1&l2

From these facts it follows that, if the state is initially prepared in the left
well, i.e., A+(0)=0 and A&(0)=1, it stays in the same well for a time
larger than the unperturbed beating period T; that is we generically obtain
the destruction of the beating effect because of localization on one well.

�� We remark that a similar result has been obtained in the large
perturbation limit and by neglecting the term Rc in (8) which couples the
discrete spectrum with the continuous one (see ref. 9 and the references
therein). In such a way we obtain the simpler two-level model

{iA4 +=&|A&+=v(+t) f0A+

iA4 &=&|A+

(51)

By assuming v(t)=cos(t) (for a recent study where v is a quasi-periodic
function see ref. 16) the system (51) takes the form :* \=i|:� e\iq(t) where
we set :+(t)=A+(t) eiq(t), :&(t)=A&(t) and q(t)==f0�+ sin(+t). By
assuming that |<<+ and by means of the mean value approximation, this
equation has approximate solutions of the form :0 cos(|~ t+.0), for some
:0 and .0 , for any t # [0, c|&1], for some c, where

|~ =
|
2? |

&?

?
ei(=f0 �+) sin({) d{=|J0 \=f0

+ +
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J0 is the zero-th Bessel function. It appears that for a two-level periodically
driven model the beating period is given by Tper=TJ &1

0 (=f0 �+) where
T=2?�| is the beating period of the unperturbed double-well model. In
the large perturbation limit such that =�+ � � then Tper tT - (=f0 �+)
>>T, in such a case we have the interruption of the beating effect; we
remark that the interruption of the beating effect appears also for inter-
mediate values of =, such that =f0�+ coincides with a zero of the zero-th
Bessel function.
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