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Molecular localization induced by collisions
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We consider a periodically driven double well as a simplified dynamical model for molecular localization
induced by collisions. If the frequency of the collisions is high enough, so that the instability of the states is
larger than a critical value, then the states are localized and we have the redshift of the inversion line.

PACS numbgs): 03.65—~w, 33.80.Be, 73.40.Gk

In this paper we discuss the splitting instability in a peri- probability increases and ttieversion linebroadens and de-
odically driven double well. The physical motivation of this creases as the pressure increases, giving the so-called red-
study comes from the relevance of the concept of moleculaghift (RS effect[2]. _
structure in chemistry, but the model could be tested directly Some previous explicit modefgt] which are able to ex-

by means of heterostructures and microwaves. Let us recarﬂlg'n M'a* aire ?utgnlomlous, it.'e.’l they make tuse oIbtime-
the old problem of the explanation of the molecular localiza-NY€PENCENt potentials. In particuiar in a recen pabkrby

tion (ML) hypothesis, successfully used in chemistry as th%zltg?ngg unstable autonomous model, both ML and RS are

concept of molecular structure, in the rigorous quantum- . ihe present paper we use a nonautonomous model
mechanicsQM) framework[1]. QM requires that the prob- (time-dependent potentjaso that the instability caused by

ability distribution of stationary states have the same symthe molecular, collisions is represented in a more realistic
metry of the Hamiltonian, in marked contrast with the ML way.

requirement. The qualitative explanation of this apparent In particular, our model consists of a double-well poten-
contradiction is simple: since the molecule is not an isolatedial with a time-dependent perturbation simulating the dy-
system, its states cannot be stationf@ly The main problem namical influence of the environment on the ammonia mol-
is the understanding of the quantitative aspect of the pheecule, ie., the_c_olllsmns with the other molecules of the gas,
nomenon, as it results from the following question by Wool-Where the collision frequency is related to the pressure. Let

ley [1]: “Why should the general quantum theory describing us n_otice that the present model is more physical .thgn the
energy eigenstates turn out to be of such little use in che previous ones fqr th.e. reasons stated'above, but it 'S.St'”
istry, or put in another way, why should transitions out of the5|mpI|f|ed. One simplification is the choice of a perturbation

time-d dent molecul ¢ tat hich . IIperiodic in time. This choice is technical and is due to the
ime-dependent molecular quantum states which empiricallye .oy improvement of methods for handling periodic prob-
appear to be an essential ingredient of any useful quantu

chemistry. be 0 slow?” ®ms. We point out that the classical resonance effect be-
istry, be so slow?

= > tween different frequencies are not relevant for the results. In
Although it is generally accepted that the phenomenony,y case the results give anposteriorijustification of the

should be explained by means of decoherence argurf@nts odel.
it is also clear that explicit models are needed. Thus, by since the firstbut not the secondrder perturbation term
means of the study of an explicit model, we want to point outyanishes, we set the perturbation of the same order of the
the role of instability in the localization phenomenon. In- square root of the splitting. We consider the large internal
deed, we expect the existence of metastable states in pesarrier regime, so that both the splitting and the perturbation
turbed systems and we want to study the smallness of thare exponentially small. This choice of parameters is similar
interaction between a pair of such states for large instabilityto previous ones, and allows us to apply the same compari-
Let us consider the case of the ammonia molecule;,NH son with experiments given by Claverie and Jona Lasinio
where the model for the motion of the nitrogen atom N is a[4], although in that case the frequency parameter was ab-
double well with a large internal barrigt]. In this model we  sent. If the periodic perturbation is strong enough, and the
have the pyramidal shape of the molec(igolecular struc-  Fourier coefficients are slowly decreasing for increasing in-
ture) if the state is localized in one of the wells. Thever-  dex, we have localization for a frequency larger than a criti-
sion lineof the molecular microwave emission gives the en-cal value but smaller than a large value. This upper bound
ergy splitting of the stationary states. Experiments onshould be related to the simplification of the model given by
ammonia gas show that the localization and timeersion  the periodicity of the time behavior. Since the model is lin-
line are dependent on pressure. In particular, the localizatiogar, we have no spontaneous symmetry breaking, so that the
perturbation is asymmetric, but not too much, in order to
have the RS. We control the asymmetry of the perturbation
*Electronic address: Grecchi@dm.unibo.it by varying the coefficient of the time independent perturba-
"Electronic address: Sacchetti@unimo.it tion.
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Let us notice that both effects, i.e., localization and theymptotically given byio(=X), whereyy(x) is localized in
vanishing of the splitting, occur at a critical frequency giving one well[7]. If, as we can assume without lack of generality,
a critical instability, such that the mean life of the states isf(x) has compact support contained in the same well, then it
the same of the unperturbed beating period. In this case thfellows thatF . . ~f,=(¢q,f¢o) and the other terms df
width of the inversion line is of the same order of the unper-can be neglected in the large barrier limit.
turbed line itself. Now, it is a matter of integration by parts and use of the

We consider a one-dimensional Sotlirger operatoH third differential equation of syster(), to obtain that the
with a real-valued symmetric double-well potenti&lsuch  remainder term in Eq(3) can be arranged as
that the discrete spectrum &f is given by two negative
nondegenerate eigenvaluéanergy levels \;<\, and the Re=(€/8)UA+R,
essential spectrum by the positive real axis. The difference ) . ,
between the two levels gives the splitting defined as Whereu is a 2x2 matrix with elementdJ... . independent
=25, 5=(\,—\y)/2%: in the following, for the sake of sim- of r gndR is a remal_nder term obtained col.lect_mg the other
plicity, we take# fixed and equal to 1. The asymmetrical contributions. In particular, in the large barrier limit we have
time-dependent perturbatiow, that simultaneously intro- that
duces the breaking of the symmetry and the instability of the
system, is given by means of a potential periodic in time on U, +~Up= -4 [chPA(Q+np),
one of the wells and vanishing on the other well; that is n#0
W(x,t)=ev(ut)f(x) wheree is a small real and positive
parametery (t) is a periodickick-type) function with period
27 andf(x) is a real-valued function with compact support A(E)=(fho,[H—(E+i0)]" P 1), (4)
contained in one well.

By means of new techniques for the analysis of nonautoand the other terms dfi can be neglected. We remark that
nomous Hamiltonian systems we compute here the solutiongn ug(x)<0 for any u and, generically, Inug(u)<<O pro-
of the time-dependent Schitimger equatiori ¢:(H+V\0¢ vided thatQ+nu>0 for somen such thatc,#0. If we
with the rigorous control of the err¢6]. To this end, let the denotev=v,+uv,, wherev, is the mean value af(t) in one
solution of the time-dependent Schinger equation be writ-  period, and
ten as

p(t,x)=a. (. (X)+a_ (- (X)+de(t,x), (1)

wherec, are the Fourier coefficients of(t) and

M=—1+(evy/8)F+ (€% 6)U,

then Eq.(3) takes the final form

where . = (1% )12 are thesingle-wellstates i, , are o
the normalized eigenvectors bf associated to the eigenval- IAY(1)=[M (el d)vy(url OFIA(T) TR,
uesh;, and ¢.=P.¢p whereP. denotes the projection op- \yhich has solution

erator on the eigenspace associated to the essential spectrum

of H, that is{¢¢(t,-),¥.)=0 for anyt; (-,-) denotes the
usual scalar product on the Hilbert spdc€R). The substi-
tution of ¢ by Eq.(1) leads to the following system of equa-
tions:

A( T) — e—i(e/ﬁ)fgvp(p,slﬁ)dsF[e—iM TA(O) + RA( 7_)]’ (5)

wheree ™ !(¢/2/qvp(kAdsF= 1 1 O( e/ ), for any 7, sincev,,

has mean value zero. In the simultaneous limit of small per-

o turbation and large barrier and assuming the time-decay be-
=Qa,—da_+ w : - I

la,=0a,—8a_+{y. . We), haviore H'P_.~0O(t™9), for somes>1, as specified in Ref.

- 8], we have the following estimate of the remainder term:

ia_=—da,+Qa_+{(y_ ,W¢), 2 (8] 9

[Ra,=(7)|<(€% 8)CmaxA.(0)], (6)

i¢c=Hp.+PWe, ) . .

for any r fixed and some positive consta@itindependent of
whereQ) =(\;+\,)/2. Let 7= 6t be aslow time(in thisway € andé.
the beating period becomesr®, F be the 2<2 matrix with From Egs.(1), (5), and (6) it follows that the beating
elements. . =(¢. ,fy.), 1=s; be the first Pauli matrix, effect between the two single-well states is completely de-
A(7) be the column matrix with elementsA.(7) scribed by means of the eigenvalués, of the matrixM; in
=a. (t)e' and R, be the column matrix with elements particular, from Eqgs(5) and(6) we obtain that
Re = (1/8)e' ™ (4. \We.); then the first two equations of

the above system can be written as A.(7)~Cy € 1T+c, e, (7)
A (1)=[—1+(el &)v(url SFIA(T)+R;, (3)  foranyrfixed and for some, . andc, ... The leading term

of these eigenvalues is given b ,~[u= 1+ u?], where

where’ denotes the derivative with respect#o u=(ugk+2z)/2 and where we definek=¢€%6 and z

We remark that in the limit of large barrier between the = evyfy/ 4. In the following we assume, small enough(in
two wells thend<1 and the single-well stateg.. are as- particular|v,|< e in order to havez of the same order df);
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FIG. 1. In(a) we plot the imaginary part of the eigenvalu€s
(broken ling and /7, (full line) for z=0 andk=50 fixed andu -10 - -8
€(0.01,0.016), the dotted line represents the reference vaRie
The occurrence of cusps, for the valuesuoef ()/n for somen such z

thatc,# 0, is a consequence of the fact that the funct\di) is an
analytic function with branch point &= 0 [14]. In (b) we plot the
minimum splitting valueA (u«), showing the vanishing for any
larger than the critical valug*. We see that the imaginary part of
/5 is near the value-2 atu=u*.

FIG. 2. We plot the reaffull line) and imaginary partbroken
line) of the eigenvalues’; , for k=50 fixed. For the critical value
un=u*~0.01536(b) we have an exact crossing; vanishing of the
real part of the splitting and avoided crossing of the real part of the
eigenvalues are observed, respectively, for u* [u~0.156 in
(©landu<up* [u~0.15in(a)].
in the opposite case, it follows that the main effect of the
pertu_rbatlonW is a drastic d_estructlon of the symmetry and operatorHp on L2(0,+ ) with potential equal to-V, on
the time-dependent term, given lay(x)vp(t), does not af-  he interval (0a) and zero otherwise. From the fact tfiand

fect the dynamics in a substantial way. 4y are real-valued functions and from E¢) it follows that
Now, in order to obtain an explicit result, we consider

a simple one-dimensional double-well model with _ _ fan1—1
piecewise constant static potential(x)=V1xjox,j(|X|) AB) (T, [Ho = (E+I0)] o)
—VaX(x, x+a)([X]), where xg(x) is equal to 1 for anyx
e S and 0 otherwisea,x;,V; andV, are positive constants
such that the discrete spectrum ldf consists of only two
eigenvalues; for example, fa=5, V,=0.25, x;=4, and  in the limit of largeV,, whereu, andu, are the solutions of
Vl Iarge enough, we have th@t=—0.069 32 andd<1. For the equatior[HD—(E+i0)]u:0 such thatul(O):O and
what concerns the perturbation we tal(e&) = x(x, x,+a)(X)  u,(+%)=0 andw denotes the Wronskiai9].

and wvy(t) with Fourier coefficients c,=c_, The result of the computation is that, in the case=0
=[sin(a/N)/(2n/N)][1-(—=1)"], n=1,... N, c¢j=c¢, andk<l, then/;,~=*1 and we still have the unperturbed
=0, |j|>N=12. Here, we use dimensionless units. In orderbeating effect. In contrast, far,=0 andk fixed and large
to compute the functiom\(E) we introduce the Dirichlet enough, i.e.k=k, for somekg but such thatk<1 in order

2 (a a
—— = ["t0w0oust0ax "1 wamuty)ay
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to use Eq(6), we obtain the wanted result: that is the beating Finally, we quote previous relevant results on localization
effect gradually disappears for increasing frequengieand  and destruction of tunnelinfll0] in the case of a periodic
larger than a threshold value, in fact we take into accounmonochromatic external perturbation of a quartic double-
only a finite number of Fourier harmonics of,. Indeed, vv_e_II potential. In such a case we have the absen(_:e of insta-
Im/;~0 and Im/,~kImug(x)<O0 for u not too small _b|||_ty of the states bgcau_se the doyblg—well pptenual goes to
[see Fig. 18)]; from this fact and from Eq(7) the destruc- infinity as x goes to infinity. A periodically driven double-
tion of the beating effect follows. In order to consider the Well potential giving the instability of the states has been
contribution given by the static term,, we define the mini-  considered in order to study the role of electron localization
mum splitting value defined for anyu as A(w) N molecular ionization[11]. We underline also that the
=minJRe(/,— /)|, wherek=k, is fixed as above. Then study of the dynamics of a two-level system under an exter-
we have the vanishing () for any x> u*, as it appears @l ime-dependent perturbation is interesting in itself and it
in Fig. 1(b), wherey* is the critical frequency for which we @PP€ars in many other fields; to name just a few, we mention
have an exact crossing of the two eigenvaldes [see Fig. the study of spin systems coupled with an environmental sea

2(b)]. [12] and the study of quantum transport of electrons in het-
In Figs. 2a)—2(c) we plot the imaginary and real parts of erostructures modulated by external fields]. ~
the eigenvalues’, , for k fixed as above and for three dif- !N this paper we have shown that localization and the

ferent values of the frequency. Far equal to the critical shrinking of the spl_itting can be facilitated by instability,
value u* we have the exact crossiigig. 2b)]; in such a generated by a perlpdlc perturbation. Although we are far
case we observe a damped beating effect with beating periJGom the full expla_na_tlon of the moIeQL_JIar localization effect,
much greater than the unperturbed one. Ealightly larger some (_)f our predictions can be verified on heter_ostructures
than the critical valuex* we have the vanishing of the real W'th microwaves perturbatlon_s. Further resgarch IN progress
part of the splitting and the imaginary partf ,is substan- involve nonperiodic and nonlinear perturbations.

tially unaffected[Fig. 2(c)]; in such a case we have the de-  We thank G. Jona Lasinio for useful discussions on this
struction of the beating effect and the localization result. Insubject. This work was partially supported by the Italian
contrast, foru<u* we have the avoided crossing of the real MURST and CNR-GNFM. V.G. was supported by the INFN
part of the eigenvalues’, , [Fig. 2@@)] and we found, at the and by the University of Bologn#&funds for selected re-
avoided crossing point, the unperturbed splitting value, i.e.search topids A.S. was supported by the program “Progetti
A(w) close to 2; in such a way the broken symmetry, due tadi ricerca orientata” of the University of Modena and Reg-
vp, Would be restored by the static tewy. gio Emilia.
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