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Molecular localization induced by collisions
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We consider a periodically driven double well as a simplified dynamical model for molecular localization
induced by collisions. If the frequency of the collisions is high enough, so that the instability of the states is
larger than a critical value, then the states are localized and we have the redshift of the inversion line.

PACS number~s!: 03.65.2w, 33.80.Be, 73.40.Gk
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In this paper we discuss the splitting instability in a pe
odically driven double well. The physical motivation of th
study comes from the relevance of the concept of molec
structure in chemistry, but the model could be tested dire
by means of heterostructures and microwaves. Let us re
the old problem of the explanation of the molecular localiz
tion ~ML ! hypothesis, successfully used in chemistry as
concept of molecular structure, in the rigorous quantu
mechanics~QM! framework@1#. QM requires that the prob
ability distribution of stationary states have the same sy
metry of the Hamiltonian, in marked contrast with the M
requirement. The qualitative explanation of this appar
contradiction is simple: since the molecule is not an isola
system, its states cannot be stationary@2#. The main problem
is the understanding of the quantitative aspect of the p
nomenon, as it results from the following question by Wo
ley @1#: ‘‘Why should the general quantum theory describi
energy eigenstates turn out to be of such little use in ch
istry, or put in another way, why should transitions out of t
time-dependent molecular quantum states which empiric
appear to be an essential ingredient of any useful quan
chemistry, be so slow?’’

Although it is generally accepted that the phenomen
should be explained by means of decoherence argument@3#,
it is also clear that explicit models are needed. Thus,
means of the study of an explicit model, we want to point o
the role of instability in the localization phenomenon. I
deed, we expect the existence of metastable states in
turbed systems and we want to study the smallness of
interaction between a pair of such states for large instabi
Let us consider the case of the ammonia molecule N3,
where the model for the motion of the nitrogen atom N is
double well with a large internal barrier@1#. In this model we
have the pyramidal shape of the molecule~molecular struc-
ture! if the state is localized in one of the wells. Theinver-
sion lineof the molecular microwave emission gives the e
ergy splitting of the stationary states. Experiments
ammonia gas show that the localization and theinversion
line are dependent on pressure. In particular, the localiza
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probability increases and theinversion linebroadens and de
creases as the pressure increases, giving the so-called
shift ~RS! effect @2#.

Some previous explicit models@4# which are able to ex-
plain ML, are autonomous, i.e., they make use of tim
independent potentials. In particular in a recent paper@5#, by
using an unstable autonomous model, both ML and RS
obtained.

In the present paper we use a nonautonomous m
~time-dependent potential! so that the instability caused b
the molecular, collisions is represented in a more reali
way.

In particular, our model consists of a double-well pote
tial with a time-dependent perturbation simulating the d
namical influence of the environment on the ammonia m
ecule, i.e., the collisions with the other molecules of the g
where the collision frequency is related to the pressure.
us notice that the present model is more physical than
previous ones for the reasons stated above, but it is
simplified. One simplification is the choice of a perturbati
periodic in time. This choice is technical and is due to t
recent improvement of methods for handling periodic pro
lems. We point out that the classical resonance effect
tween different frequencies are not relevant for the results
any case the results give ana posteriori justification of the
model.

Since the first~but not the second! order perturbation term
vanishes, we set the perturbation of the same order of
square root of the splitting. We consider the large inter
barrier regime, so that both the splitting and the perturbat
are exponentially small. This choice of parameters is sim
to previous ones, and allows us to apply the same comp
son with experiments given by Claverie and Jona Lasi
@4#, although in that case the frequency parameter was
sent. If the periodic perturbation is strong enough, and
Fourier coefficients are slowly decreasing for increasing
dex, we have localization for a frequency larger than a cr
cal value but smaller than a large value. This upper bou
should be related to the simplification of the model given
the periodicity of the time behavior. Since the model is li
ear, we have no spontaneous symmetry breaking, so tha
perturbation is asymmetric, but not too much, in order
have the RS. We control the asymmetry of the perturbat
by varying the coefficient of the time independent perturb
tion.
©2000 The American Physical Society06-1
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Let us notice that both effects, i.e., localization and
vanishing of the splitting, occur at a critical frequency givin
a critical instability, such that the mean life of the states
the same of the unperturbed beating period. In this case
width of the inversion line is of the same order of the unp
turbed line itself.

We consider a one-dimensional Schro¨dinger operatorH
with a real-valued symmetric double-well potentialV such
that the discrete spectrum ofH is given by two negative
nondegenerate eigenvalues~energy levels! l1,l2 and the
essential spectrum by the positive real axis. The differe
between the two levels gives the splitting defined asv
52d, d5(l22l1)/2\; in the following, for the sake of sim-
plicity, we take\ fixed and equal to 1. The asymmetric
time-dependent perturbationW, that simultaneously intro-
duces the breaking of the symmetry and the instability of
system, is given by means of a potential periodic in time
one of the wells and vanishing on the other well; that
W(x,t)5ev(mt) f (x) where e is a small real and positive
parameter,v(t) is a periodic~kick-type! function with period
2p and f (x) is a real-valued function with compact suppo
contained in one well.

By means of new techniques for the analysis of nonau
nomous Hamiltonian systems we compute here the solut
of the time-dependent Schro¨dinger equationi ḟ5(H1W)f
with the rigorous control of the error@6#. To this end, let the
solution of the time-dependent Schro¨dinger equation be writ-
ten as

f~ t,x!5a1~ t !c1~x!1a2~ t !c2~x!1fc~ t,x!, ~1!

wherec65(c16c2)/A2 are thesingle-wellstates,c1,2 are
the normalized eigenvectors ofH associated to the eigenva
uesl1,2 andfc5Pcf wherePc denotes the projection op
erator on the eigenspace associated to the essential spe
of H, that is ^fc(t,•),c6&50 for any t; ^•,•& denotes the
usual scalar product on the Hilbert spaceL2(R). The substi-
tution of f by Eq.~1! leads to the following system of equa
tions:

i ȧ15Va12da21^c1 ,Wf&,

i ȧ252da11Va21^c2 ,Wf&, ~2!

i ḟc5Hfc1PcWf,

whereV5(l11l2)/2. Lett5dt be aslow time~in this way
the beating period becomes 2p), F be the 232 matrix with
elementsF6,65^c6 , f c6&, I 5s1 be the first Pauli matrix,
A(t) be the column matrix with elementsA6(t)
5a6(t)eiVt and Rc be the column matrix with element
Rc,65(1/d)eiVt^c6 ,Wfc&; then the first two equations o
the above system can be written as

iA8~t!5@2I 1~e/d!v~mt/d!F#A~t!1Rc , ~3!

where8 denotes the derivative with respect tot.
We remark that in the limit of large barrier between t

two wells thend!1 and the single-well statesc6 are as-
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ymptotically given byc0(6x), wherec0(x) is localized in
one well@7#. If, as we can assume without lack of generali
f (x) has compact support contained in the same well, the
follows thatF1,1; f 05^c0 , f c0& and the other terms ofF
can be neglected in the large barrier limit.

Now, it is a matter of integration by parts and use of t
third differential equation of system~2!, to obtain that the
remainder term in Eq.~3! can be arranged as

Rc5~e2/d!UA1R,

whereU is a 232 matrix with elementsU6,6 independent
of t andR is a remainder term obtained collecting the oth
contributions. In particular, in the large barrier limit we ha
that

U1,1;u0524(
n5” 0

ucnu2L~V1nm!,

wherecn are the Fourier coefficients ofv(t) and

L~E!5^ f c0 ,@H2~E1 i0!#21Pcf c0&, ~4!

and the other terms ofU can be neglected. We remark th
Im u0(m)<0 for anym and, generically, Imu0(m),0 pro-
vided thatV1nm.0 for somen such thatcn5” 0. If we
denotev5vp1v0, wherev0 is the mean value ofv(t) in one
period, and

M52I 1~ev0 /d!F1~e2/d!U,

then Eq.~3! takes the final form

iA8~t!5@M1~e/d!vp~mt/d!F#A~t!1R,

which has solution

A~t!5e2 i (e/d)*0
tvp(ms/d)dsF@e2 iM tA~0!1RA~t!#, ~5!

wheree2 i (e/d)*0
tvp(ms/d)dsF511O(e/m), for anyt, sincevp

has mean value zero. In the simultaneous limit of small p
turbation and large barrier and assuming the time-decay
haviore2 iHt Pc;O(t2s), for somes.1, as specified in Ref
@8#, we have the following estimate of the remainder term

uRA,6~t!u<~e3/d!C maxuA6~0!u, ~6!

for any t fixed and some positive constantC independent of
e andd.

From Eqs.~1!, ~5!, and ~6! it follows that the beating
effect between the two single-well states is completely
scribed by means of the eigenvaluesl 1,2 of the matrixM; in
particular, from Eqs.~5! and ~6! we obtain that

A6~t!;c1,6e2 i l 1t1c2,6e2 i l 2t, ~7!

for anyt fixed and for somec1,6 andc2,6 . The leading term
of these eigenvalues is given byl 1,2;@u6A11u2#, where
u5(u0k1z)/2 and where we definek5e2/d and z
5ev0f 0 /d. In the following we assumev0 small enough~in
particularuv0u<e in order to havez of the same order ofk);
6-2
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in the opposite case, it follows that the main effect of t
perturbationW is a drastic destruction of the symmetry a
the time-dependent term, given bye f (x)vp(t), does not af-
fect the dynamics in a substantial way.

Now, in order to obtain an explicit result, we consid
a simple one-dimensional double-well model wi
piecewise constant static potentialV(x)5V1x [0,x1] (uxu)
2V2x (x1 ,x11a)(uxu), where xS(x) is equal to 1 for anyx

PS and 0 otherwise,a,x1 ,V1 andV2 are positive constant
such that the discrete spectrum ofH consists of only two
eigenvalues; for example, fora55, V250.25, x154, and
V1 large enough, we have thatV520.069 32 andd!1. For
what concerns the perturbation we takef (x)5x (x1 ,x11a)(x)

and vp(t) with Fourier coefficients cn5c2n
5@sin(np/N)/(2n/N)#@12(21)n#, n51, . . . ,N, cj5c0
50, u j u.N512. Here, we use dimensionless units. In ord
to compute the functionL(E) we introduce the Dirichlet

FIG. 1. In ~a! we plot the imaginary part of the eigenvaluesl 1

~broken line! and l 2 ~full line! for z50 and k550 fixed andm
P(0.01,0.016), the dotted line represents the reference value22.
The occurrence of cusps, for the values ofm5V/n for somen such
thatcn5” 0, is a consequence of the fact that the functionL(E) is an
analytic function with branch point atE50 @14#. In ~b! we plot the
minimum splitting valueD(m), showing the vanishing for anym
larger than the critical valuem!. We see that the imaginary part o
l 2 is near the value22 at m5m!.
05210
r

operatorHD on L2(0,1`) with potential equal to2V2 on
the interval (0,a) and zero otherwise. From the fact thatf and
c0 are real-valued functions and from Eq.~4! it follows that

L~E!;^ f c0 ,@HD2~E1 i0!#21f c0&

52
2

wE0

a

f ~x!c0~x!u1~x!dxE
x

a

f ~y!c0~y!u2~y!dy

in the limit of largeV1, whereu1 andu2 are the solutions of
the equation@HD2(E1 i0)#u50 such thatu1(0)50 and
u2(1`)50 andw denotes the Wronskian@9#.

The result of the computation is that, in the casev050
andk!1, thenl 1,2;61 and we still have the unperturbe
beating effect. In contrast, forv050 andk fixed and large
enough, i.e.,k>k0 for somek0 but such thatek!1 in order

FIG. 2. We plot the real~full line! and imaginary part~broken
line! of the eigenvaluesl 1,2 for k550 fixed. For the critical value
m5m!'0.015 36~b! we have an exact crossing; vanishing of t
real part of the splitting and avoided crossing of the real part of
eigenvalues are observed, respectively, form.m! @m'0.156 in
~c!# andm,m! @m'0.15 in ~a!#.
6-3
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VINCENZO GRECCHI AND ANDREA SACCHETTI PHYSICAL REVIEW A61 052106
to use Eq.~6!, we obtain the wanted result: that is the beati
effect gradually disappears for increasing frequenciesm and
larger than a threshold value, in fact we take into acco
only a finite number of Fourier harmonics ofvp . Indeed,
Im l 1;0 and Iml 2;k Im u0(m),0 for m not too small
@see Fig. 1~a!#; from this fact and from Eq.~7! the destruc-
tion of the beating effect follows. In order to consider t
contribution given by the static termv0, we define the mini-
mum splitting value defined for anym as D(m)
5minzuRe(l 22l 1)u, wherek>k0 is fixed as above. Then
we have the vanishing ofD(m) for anym.m!, as it appears
in Fig. 1~b!, wherem! is the critical frequency for which we
have an exact crossing of the two eigenvaluesl 1,2 @see Fig.
2~b!#.

In Figs. 2~a!–2~c! we plot the imaginary and real parts o
the eigenvaluesl 1,2 for k fixed as above and for three di
ferent values of the frequency. Form equal to the critical
value m! we have the exact crossing@Fig. 2~b!#; in such a
case we observe a damped beating effect with beating pe
much greater than the unperturbed one. Form slightly larger
than the critical valuem! we have the vanishing of the rea
part of the splitting and the imaginary part ofl 1,2 is substan-
tially unaffected@Fig. 2~c!#; in such a case we have the d
struction of the beating effect and the localization result.
contrast, form,m! we have the avoided crossing of the re
part of the eigenvaluesl 1,2 @Fig. 2~a!# and we found, at the
avoided crossing point, the unperturbed splitting value, i
D(m) close to 2; in such a way the broken symmetry, due
vp , would be restored by the static termv0.
th
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Finally, we quote previous relevant results on localizati
and destruction of tunneling@10# in the case of a periodic
monochromatic external perturbation of a quartic doub
well potential. In such a case we have the absence of in
bility of the states because the double-well potential goe
infinity as x goes to infinity. A periodically driven double
well potential giving the instability of the states has be
considered in order to study the role of electron localizat
in molecular ionization@11#. We underline also that the
study of the dynamics of a two-level system under an ex
nal time-dependent perturbation is interesting in itself an
appears in many other fields; to name just a few, we men
the study of spin systems coupled with an environmental
@12# and the study of quantum transport of electrons in h
erostructures modulated by external fields@13#.

In this paper we have shown that localization and
shrinking of the splitting can be facilitated by instability
generated by a periodic perturbation. Although we are
from the full explanation of the molecular localization effec
some of our predictions can be verified on heterostructu
with microwaves perturbations. Further research in progr
involve nonperiodic and nonlinear perturbations.
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~1927!; for a review, see the papers by R. G. Woolley, Ad
Phys.25, 27 ~1976!; A. S. Wightman, Nuovo Cimento Soc
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