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Abstract: We prove that the Floquet spectrum of the time periodic Schrédinger equation

15 = _EAM + =x“u + 2e(sint)x1u + nV (¢, x)u, corresponding to a mildly nonlin-

ear resonant forcing, is purely absolutely continuougdfauitably small.

1. Introduction and Statement of the Result

Itis well known [HLS] that the spectrum of the Floquet operator of the resonant, linearly
forced Harmonic oscillator

i8_u = —}Au + 1')czu + 2e(sint)xu, x=(x1,...,x,) €R", ¢>0
ot 2 2
is purely absolutely continuous. We show in this paper that the absolute continuity of
the Floquet spectrum persists under time-periodic perturbations growing no faster than
linearly at infinity provided the resonance condition still holds. Thus we consider the
time-dependent Schrédinger equation

ad 1 1 .
i—u = —ZAu+ =x%u+ 2e(sint)xiu + uV(t, x)u (1.2)
ot 2 2
and suppose that (¢, x) is a real-valued smooth function &f, x), 27 -periodic with
respect ta, increasing at most linearly &s| goes to infinity:

YV (t,x)| <Cq, || >1 (1.2)
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Under this condition Eg. (1.1) generates a unique unitary propadaiors) on the
Hilbert spacel.?(R"). The Floquet operator is the one-period propagétr, 0) and

we are interested in the nature of its spectrum. It is well known that the long time be-
haviour of the solutions of (1.1) can be characterized by means of the spectral properties
of the Floquet operator ([KY]). Our main result in this paper is the following theorem.

Theorem 1.1. Let V beasabove. Then, for || sup|dx, V (z, x)| < &, the spectrumof the
t,x
Floquet operator U = U (2r, 0) is purely absolutely continuous.

Remark. The above result can be understood in terms of the classical resonance phe-

. . !
nomenon. IfV = 0 all motions generated by the classical Hamilto mzz +x%) +

2ex1Sint undergo a resonance between the proper frequency of the harmonic motions
and the frequency of the linear forcing term: as a consequence, for any given initial
condition the classical motion eventually diverges to infinity by oscillations of linearly
increasing amplitude. The quantum counterpart of this phenomonon is the absolute con-
tinuity of the Floquet spectrum[HLS]. One might ask whether this absolute continuity is
stable under perturbations which destroy the linearity of the forcing potential. Theorem
1.1 establishes the stability under perturbations which make the forcing a non-linear
one but do not destroy the resonance phenomenon because all initial conditions still
diverge by oscillations to infinity. Therefore, the fact that all initial conditions for the
corresponding classical motions satisfy the resonance condition seems an almost nec-
essary condition for the spectral absolute continuity of the Floquet spectrum. Indeed

. - .0 .
it is known that the Schrodinger equatlonbti = —%Au + elx|%u + uV (wt, x)u, with

boundedV (+ + 27,x) = V(t,x), « > 2, w € R whose classical counterpart admits
but a dense set of resonant initial conditions, has no absolutely continuous part in its
Floguet spectrum it/ e C2([H]); moreover it has pure point spectrum for a large set

of non-resonani for  small andV € C” (r suitably large), provided’ satisfies a
supplementary condition on its matrix elements([DS]).

Notation. We use the vector notation: for the multiplication operaigrby the vari-

. . 10
able x; and the differential operatob; = T j = 1,...,n, we denoteX =
1 0X;
(X1,...,Xp)andD = (D1, ..., D,). For a measurable functidif and a set of com-

muting selfadjoint operatorsl = (H1,...,H,), W(H) is the operator defined via
functional calculus. We have the identity

UWHIU = WU HU) (1.3)

for any unitary operatady.

2. Proof of the Theorem

It is well known ([Ya]) that the nature of the spectrum of the Floquet opel@tis the
same (apart from multiplicities) as that of the Floquet Hamiltonian formally given by

d 1 1 .
Ku = —ia—L; - EAM + Exzu + 2e(sint)xiu + nV(t, x)u (2.1)
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on the Hilbert spac& = L%(T) ® L2(R"), whereT = R/2xZ is the circle. More
precisely, ifKC is the generator of the one-parameter strongly continuous unitary group
U(o), o € R, defined by

U )w)(t) =U,t —o)u(t —o),u=u(t,-) kK, (2.2)
then,U/(2) = ¢~'2"K is unitarily equivalent td ® U (2r, 0). We set
D = C®(T, S(R")).

It is easy to see that:

1. The function spacP is dense irK.

2. Disinvariant under the action of the grolfio ).

3. Disasubset of the domain(K) of K and, foru € D, Ku is given by the right-hand
side of (2.1).

It follows thatD is a core forkC ([RS]) and is the closure of the operator defined by
(2.1) onD.

We introduce four unitary operataig ~ U3 onK and successively transforkiby
U; as follows: WriteHy for the selfadjoint operator oh?(R") defined by

with the domainD (Hp) = {u € L3(R") : D?u, x%u € L?(R")} and define
Uou(t, ) = e ™Moy, ), uekK. (2.3)

Proposition 2.1. (1) The operator Uy iswell defined on K and is unitary.
(2) Uy maps D onto itself.
(3) For u € D, K1 = UKo is given by

0 . . .
Kiu = —ia—': + 2esint (X1€038 + Disint)u + wV (¢, Xcos + Dsint)u + g
. (2.4)
(4) D isacoreof Kj.

Proof. It is well-known thato (Hp) = {0, 1, ...} and we have—27Ho = 1 Hence
(2.3) defines a unitary operator &n We haveS(R") = ﬂ,‘jilD(Hc’,‘) and (2) follows.
(3) follows from the identity (1.3) and the well-known formulae

e'Hoxe~itHo — Xcost + Dsint, e''"Hope~i"Ho — _Xsint + Dcost.
SinceD is a core oflC andifyg mapsD onto itself,D is also a core fokC;. 0O

Note that for any linear functionX + bD + ¢ of X andD, andW satisfying (1.2),
W (a X +bD+c) isthe pseudo-differential operator with the Weyl symbalix +b& +¢)

([HAD).

To eliminate the term&X1sinccos from K1, we define

Unu(t, x) = ' eCOSDX/2, (4 )y, (2.5)
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It is easy to see thaf; mapsD onto itself and we have

£cos2
291,

at
onD. It follows thatK; = U K1ty is given by the closure of

0 a .
us <—i—) Uy = (—i5> —e(sin2)X1, U{DU1 =D+

d
Kou = — i—u + 28(Sin2t)D1u + sz(sinztcoszm
ot (2.6)

. £C0s2 u
+ uVi(t, Xcos + sint (D + Tel))u + >

defined orD. We write Z(sin?t) D1 = ¢ D1 — £(cos2) D1 in the right side of (2.6).
Next, to eliminate the term-¢(cos2) D;, we define

Uou(t, x) = pi€(sin2)D1/2

u(t,x) = u(t, x + e(sinz)ey/2).
Then,U> mapsD onto itself and we have oD,

esin2

ad ad
U (—i—) U = <—i—) +e(cos2)D1, Uy XUp =X —
at ot
It follows, also with the help of the identity (1.3), thiig = U5 Kol> is the closure of
the operator given ob by
d .
M Dy + £2(sinfrcosd)u
at
. (2.7)
. esint u
+ uVi(t, Xcos + Dsint — Tel)u + >
Here we also used the obvious identity c@s@ — cogsin2 = —sin.
We write now

Kau= —i

1 1 1
in? 2 = Zcos2 — ~cos4 — =
(sin“t)cos > cos 4cos 2

and define

—ig?(sin2) /A+ie?(sind)/16

Usu(t,x) =e u(t, x).

Againifz mapsD onto itself andC = U3 KCol43 is the closure of the operator given DBn
by
3 2—¢?
Lu = —ia—u—l—aDlu—i—%
f (2.8)

. eepsin
+uV <t,XCOS+DSIﬂt— 5 )u

Thus,K is unitarily equivalent taC defined as the closure of the operator with domain

D and action specified by the right side of (2.8).

Compl etion of the proof of the Theorem. We apply Mourre’s theory of conjugate operators
([M]; see also[PSS]). We take the selfadjoint operadadefined by

Au(t, x) = xqu(t, x)

with obvious domain as the conjugate operatordpand verify the conditions (a)—(e)
of Definition 1 of [M] are satisfied.
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(a)
(b)

(©)

(d)

(e

~

Dc DAN D(/.‘,) and henceD(A) N D(L) is a core ofL.
Itis clear thak'®A = ¢/*X1 mapsD ontoD and that, fom € D, we have

ceqsint

e ALY — Ly = eau — uv (t, Xcos + Dsint — u

(e — 2a)elsint)
—_— | U

+uV <t,Xcos+Dsint— 5

SinceV (x) — V(x + ae;sint) is bounded with bounded derivatives, the right-hand
side extends to a bounded operatoioand it is continuous with respectdoin the
operator norm topology. It follows that** maps the domain of into itself and

SUQy <1 | Lei* Ayl < oo for anyu € D(L).

Letus verify the conditions (c’), (i), (ii), (i) of Proposition 11.1 of [M] taking = L,

A = AandS = D. The verification of these conditions in turn implies (c). First
remark that (i) and (ii) are a direct consequence of (a) and (b) above. Moreover for
anyu € D we have

. . sint
i[L, Alu = eu + usin - 9, V (t, Xcog + Dsin — STe1> u. (2.9

The right-hand side extends to a bounded operatér which, following [M], we
denote [ L, A]°. The boundedness implies a fortiori Condition (iii) and hence (c) is
verified.

By direct computation we have fare D,

L. AP, Alu = psirfe (62 V) (t, Xcos + Dsin — @el) w. (210

The right-hand side extends to a bounded operatdK oit follows that[£, A]°
D(A) ¢ D(A) and (2.10) holds for € D(A). Hence[[L, A]°, A] defined on
D(£) N D(A) is bounded and this yields (d).

. . sine .
The operator norm af — sin¢ - d,, V | ¢, Xcos + Dsinr — 87e1> u is bounded
by sup| dx, V (1, x)| by an abstract theorem of functional calculus([RS]) or by noticing

that the operator is unitarily equivalent tosifi, V (¢, x —esinre; /2) via the unitary
operatoify. Hence if|u|||dy, VlL> < &, then we have[L, A]° > ¢ > 0.

Thus the conditions of [M] are satisfied and we can concludedii&) = o,.(K) if

|l

|0, VL < & by Theorem and Proposition 1.4 of [M].
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