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Abstract: We prove that the Floquet spectrum of the time periodic Schrödinger equation

i
∂u

∂t
= −1

2
�u + 1

2
x2u + 2ε(sint)x1u + µV (t, x)u, corresponding to a mildly nonlin-

ear resonant forcing, is purely absolutely continuous forµ suitably small.

1. Introduction and Statement of the Result

It is well known [HLS] that the spectrum of the Floquet operator of the resonant, linearly
forced Harmonic oscillator

i
∂u

∂t
= −1

2
�u + 1

2
x2u + 2ε(sint)x1u, x = (x1, . . . , xn) ∈ R

n, ε > 0

is purely absolutely continuous. We show in this paper that the absolute continuity of
the Floquet spectrum persists under time-periodic perturbations growing no faster than
linearly at infinity provided the resonance condition still holds. Thus we consider the
time-dependent Schrödinger equation

i
∂u

∂t
= −1

2
�u + 1

2
x2u + 2ε(sint)x1u + µV (t, x)u (1.1)

and suppose thatV (t, x) is a real-valued smooth function of(t, x), 2π -periodic with
respect tot , increasing at most linearly as|x| goes to infinity:

|∂αx V (t, x)| ≤ Cα, |α| ≥ 1. (1.2)
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Under this condition Eq. (1.1) generates a unique unitary propagatorU(t, s) on the
Hilbert spaceL2(Rn). The Floquet operator is the one-period propagatorU(2π,0) and
we are interested in the nature of its spectrum. It is well known that the long time be-
haviour of the solutions of (1.1) can be characterized by means of the spectral properties
of the Floquet operator ([KY]). Our main result in this paper is the following theorem.

Theorem 1.1. Let V be as above. Then, for |µ| sup
t,x

|∂x1V (t, x)| < ε, the spectrum of the

Floquet operator U = U(2π,0) is purely absolutely continuous.

Remark. The above result can be understood in terms of the classical resonance phe-

nomenon. IfV = 0 all motions generated by the classical Hamiltonian
1

2
(p2 + x2) +

2εx1sint undergo a resonance between the proper frequency of the harmonic motions
and the frequency of the linear forcing term: as a consequence, for any given initial
condition the classical motion eventually diverges to infinity by oscillations of linearly
increasing amplitude. The quantum counterpart of this phenomonon is the absolute con-
tinuity of the Floquet spectrum[HLS]. One might ask whether this absolute continuity is
stable under perturbations which destroy the linearity of the forcing potential. Theorem
1.1 establishes the stability under perturbations which make the forcing a non-linear
one but do not destroy the resonance phenomenon because all initial conditions still
diverge by oscillations to infinity. Therefore, the fact that all initial conditions for the
corresponding classical motions satisfy the resonance condition seems an almost nec-
essary condition for the spectral absolute continuity of the Floquet spectrum. Indeed

it is known that the Schrödinger equationi
∂u

∂t
= −1

2�u + ε|x|αu + µV (ωt, x)u, with

boundedV (t + 2π, x) = V (t, x), α > 2, ω ∈ R whose classical counterpart admits
but a dense set of resonant initial conditions, has no absolutely continuous part in its
Floquet spectrum ifV ∈ C2([H]); moreover it has pure point spectrum for a large set
of non-resonantω for µ small andV ∈ Cr (r suitably large), providedV satisfies a
supplementary condition on its matrix elements([DS]).

Notation. We use the vector notation: for the multiplication operatorXj by the vari-

able xj and the differential operatorDj = 1

i

∂

∂xj
, j = 1, . . . , n, we denoteX =

(X1, . . . , Xn) andD = (D1, . . . , Dn). For a measurable functionW and a set of com-
muting selfadjoint operatorsH = (H1, . . . ,Hn), W(H) is the operator defined via
functional calculus. We have the identity

U∗W(H)U = W(U∗HU) (1.3)

for any unitary operatorU .

2. Proof of the Theorem

It is well known ([Ya]) that the nature of the spectrum of the Floquet operatorU is the
same (apart from multiplicities) as that of the Floquet Hamiltonian formally given by

Ku = −i
∂u

∂t
− 1

2
�u + 1

2
x2u + 2ε(sint)x1u + µV (t, x)u (2.1)
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on the Hilbert spaceK = L2(T) ⊗ L2(Rn), whereT = R/2πZ is the circle. More
precisely, ifK is the generator of the one-parameter strongly continuous unitary group
U(σ ), σ ∈ R, defined by

(U(σ )u)(t) = U(t, t − σ)u(t − σ), u = u(t, ·) ∈ K, (2.2)

then,U(2π) = e−i2πK is unitarily equivalent to1 ⊗ U(2π,0). We set

D ≡ C∞(T,S(Rn)).

It is easy to see that:

1. The function spaceD is dense inK.
2. D is invariant under the action of the groupU(σ ).
3. D is a subset of the domainD(K) of K and, foru ∈ D, Ku is given by the right-hand

side of (2.1).

It follows thatD is a core forK ([RS]) andK is the closure of the operator defined by
(2.1) onD.

We introduce four unitary operatorsU0 ∼ U3 onK and successively transformK by
Uj as follows: WriteH0 for the selfadjoint operator onL2(Rn) defined by

H0 = −1

2
� + 1

2
x2 − 1

2

with the domainD(H0) = {u ∈ L2(Rn) : D2u, x2u ∈ L2(Rn)} and define

U0u(t, ·) = e−itH0u(t, ·), u ∈ K. (2.3)

Proposition 2.1. (1) The operator U0 is well defined on K and is unitary.
(2) U0 maps D onto itself.
(3) For u ∈ D, K1 ≡ U∗

0KU0 is given by

K1u = −i
∂u

∂t
+ 2εsint (X1cost + D1sint)u + µV (t,Xcost + Dsint)u + u

2
.

(2.4)
(4) D is a core of K1.

Proof. It is well-known thatσ(H0) = {0,1, . . . } and we havee−2πniH0 = 1. Hence
(2.3) defines a unitary operator onK. We haveS(Rn) = ∩∞

k=1D(Hk
0 ) and (2) follows.

(3) follows from the identity (1.3) and the well-known formulae

eitH0Xe−itH0 = Xcost + Dsint, eitH0De−itH0 = −Xsint + Dcost.

SinceD is a core ofK andU0 mapsD onto itself,D is also a core forK1. ��
Note that for any linear functionaX + bD + c of X andD, andW satisfying (1.2),

W(aX+bD+c) is the pseudo-differential operator with theWeyl symbolW(ax+bξ+c)

([Hö]).
To eliminate the term 2εX1sintcost from K1, we define

U1u(t, x) = eiε(cos2t)x1/2u(t, x). (2.5)
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It is easy to see thatU1 mapsD onto itself and we have

U∗
1

(
−i

∂

∂t

)
U1 =

(
−i

∂

∂t

)
− ε(sin2t)X1, U∗

1DU1 = D + εcos2t

2
e1,

on D. It follows thatK2 ≡ U∗
1K1U1 is given by the closure of

K2u = − i
∂u

∂t
+ 2ε(sin2t)D1u + ε2(sin2tcos2t)u

+ µV (t,Xcost + sint (D + εcos2t

2
e1))u + u

2

(2.6)

defined onD. We write 2ε(sin2t)D1 = εD1 − ε(cos2t)D1 in the right side of (2.6).
Next, to eliminate the term−ε(cos2t)D1, we define

U2u(t, x) = eiε(sin2t)D1/2u(t, x) = u(t, x + ε(sin2t)e1/2).

Then,U2 mapsD onto itself and we have onD,

U∗
2

(
−i

∂

∂t

)
U2 =

(
−i

∂

∂t

)
+ ε(cos2t)D1, U∗

2XU2 = X − εsin2t

2
e1.

It follows, also with the help of the identity (1.3), thatK3 ≡ U∗
2K2U2 is the closure of

the operator given onD by

K3u = − i
∂u

∂t
+ εD1u + ε2(sin2tcos2t)u

+ µV (t,Xcost + Dsint − εsint

2
e1)u + u

2
.

(2.7)

Here we also used the obvious identity cos2tsint − costsin2t = −sint .
We write now

(sin2t)cos2t = 1

2
cos2t − 1

4
cos4t − 1

4
,

and define

U3u(t, x) = e−iε2(sin2t)/4+iε2(sin4t)/16u(t, x).

AgainU3 mapsD onto itself andL ≡ U∗
3K2U3 is the closure of the operator given onD

by

Lu = − i
∂u

∂t
+ εD1u + (2 − ε2)u

4

+ µV

(
t, Xcost + Dsint − εe1sint

2

)
u.

(2.8)

Thus,K is unitarily equivalent toL defined as the closure of the operator with domain
D and action specified by the right side of (2.8).

Completion of the proof of the Theorem.We apply Mourre’s theory of conjugate operators
([M]; see also[PSS]). We take the selfadjoint operatorA defined by

Au(t, x) = x1u(t, x)

with obvious domain as the conjugate operator forL, and verify the conditions (a)–(e)
of Definition 1 of [M] are satisfied.
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(a) D ⊂ D(A) ∩ D(L) and henceD(A) ∩ D(L) is a core ofL.
(b) It is clear thateiαA = eiαX1 mapsD ontoD and that, foru ∈ D, we have

e−iαALeiαAu − Lu = εαu − µV

(
t, Xcost + Dsint − εe1sint

2

)
u

+ µV

(
t, Xcost + Dsint − (ε − 2α)e1sint

2

)
u.

SinceV (x)− V (x + αe1sint) is bounded with bounded derivatives, the right-hand
side extends to a bounded operator onK and it is continuous with respect toα in the
operator norm topology. It follows thateiαA maps the domain ofL into itself and
sup|α|≤1 ‖LeiαAu‖K < ∞ for anyu ∈ D(L).

(c) Let us verify the conditions (c’), (i), (ii), (iii) of Proposition II.1 of [M] takingH = L,
A = A andS = D. The verification of these conditions in turn implies (c). First
remark that (i) and (ii) are a direct consequence of (a) and (b) above. Moreover for
anyu ∈ D we have

i[L,A]u = εu + µsint · ∂x1V

(
t, Xcost + Dsint − εsint

2
e1

)
u. (2.9)

The right-hand side extends to a bounded operator inK which, following [M], we
denotei[L,A]◦. The boundedness implies a fortiori Condition (iii) and hence (c) is
verified.

(d) By direct computation we have foru ∈ D,

i[[L,A]◦,A]u = µsin2t (∂2
x1
V )

(
t, Xcost + Dsint − εsint

2
e1

)
u. (2.10)

The right-hand side extends to a bounded operator onK. It follows that [L,A]◦
D(A) ⊂ D(A) and (2.10) holds foru ∈ D(A). Hence[[L,A]◦,A] defined on
D(L) ∩ D(A) is bounded and this yields (d).

(e) The operator norm ofu �→ sint · ∂x1V

(
t, Xcost + Dsint − εsint

2
e1

)
u is bounded

by sup
t,x

|∂x1V (t, x)|by an abstract theorem of functional calculus([RS]) or by noticing

that the operator is unitarily equivalent to sint ·∂x1V (t, x−εsinte1/2) via the unitary
operatorU0. Hence if|µ|‖∂x1V ‖L∞ < ε, then we havei[L,A]◦ ≥ c > 0.

Thus the conditions of [M] are satisfied and we can conclude thatσ(K) = σac(K) if
|µ|‖∂x1V ‖L∞ < ε by Theorem and Proposition II.4 of [M].
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