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Abstract
In this paper we introduce Hilbert spaces of holomorphic functions given by
generalized Borel and Laplace transforms which are left invariant by the transfer
operators of the Farey map and its induced transformation, the Gauss map,
respectively. By means of a suitable operator-valued power series we are able
to study simultaneously the spectrum of both these operators along with the
analytic properties of associated dynamical ζ -functions. This construction
establishes an explicit connection between previously unrelated results of
Mayer and Rugh.

Mathematics Subject Classification: 58F20, 58F25, 11F72, 11M26

1. Introduction

The spectral analysis of transfer operators for smooth uniformly expanding maps of the unit
interval [0, 1] is now fairly well understood (see [C], [Ba1]). The spectrum depends crucially
on the function space considered which is in general a Banach space. For Banach spaces of
sufficiently regular functions, e.g. the space Ck of k-times differentiable functions on [0, 1]
with k � 0, the transfer operator is quasi-compact. This means that its spectrum is made
out of a finite or at most countable set of isolated eigenvalues with finite multiplicity (the
discrete spectrum) and its complementary, the essential spectrum. The latter is a disk whose
radius is a function both of k and the expanding constant ρ of the map (see, e.g. [CI]), in
such a way that if we let ρ → 1 from above (e.g. approaching an intermittency transition) the
essential spectral radius tends to coincide with the spectral radius itself. In particular, in order
to understand the nature of the spectrum lying under the ‘essential spectrum rug’, we have to
consider increasingly smooth test functions as ρ approaches 1. This suggests, for instance,
that for a type 1 intermittency model at the tangent bifurcation point (see [PM]), one should
consider suitable spaces of analytic functions. In this paper we construct a Hilbert space H0 of

0951-7715/02/051521+19$30.00 © 2002 IOP Publishing Ltd and LMS Publishing Ltd Printed in the UK 1521

http://stacks.iop.org/no/15/1521


1522 S Isola

analytic functions which is left invariant by the transfer operator P of the Farey map (see below
for definitions), a prototype of smooth intermittent interval map, having a neutral fixed point at
the origin. As a result, the spectrum of P when acting on H0 turns out to be the interval [0, 1]
with embedded eigenvalues 0 and 1, plus a finite or countably infinite set of eigenvalues of
finite multiplicity. The latter is conjectured to be empty. This would improve for this example
a previous result obtained by Rugh in a more general framework [Rug]. The above and related
achievements are obtained by (a slightly modified version of) an inducing procedure which
was introduced for the first time in the pioneering study [P1] (see also [PS], [HI], [Is]) for
a rather general class of intermittent interval maps. The main tool in this construction is
an operator-valued function Qz which enjoys simple algebraic relations both with P and the
transfer operator Q of the Gauss map, the latter being obtained by inducing the Farey map
with respect to the first passage time a subset of [0, 1] away from the neutral fixed point. The
spectral properties of Qz when acting on a Hilbert space H1 ⊂ H0 are then suitably translated
into those of Q in H1 as well as P in H0. The paper is organized as follows. Section 2 is
devoted to introduce the Farey–Gauss pair, briefly discussing some (mostly known) properties
of these maps and of their invariant measures and ending with a short account of their intimate
connection with number theory. Further material on these general facts can be found in [Bi],
[Ki], [F], [Ma2]. The main results are contained in the two subsequent sections. Section 3
deals with the spectral analysis of transfer operators. We first introduce the operator-valued
function Qz and establish simple algebraic identities (proposition 3.1). We then extend to Qz

some previous results of Mayer and Roepstorff (see [MaR1], [MaR2]) for the Gauss transfer
operator Q obtaining as a by-product an analytic continuation of Qz outside the unit disk which
is crucial to exploit the above identities for spectral analysis purposes (proposition 3.2). The
main results on the spectrum of P (theorems 3.3 and 3.4) are then obtained by combining these
identities with an explicit integral representation of P on the Hilbert space H0 (theorem 3.2).
In section 4 we apply the construction of the previous section to study analytic properties of the
dynamical ζ -functions [Ba2] for the Farey–Gauss pair. The role of Qz is here played by a two-
variable ζ -function ζ2(s, z) which simply relates to the Farey and Gauss ζ ’s (proposition 4.3)
and whose analytic structure is directly connected to the spectrum of Qz (theorem 4.5). As a
result, the ζ -function of the Farey map turns out to extend meromorphically to the cut plane
C \ [1, ∞) (corollary 4.3).

Finally, we point out that some generalized version (involving a ‘temperature’ parameter β)
of these functions were previously studied in [Ma1], [Ma2], [Ma3] for the Gauss map and in
[D] for the Farey map paired with an induced version conjugated to the Gauss map1. In the
more general context of piecewise analytic map with a neutral fixed point results yielding
meromorphic continuation to the cut plane for ζ -functions as well as regularized Fredholm
determinants were obtained in [Rug].

2. Preliminaires

We shall first consider the Farey map of the interval [0, 1] into itself defined as

F(x) =
{

F0(x), if 0 � x � 1
2 ,

F1(x), if 1
2 < x � 1,

(2.1)

1 The inducing construction used in [D], the same as in [P1], is only slightly different from that used here and several
quantities, e.g. operators and ζ -functions, dealt with there are closely related to those discussed here. I thank one of
the referees for having let me know about this work.
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where

F0(x) := x

1 − x
and F1(x) := F0(1 − x) = 1

F0(x)
= 1 − x

x
· (2.2)

The inverse branches are

�0(x) ≡ F−1
0 (x) = x

1 + x
= 1

2
− 1

2

(
1 − x

1 + x

)
,

�1(x) ≡ F−1
1 (x) = 1

1 + x
= 1

2
+

1

2

(
1 − x

1 + x

)
.

(2.3)

For x �= 0 the map �0(x) is conjugated to the right translation x → S(x) = x + 1, i.e.

�0 = J ◦ S ◦ J with J (x) = J−1(x) = 1

x
. (2.4)

This yields for the n-iterate

�n
0 (x) = J ◦ Sn ◦ J (x) = x

1 + nx
· (2.5)

Moreover, �1(x) satisfies

�1(x) = J ◦ S(x). (2.6)

2.1. The induced map

Let A = {An}n�1 be the countable partition of [0, 1] given by An = [1/(n + 1), 1/n]. Setting
A0 = [0, 1], it is easy to check that F(An) = An−1 for all n � 1. Let X be the residual
set of points in [0, 1] which are not preimages of 1 with respect to the map F0, namely
X = (0, 1] \ {1/n}n�1. The first passage time τ : X → N in the interval A1 is defined as

τ(x) = 1 + min{n � 0 : Fn(x) ∈ A1 } =
[

1

x

]
, (2.7)

where [a] is the integer part of a. We see that An is the closure of the set {x ∈ X : τ(x) = n}.
On the other hand, the return time function r : A1 → N ∪ {∞} in the interval A1 is given by

r(x) = min{n � 1 : Fn(x) ∈ A1 } = τ ◦ F(x). (2.8)

We now consider the map G : X → X obtained from F by inducing with respect to the first
passage time τ , i.e.

G(x) = Fτ(x)(x), (2.9)

which can be extended to all of [0, 1] setting G(0) = 1, G(1) = 0,

lim
x↑1/n

G(x) = 0, lim
x↓1/n

G(x) = 1, n > 1,

and whenever x ∈ (1/(n + 1), 1/n) we have, using (2.5),

G(x) ≡ Gn(x) = Fn(x) = F1 ◦ Fn−1
0 (x) = 1

x
− n = 1

x
− τ(x). (2.10)

In other words the induced map is the celebrated Gauss map

G(x) =



{
1

x

}
, if x �= 0,

0, if x = 0,
(2.11)

where {a} denotes the fractional part of a. It has countably many inverse branches �n given by

�n(x) = G−1
n (x) = 1

x + n
, n � 1. (2.12)
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2.2. Invariant measures

It is an easy task to verify that the σ -finite absolutely continuous measure

ν(dx) ≡ e(x) dx = 1

log 2

dx

x
(2.13)

is invariant for the dynamical system ([0, 1], F ). Note that ν(An) = (log 2)−1 log (1 + 1/n)

and ν([0, 1]) = ∞. Let Bn = {x ∈ A1 : r(x) = n}. Using (2.8) we have F1(Bn) = An. We
now show that ν(An) = ∑

k�n ν(Bk). Indeed, for n = 1 we have
∑

k�1 ν(Bk) = ν(A1) = 1.
Moreover, since ν is F -invariant, ν(An) = ν(F−1(An)) = ν(An+1)+ν(Bn+1), and the assertion
follows by induction. Therefore, the expected return time is infinite:

νA1(r) =
∫

A1

r(x) ν (dx) =
∑
n�1

n ν(Bn) =
∑
n�1

ν(An) = ν([0, 1]) = ∞, (2.14)

where νA1 is the conditional probability measure defined as νA1(E) = ν(E ∩ A1)/ν(A1). It is
known that in this situation there is the coexistence of two different statistics for the dynamical
system (F, [0, 1]): besides ν, the ergodic means (1/n)

∑n−1
i=0 δF i(x) converge weakly to the

Dirac delta at 0 (see [Me], [HY]).
Let ρ be the probability measure obtained by pushing forward ν with F1, i.e.

ρ(E) = ((F1)∗ ν)(E) = (ν ◦ �1)(E). (2.15)

Reasoning as above one readily verifies that the converse relation is

ν(E) =
∑
n�0

(ρ ◦ �n
0 )(E). (2.16)

In particular we have ν(An) = ∑
l�n ρ(Al) and ρ(An) = ρ(F1(Bn)) = ν(Bn), where Bn is as

above. We then have

ρ(E) = (ν ◦ �1)(E) =
∑
n�0

(ρ ◦ �n
0 ◦ �1)(E) = ρ(G−1E), (2.17)

which says that ρ is G-invariant. Moreover ρ is ergodic with respect to G (see, e.g. [Bi]).
Setting h(x) = ρ(dx)/dx, we get

h = |� ′
1|e ◦ �1, e =

∞∑
k=0

(�k
0 )′h ◦ ψk

0 , (2.18)

which gives the well-known result

h(x) = 1

log 2

dx

(1 + x)
. (2.19)

The primitive H(x) of h(x), with H(0) = 0, is H(x) = log(1 + x)/ log 2. Setting qn :=
H(1/(n + 1)) = (log 2)−1 log (1 + 1/(n + 1)), we have ν(An) = qn and ρ(An) = qn−1 − qn.
We see that qn is a (strict) Kaluza sequence, i.e. for all n � 1

1 = q0 > q1 > · · · > qn > 0 and q2
n < qn−1 qn+1. (2.20)

Finally, by (2.7), (2.8), (2.14) and (2.15), we have

ρ(τ) = ((F1)∗ν)(τ ) = ν(τ ◦ F1) = ν(r) = ∞. (2.21)

On the other hand, we have the following lemma.
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Lemma 2.1. The function log τ is in L1(ρ) and satisfies

lim
n→∞

1

n

n−1∑
j=0

log τ(Gj (x)) = ρ(log τ) = K, ρ − a.e., (2.22)

where the positive constant K is defined by

eK =
∞∏

k=1

(
1 +

1

k(k + 2)

)log k/ log 2

. (2.23)

Proof. We have

ρ(log τ) =
∞∑

k=1

ρ(Ak) log k =
∞∑

k=1

(qk−1 − qk) log k

=
∞∑

k=1

log k

log 2
log

((
1 +

1

k

) (
1 +

1

k + 1

)−1
)

=
∞∑

k=1

log k

log 2
log

(
1 +

1

k(k + 2)

)
= K < ∞.

This computation shows both that log τ ∈ L1(ρ) and the last equality in (2.22). The first
equality in (2.22) now follows from the ergodic theorem [Bi]. �

The constant K which appears above is known in number theory as Khinchin’s constant. This
is not a coincidence, as we now briefly explain.

2.3. Connection with number theory

The Farey sum over two rationals a/b and a′/b′ is the mediant operation given by [HR]

a′′

b′′ = a + a′

b + b′ · (2.24)

It is easy to see that a′′/b′′ falls in the interval (a/b, a′/b′). Now, having fixed n � 0, let
Fn be the ascending sequence of irreducible fractions between 0 and 1 obtained inductively
in the following way. Set first F0 = ( 0

1 , 1
1 ). Then Fn is obtained from Fn−1 by inserting

among each pair of consecutive rationals a/b and a′/b′ in Fn−1 their mediant a′′/b′′ as above.
Thus F1 = ( 0

1 , 1
2 , 1

1 ), F2 = ( 0
1 , 1

3 , 1
2 , 2

3 , 1
1 ), F3 = ( 0

1 , 1
4 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 3
4 , 1

1 ) and so on. The
elements of Fn are called Farey fractions. The name of the map F can be related to the easily
verified observation that the set of pre-images

⋃n+1
k=0 F−k{0} coincides with Fn for all n � 0.

In particular, this implies that
⋃∞

k=0 F−k{0} = Q ∩ [0, 1] (notice that the same is true for the
induced map:

⋃∞
k=0 G−k{0} = Q ∩ [0, 1]).

On the other hand, we recall that every real number 0 < x < 1 has a continued fraction
expansion of the form [Ki]

x = 1

k1 +
1

k2 +
1

k3 + · · ·

= [k1, k2, k3, . . .], (2.25)

with ki ∈ N. By applying Euclid’s algorithm one sees that the above expansion terminates if
and only if x is a rational number. There is an intimate connection between the partial quotients
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k1, k2, . . . and the Gauss map G. Indeed, given x as above we can write

x = 1
1
x

= 1[
1
x

]
+

{
1
x

} = 1

k1 + G(x)
= 1

k1 +
1
1

G(x)

= 1

k1 +
1[

1

G(x)

]
+

{
1

G(x)

} = 1

k1 +
1

k2 + G2(x)

= · · · (2.26)

Therefore, k1 = [1/x], k2 = [1/G(x)], k3 = [1/G2(x)] and so on. Alternatively,

if x = [k1, k2, k3, . . .], then G(x) = [k2, k3, . . .]. (2.27)

Farey fractions have close relationships with continued fractions. Let us say that a Farey
fraction has order n if it belongs to Fn\Fn−1. Given n � 1 there are exactly 2n−1 Farey fractions
of order n (they form the set F−(n+1){0}) and it is possible to show (see below equation (2.28))
that the integers ki in their (finite) continued fraction expansion sum up to n + 1. Furthermore,
it is easy to realize that all Farey fractions which fall in the interval (1/(n + 1), 1/n) have
order greater than or equal to n + 1, whereas their continued fraction expansion starts with
k1 = n. Thus, the map F acts on Farey fractions by reducing their order of one unit. We can
write an explicit expression for the action of F on continued fraction expansions. Indeed, if
1
2 < x � 1 then k1 = 1 and F(x) = 1/x − k1 = G(x). If instead 0 < x � 1

2 , then k1 > 1 and
F(x) = 1/(1/x − 1). Therefore,

if x = [k1, k2, k3, . . .], then F(x) = [k1 − 1, k2, k3, . . .], (2.28)

with [0, k2, k3, . . .] ≡ [k2, k3, . . .] (compare to (2.27)). Now, it is well known that for almost
all x ∈ (0, 1), the arithmetic mean of the partial quotients is infinite (see, e.g. [Ki]), i.e.

lim
n→∞

k1 + · · · + kn

n
= ∞ (a.e.). (2.29)

From the above discussion and (2.7) we get kl = [1/Gl−1(x)] = τ(Gl−1(x)), which for l > 1
is the time between the (l − 1)st and the lth passage in A1 of the orbit of x with F . Therefore,
the total number Sn of iterates of F needed to observe n passages in A1, i.e. the function

Sn(x) = τ(x) + τ(G(x)) + · · · + τ(Gn−1(x)), (2.30)

satisfies

lim
n→∞

Sn(x)

n
= ∞ (a.e.). (2.31)

Since ρ is absolutely continuous with respect to the Lebesgue measure on [0, 1], the properties
expressed by (2.21) and (2.31) can be regarded as an instance of validity of the ergodic theorem
for the non-integrable function τ . One can actually say more. As a consequence of ([Ki],
theorem 30) we have that for almost all x ∈ (0, 1) the inequality

Sn(x) � n log n (2.32)

is satisfied for an infinite number of values of n. On the other hand, lemma 2.1 can now be
rephrased by saying that the geometric mean of the partial quotients has a certain finite value
(a.e.). This, in turn, is a corollary of a theorem of Khinchin ([Ki], theorem 35), which says
that for any function f (k) defined on the positive integers and satisfying f (k) = O(kp) with
0 � p < 1

2 we have, for almost all x ∈ (0, 1),∣∣∣∣∣1

n

n∑
j=i

f (kj ) −
∞∑

k=1

f (k)

log 2
log

(
1 +

1

k(k + 2)

)∣∣∣∣∣ � ε(n), (2.33)
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where the error function ε(n) is any positive function decreasing to zero as n → ∞ so that∑
n−2ε−2(n) < ∞. Lemma 2.1 then corresponds to the choice f (k) = log k.

3. Transfer operators

We start by establishing some formal algebraic relations between the transfer operators P and
M associated to the maps F and G, respectively (see [Ba1]). They describe the action of the
differentiable dynamical systems F and G on the density f of a measure absolutely continuous
measure with respect to Lebesgue by

Pf (x) = (P0 + P1)f (x) =: |� ′
0(x)| · f (�0(x)) + |� ′

1(x)| · f (�1(x))

=
(

1

x + 1

)2 [
f

( x

x + 1

)
+ f

(
1

x + 1

)]
, (3.34)

and

Q f (x) =
∞∑

n=1

Qn f (x) =:
∞∑

n=1

|�′
n(x)| · f (�n(x)) =

∞∑
n=1

(
1

x + n

)2

f

(
1

x + n

)
. (3.35)

We first notice that

Qnf (x) = Pn(f · χn)(x) = P1Pn−1
0 f (x), (3.36)

where χn is the indicator function of An. Let Sf (x) := f ◦ S(x) = f (x + 1) be the shift
operator. Note by (2.4) and (2.6), we have

P1 P0f (x) = S P1 f (x), (3.37)

and therefore (3.36) yields

Qnf (x) = P1Pn−1
0 f (x) = Sn−1 P1 f (x). (3.38)

More generally, for z ∈ C, we shall consider a formal operator-valued power series Qz defined
by

Qzf (x) =
∞∑

n=1

zτ(�n(x))|�′
n(x)| · f (�n(x)) = z P1(1 − zP0)

−1f (x) (3.39)

so that Q1 ≡ Q. The following operator relations are in force and are independent of the
function space the operators are acting on.

Proposition 3.1. Let z ∈ C be such that (3.39) is absolutely convergent. Then we have

(1 − Qz)(1 − zP0) = 1 − zP (3.40)

and

(1 − z S)(1 − Qz) = 1 − z P̃ . (3.41)

where P̃ = S + P1.

Remark 1. As already remarked in section 1, an inducing procedure closely related to that
used here and leading to the study of the operator-valued function Mz = (1 − zP0)

−1zP1 has
been introduced in Prellberg’s thesis [P1] (see also [PS] and [D]), where algebraic identities
closely related to those stated above have been used to achieve a deep understanding of the
thermodynamic formalism for intermittent interval maps. Notice that P1 Mz = Qz P1. Similar
constructions have been used in [HI] and [Is].
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Proof of proposition 3.1. Using the first identity in (3.38), we get

(1 − Qz)(1 − zP0) =
(

1 −
∞∑

n=1

znP1Pn−1
0

)
(1 − zP0)

= 1 − zP0 −
∞∑

n=1

znP1Pn−1
0 +

∞∑
n=1

zn+1P1Pn
0

= 1 − zP0 − zP1 = 1 − zP.

In a similar way, using the second identity in (3.38) one shows (3.41). �

Corollary 3.1. Let z �= 0 be such that (3.39) is absolutely convergent and assume that
the kernel of 1 − zP0 is empty. Then 1 is an eigenvalue of Qz if and only if z−1 is an
eigenvalue both of P and P̃ , and they have the same geometric multiplicity. Furthermore, the
corresponding eigenfunctions ez of P and hz of P̃ and Qz are related by hz = (1 − zP0)ez or
else ez = ∑∞

k=0 zkPk
0 hz.

Proof. Assume that Qzhz = hz. From (3.40) it then follows that (1 − zP)
∑∞

k=0 zkPk
0 hz = 0.

Conversely, assume that zPez = ez, then we have (1 − Qz)(1 − zP0)ez = 0. In the same way,
from (3.41) it follows that Qzhz = hz if and only if P̃hz = z−1hz. �

Remark 2. As it will be clear in the following the condition on the emptyness of the kernel
of 1 − zP0 is plainly satisfied in the function space H0 considered below (cf (3.69)).

Remark 3. Setting z = 1 in proposition 3.39 we recover (9) with e ≡ e1 and h ≡ h1. In
particular, we see that the Gauss probability density (2.19) is a fixed point both of Q and P̃ .

Having fixed an open connected domain 
 ⊂ C, let H(
) be the Fréchet space of functions
which are holomorphic in 
 with the topology generated by the family of sup norms on compact
subsets of 
. Moreover, let A∞(
) ⊂ H(
) denote the Banach space given by the subset of
functions in H(
) having continuous extension to 
̄, endowed with the norm

‖f ‖ = sup
w∈
̄

|f (w)|, (3.42)

where w = x + iy. Let first Qz act on the Banach space A∞(D) with D = {w ∈ C :
|w − 1| < 1}. It is easy to verify that �n(D̄) ⊂ D for all n ∈ N. Standard arguments (see
[Ma2]) then imply that whenever the power series in (3.39) is uniformly convergent, Qz defines
a nuclear operator of order zero on A∞(D).

Lemma 3.2. The power series of Qz : A∞(D) → A∞(D) has radius of convergence bounded
from below by 1 and, moreover, it converges absolutely at every point of the unit circle.

Proof. The radius of convergence of Qz is limn→∞ ‖Qn‖−1/n (here ‖ ‖ denotes the operator
norm as well). We have supw∈D̄ |Qnf (w)| � C n−2 ‖f ‖ and therefore ‖Qn‖ � C n−2. �

We now introduce a subspace of A∞(D) on which the action of Qz will turn out to be
particularly expressive. This is achieved via a generalized Laplace transform.

Definition 3.1. Let H1 denote the Hilbert space of all complex-valued functions f which have
a representation as generalized Laplace transform

f (w) = (L [ϕ])(w) :=
∫ ∞

0
e−tw ϕ(t) dm(t), (3.43)



On the spectrum of Farey and Gauss maps 1529

where ϕ ∈ L2(m) and dm is the measure on R+ given by

dm(t) = t

et − 1
dt. (3.44)

As a Hilbert space H1 is endowed with the inner product

(f1, f2) =
∫ ∞

0
ϕ1(t) ϕ2(t) dm(t) if fi = L [ϕi]. (3.45)

Remark 4. Putting z = 1 we see that the G-invariant density h can be represented as
h = (log 2)−1 L((1 − e−t )/t).

The following proposition generalizes corresponding results obtained by Mayer and Roepstorff
(see [MaR1], [MaR2]) for the operator Q.

Proposition 3.2. For each z �= 0 with |z| � 1, the space H1 is invariant under Qz. More
precisely, we have

QzL[ϕ] = L[z (1 − M)(1 − zM)−1 Kϕ], (3.46)

where M : L2(m) → L2(m) is the multiplication operator

Mϕ(t) = e−tϕ(t) (3.47)

and K : L2(m) → L2(m) is the integral operator

(Kϕ)(t) =
∫ ∞

0

J1(2
√

st)√
st

ϕ(s) dm(s) (3.48)

and Jp denotes the Bessel function of order p.

Proof. Letting f = L [ϕ], we have from (3.39) and (3.38)

Qzf (w) =
∞∑

n=1

zn

(w + n)2

∫ ∞

0
dm(t) e−t/(w+n) ϕ(t). (3.49)

Clearly, for |z| � 1, the sum
∑∞

n=1(z
n/(w + n)2)e−t/(w+n) is uniformly convergent in t ∈ R+.

Therefore, interchanging summation and integration we get
∞∑

n=1

zn

(w + n)2
e−t/(w+n) =

∑
k�0

(−t)k

k!

∞∑
n=1

zn

(w + n)2+k

=
∑
k�0

(−t)k

k!
z �(z, k + 2, w + 1), (3.50)

where �(z, a, b) = ∑∞
n=0 zn/(b + n)a is the Lerch transcendental function which, for �a > 1,

possesses the integral representation

q�(z, a, b) =
∞∑

n=0

zn

(b + n)a
= 1

�(a)

∫ ∞

0

sa−1e−(b−1)s

es − z
ds. (3.51)

This yields

�(z, k + 2, w + 1) = 1

(k + 1)!

∫ ∞

0

sk+1e−ws

es − z
ds · (3.52)

Noting that ∑
k�0

(−st)k

(k + 1)! k!
= J1(2

√
st)√

st
, (3.53)
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where J1(x) is the Bessel function of the first kind, we have thus found that

Qzf (w) =
∫ ∞

0
ds

zs

es − z
e−ws

∫ ∞

0
dm(t)

J1(2
√

st)√
st

ϕ(t)

=
∫ ∞

0
dm(s) e−ws(z (1 − M)(1 − zM)−1 Kϕ)(s)

= (L [z (1 − M)(1 − zM)−1 Kϕ])(w). (3.54)

Notice that for each t ∈ R+ the function J1(2
√

st)/
√

st is uniformly bounded and continuous
for s ∈ R+. It is then an easy task to verify that for ϕ ∈ L2(m) and for |z| � 1 the function
(1 − M)(1 − zM)−1 Kϕ is in L2(m) as well. �
Remark 5. As already remarked in [MaR1], the integral operator K is symmetric. Therefore,
the above proposition with z = 1 yields sp (Q) ⊂ R.

But we can say more. Indeed, the operator (1 − zM) is invertible in L2(m) with bounded
inverse provided 1/z /∈ [0, 1]. Therefore, for any ϕ ∈ L2(m) the integral in (3.46) converges
uniformly in any compact region of the complex z-plane not containing points of the ray
(1, +∞). Moreover, it has been proved in [MaR1] that the operator K is compact (actually
trace-class) in L2(m). Therefore, as long as (1 − zM) has bounded inverse the operator
(1 − M)(1 − zM)−1 K is compact as well (being the composition of a compact operator with
a bounded operator). Proposition 3.2 and the above observations prove the following result.

Theorem 3.1. The operator-valued function z → Qz, when acting on H1, can be analytically
continued to the entire z-plane with a cross cut along the ray (1, +∞), and for each z in this
domain is isomorphic to the operator

Kz := z (1 − M)(1 − zM)−1 K (3.55)

acting on L2(m). They are both compact operators.

Remark 6. The relevance of the above result issues from the following observation: the
spectral radius of P in any reasonable Banach space of functions is equal to 1 (see [Ba1],
[C]) so that according to proposition 3.1 there are no z-values with |z| < 1 such that 1 is an
eigenvalue of Qz. Therefore, if we aim to exploit the identities in proposition 3.1 in order to
investigate the spectrum of P (when acting upon a suitable function space, see below) it is
necessary to have some analytic continuation of Qz outside the unit disk. We point out that
proposition 3.1 and corollary 3.1 remain valid when Qz is analytically continued across the
cut (1, +∞).

Remark 7. Putting

Hδ := {w ∈ C : �w > δ}, (3.56)

one sees that a function f = L [ϕ ] with ϕ ∈ L2(m) can be extended to a function holomorphic
in the half-plane H−1/2.

If, in addition, f is an eigenfunction corresponding to a non-zero eigenvalue λ of Qz in
H1, for some non-zero z ∈ C \ (1, ∞), then

λ ϕ(t) = (Kz ϕ)(t) =
(

1 − e−t

1/z − e−t

) ∫ ∞

0

J1(2
√

st)√
st

ϕ(s) dm(s). (3.57)

Since the integral on the right-hand side is bounded for all t ∈ [0, ∞) the function ϕ(t) is
bounded as well in this domain and therefore f is holomorphic in the half-plane H−1.

Putting together proposition 3.1 along with standard arguments (see [DS], chapter VII)
we get the following corollary.
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Corollary 3.2. The operator-valued function z → (1−Qz)
−1, when acting on H1, is analytic

in the open unit disk {z : |z| < 1} and can be meromorphically continued to the entire z-plane
with a cross cut along the ray [1, +∞). It has a pole whenever Kz has 1 as an eigenvalue.

Now, from proposition 3.1 we obtain the following formal relation for the resolvent Rλ

of P:

Rλ ≡ (λ − P)−1 = (λ − P0)
−1(1 − Q1/λ)

−1. (3.58)

The analytic properties of the first factor on the right-hand side can be understood in terms of
the spectrum of the operator P0 when acting on a suitable function space invariant under the
action of P . A calculation along the same lines as in the proof of proposition 3.2 shows that,
for f ∈ H1 with f = L[ϕ],

(1 − z P0)
−1f (w) = 1

w2

∫ ∞

0
e−t/w et z−1 (Kzϕ)(t) dm(t). (3.59)

We shall therefore characterize the space H0 to be acted on by P as follows.

Definition 3.2. We denote by H0 the Hilbert space of all complex-valued functions f which
can be represented as a generalized Borel transform:

f (w) = (B [ϕ])(w) := 1

w2

∫ ∞

0
e−t/w et ϕ(t) dm(t), ϕ ∈ L2(m), (3.60)

endowed with the inner product

(f1, f2) =
∫ ∞

0
ϕ1(t) ϕ2(t) dm(t), if fi = B[ϕi]. (3.61)

Remark 8. A function f ∈ H0 is holomorphic in the disk

D1 =
{
w ∈ C : � 1

w
>

1

2

}
= {w ∈ C : |w − 1| < 1}. (3.62)

For w real and positive, a simple change of variable makes (3.60) in the form

f (w) = 1

w

∫ ∞

0
e−s ψ(sw) ds with ψ(t) =

(
t

1 − e−t

)
ϕ(t) . (3.63)

Remark 9. The F -invariant density e (see (2.13)) can be represented as

e =
(

1

log 2

)
B

(
1 − e−t

t

)
, (3.64)

whereas for the G-invariant density h, we have (see also remark 4)

h =
(

1

log 2

)
L

[
1 − e−t

t

]
=

(
1

log 2

)
B

[
(1 − e−t )2

t

]
. (3.65)

In the representation of remark 8 we have that if f = e log 2 then ψ(t) ≡ 1 whereas for
f = h log 2 we find ψ(t) = 1 − e−t . Both these functions can be viewed as ordinary
Borel transforms of a sequence {an}∞n=0, i.e. ψ(t) = ∑∞

n=0 tnan/n! so that by (3.63) we have
wf (w) = ∑∞

n=0 wnan. In the former case we find a0 = 1 and an = 0 for n > 0, in the latter
a0 = 0 and an = (−1)n−1 for n > 0. Therefore in both cases the integral (3.63) provides a
continuation of wf (w) outside the disk D1 (see [Tit1], p 164).

We now have the following lemma.

Lemma 3.3. For all ϕ ∈ L2(m),

L [ ϕ] = B [ (1 − M) K ϕ], (3.66)

where Mϕ(t) = e−tϕ(t) and K is the symmetric integral operator defined in (3.48).
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Proof. The proof is an easy calculation based on Tricomi’s theorem (see [Sne], p 165):

1

up+1

∫ ∞

0
dt e−t/uϕ(t) =

∫ ∞

0
dt e−tu

∫ ∞

0
ds

(
t

s

)p/2

Jp(2
√

st) ϕ(s), (3.67)

with p = 1, and therefore we omit it. �
It is now not difficult to verify that

P1 B[ϕ] = L [ϕ], (3.68)

and

P0 B[ϕ] = B [ Mϕ ]. (3.69)

In addition, we have

SL[ϕ] = L [Mϕ], (3.70)

so that

P1 Pn−1
0 B[ϕ] = Sn−1 P1B[ϕ] = L [ Mn−1ϕ ], (3.71)

and therefore

QzB[ϕ] = zL [ (1 − zM)−1ϕ]. (3.72)

We thus see that P0 leaves H0 invariant and by (3.70) its spectral properties in H0 are identical
to those of S in H1. Moreover P1 maps H0 into H1 ⊂ H0, and the same does Qz for
all z ∈ C \ (1, +∞). Notice that using lemma 3.3 and (3.72) we immediately recover
proposition 3.2, in that

QzL[ϕ] = QzB[(1 − M) Kϕ] = L [z(1 − zM)−1(1 − M) Kϕ] ≡ L [Kzϕ]. (3.73)

We are now in the position to write explicit representations for P and its resolvent Rλ in the
space H0.

Theorem 3.2. Let f ∈ H0, i.e. f = B [ϕ] for some ϕ ∈ L2(m), then

Pf = B [ (M + (1 − M)K )ϕ ], (3.74)

and

Rλf ≡ (λ − P)−1f = B [ (1 − K1/λ)
−1(λ − M)−1ϕ]. (3.75)

Remark 10. Note that for ϕ ∈ L2(m), the functions

M ϕ and (1 − M)Kϕ (3.76)

are bounded at infinity and therefore, by (3.74), the function Pf with f = B [ϕ] is analytic in
the half-plane H0. In particular so is any eigenfunction of P in H0.

Proof of theorem 3.2. From (3.69) and (3.68) one obtains Pf = B[Mϕ] + L [ϕ], so that
(3.74) follows using lemma 3.3. The expression for Rλ can now be obtained directly from
(3.74). But we can also make use of (3.72) and (3.54) to obtain, for a given f = B [ϕ],

Qn
1/λ f = L[Kn−1

1/λ (λ − M)−1ϕ] (3.77)

and therefore

(1 − Q1/λ)
−1f = B [ϕ] + L[(1 − K1/λ)

−1 (λ − M)−1ϕ]. (3.78)

This expression along with (3.58), (3.59) and (3.69) yield

Rλf = B [ (λ − M)−1 ϕ ] + B [ K1/λ(1 − K1/λ)
−1 (λ − M)−1 ϕ ]

= B [ (1 − K1/λ)
−1(λ − M)−1ϕ ].
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Using corollary 3.2 we see that Rλ extends to a meromorphic (operator-valued) function in
C̄ \ [0, 1]. �

The next theorem (partially) describes the spectrum of P in H0.

Theorem 3.3. The spectrum of the operator P : H0 → H0 is the union of [0, 1] and a finite
or countably infinite set of eigenvalues of finite multiplicity.

Proof. By theorem 3.2 the action of transfer operator P on H0 can be explicitly expressed in
the form

PB [ϕ] = B [T ϕ], (3.79)

with

(T ϕ)(t) := e−tϕ(t) +
∫ ∞

0
K(s, t)ϕ(s) ds (3.80)

and

K(s, t) = e−t

(
et − 1

es − 1

) √
s

t
J1(2

√
st). (3.81)

It is an easy exercise to check that M when acting upon L2(m) is self-adjoint and its spectrum
is the line segment [0, 1] = Cl {e−t : t ∈ R+} (see, e.g. [DeV]). Therefore, the spectrum
of P in H0 is given by a compact perturbation of the continuous spectrum σc = [0, 1]. The
assertion is now a consequence of theorem 5.2 in [GK]. �

We shall now characterize some properties of the eigenfuctions of P in H0. First, it
is easy to see that λ = 0 is an eigenvalue of infinite multiplicity. This follows by noting
that (see (2.3) and (3.34)) any function f ∈ H0 which is odd with respect to x = 1

2 , e.g.
f (w) = 1 − 2w = B [(1 − t)(1 − e−t )], lies in the kernel of P .

Now suppose that Pf = λ f for some f ∈ H0 and λ �= 0, or explicitly

λ f (w) =
(

1

w + 1

)2 [
f

( w

w + 1

)
+ f

(
1

w + 1

)]
. (3.82)

By remark 10 f (w) extends analytically to the half-plane H0. If we transform this equation
by substituting 1/w for w and then dividing through w2, we get

λ w−2 f

(
1

w

)
=

(
1

w + 1

)2 [
f

(
1

w + 1

)
+ f

( w

w + 1

)]
. (3.83)

Therefore, f satisfies

wf (w) = 1

w
f

(
1

w

)
(3.84)

for all w ∈ H0. Note that applying (3.84) to each term on the right-hand side (3.82), one
obtains

λ w f (w) = w f (w + 1) +
1

w
f

(
1 +

1

w

)
. (3.85)

For λ = 1 this yields wf (w) = 1. Note that for f = B [ϕ], we have

w−2 f

(
1

w

)
=

∫ ∞

0
e−t w et ϕ(t) dm(t) = B [(1 − M)K M−1ϕ]. (3.86)

Therefore, the functional equation (3.84) can be written as

(1 − M)K M−1ϕ = ϕ. (3.87)



1534 S Isola

Now, given a continuous function ψ on R+, one can define (a version of) its Hankel transform
(of order 1) as the integral

(J ψ)(t) =
∫ ∞

0
J1(2

√
st)

√
t

s
ψ(s) ds. (3.88)

From the estimates J1(t) ∼ t as t → 0+ and J1(t) = O(t−1/2) as t → ∞ ([E], vol II), we see
that the conditions on ψ sufficient to give the absolute convergence of the integral (3.88) are
ψ(t) = O(t−β) as t → ∞ with β > − 1

4 and ψ(t) = O(tα) as t → 0+ with α > −1. The
identity (3.87) then says that the function (cf remark 8)

ψ(t) =
(

t

1 − e−t

)
ϕ(t) (3.89)

satisfies

ψ(t) =
∫ ∞

0
J1(2

√
st)

√
t

s
ψ(s) ds. (3.90)

Note that the simplest solution of this equation is ψ ≡ 1 and corresponds to f = e

(more general self-reciprocal functions satisfying equations related to (3.90) are discussed,
for example, in the book [Tit2]). Furthermore, putting together (3.84), (3.86) and (3.89)
we have

f (w) =
∫ ∞

0
e−t wψ(t) dt (3.91)

for all w ∈ H0. Finally, one easily checks that if ϕ ∈ L2(m), then ψ ∈ L2(m̂) where

dm̂(t) = e−t (1 − e−t )

t log 2
dt.

We summarize the above in the following theorem.

Theorem 3.4. If f ∈ H0 satisfies Pf = λ f for some λ �= 0 then f is the (ordinary) Laplace
transform of a function ψ ∈ L2(m̂) which is self-reciprocal with respect to Hankel transform
of order 1, namely f and ψ satisfy (3.91) and (3.90), respectively.

Now from corollary 3.1 we know that a function f = B [ϕ] satisfies Pf = λ f if and
only if (the analytic continuation of) K1/λ : L2(m) → L2(m) satisfies K1/λ ϕ = ϕ, which can
also be written as

(K ϕ)(t) = λ − e−t

1 − e−t
ϕ(t) = λ − e−t

t
ψ(t). (3.92)

Expressing the integral operator K in terms of the Hankel transform (3.88), we get (Kϕ)(t) =
(1/t) J (exp−1 ψ)(t), where we have defined the function expc : R → R by expc(t) = ect .
Identities (3.90) and (3.92) then yield the integral equation

J (exp−1 ψ) = (λ − exp−1)J ψ. (3.93)

Once more, ψ ≡ 1 satisfies this equation with λ = 1 (recall that J exp−1 = 1 − exp−1).
On the other hand, the above discussion suggests that there are no λ ∈ C \ {0, 1} such that
(3.93) has a (non-constant) solution ψ ∈ L2(m̂). We thus are led to formulate the following
conjecture.

Conjecture 1. The only (non-zero) eigenvalue of P : H0 → H0 is λ = 1.

We end this section with two additional remarks.
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Remark 11. (3.92) is a particular case of the Lewis functional equation:

f (w) − f (w + 1) = 1

w2(q+1)
f

(
1 +

1

w

)
, (3.94)

which is related to the so-called Maass cusp forms, i.e. PSL(2, Z)-invariant eigenfunctions of
the Laplacian on the Poincaré upper half-plane which vanish at the cusp (see [Le]). Another
type of functions equivalent to (even) Maass forms and considered in [Le] are those satisfying
an integral equation which in our notation can be written as

g(t) =
∫ ∞

0

J2q+1(2
√

st)√
st

( s

t

)q

g(s) dm(s). (3.95)

By the foregoing (see remark 9) we see that for q = 0 we have the relation

f = B [g]. (3.96)

Remark 12. In the recent work [P2], following [P1] ten years later and somehow inspired by
the construction presented here, Thomas Prellberg has studied the spectrum of (a generalized
version of) P in a space of functions which is identical to H0 with the exception that the
measure on R+ is slightly different from (3.44), being given by

dm̃(t) = t e−t dt. (3.97)

It is easy to see that with this new measure the operator Qz is isomorphic under generalized
Laplace transform (cf theorem 3.1) to K̃z : L2(m̃) → L2(m̃) given by

K̃z = z (1 − zM)−1K̃, (3.98)

where

K̃ϕ(s) =
∫ ∞

0
dm̃(t)

J1(2
√

st)√
st

ϕ(t). (3.99)

Notice that K1 = (1 − M)−1K̃ which is not symmetric anymore (cf remark 5). On the other
hand, the relation given by lemma 3.3 now writes (we keep using the symbols L and B to
denote generalized Laplace and Borel transforms with respect to the measure m̃):

L [ ϕ] = B[K̃ ϕ] (3.100)

and hence the integral representation of P becomes

PB[ϕ] = B[(M + K̃)ϕ], (3.101)

which is now symmetric (cf (3.74)). Thus, everything goes as if the operators P and Q were
not ‘symmetrizable’ both at the same time. Also notice that the function log 2 · e if expressed
as a generalized Borel transform now yields the function ϕ(s) = 1/s which is not in L2(m̃).

4. ζ-functions

We now consider the dynamical ζ -functions ζF and ζG associated to the maps F and G,
respectively, and defined by the following formal series [Ba2]:

ζF(z) = exp
∞∑

n=1

zn

n
Zn(F ) and ζG(s) = exp

∞∑
n=1

sn

n
Zn(G), (4.102)

where the ‘partition functions’ Zn(F ) and Zn(G) are given by

Zn(F ) =
∑

x=Fn(x)

n−1∏
k=0

1

|F ′(F k(x))|

Zn(G) =
∑

x=Gn(x)

n−1∏
k=0

1

|G′(Gk(x))| .
(4.103)
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Let us first examine how ζF(z) and ζG(z) are related to one another. Let Per F and Per G

denote the sets of all periodic points of the maps F and G, respectively. It is not difficult to
realize that, as subsets of [0, 1], Per F \ {0} = Per G. Accordingly, given x in either of these
sets, let pF (x) and pG(x) denote the periods of x with respect to F and G, respectively. They
are related by

pF (x) = τ(x) + τ(G(x)) + · · · + τ(GpG(x)−1(x)). (4.104)

Moreover from the definitions of F and G, we have
pF (x)−1∏

k=0

1

|F ′(F k(x))| =
pG(x)−1∏

k=0

1

|G′(Gk(x))| =
pG(x)−1∏

k=0

(Gk(x))2 · (4.105)

Using this fact we write Zn(F ) as follows:

Zn(F ) = 1 +
n∑

m=1

n

m

∑
x=Fn(x)=Gm(x)

m−1∏
k=0

(Gk(x))2 · (4.106)

The second sum ranges over the
(

n−1
m−1

)
ways to write the integer n as a sum of m positive

integers. Therefore,

∞∑
n=1

zn

n
Zn(F ) = log

(
1

1 − z

)
+

∞∑
n=1

n∑
m=1

1

m

∑
x=Fn(x)=Gm(x)

zn
m−1∏
k=0

(Gk(x))2

= log

(
1

1 − z

)
+

∞∑
l=1

1

l

∑
x=Gl(x)

zpF (x)
l−1∏
k=0

(Gk(x))2 ·

We are thus led to study the ‘grand partition function’ �l(z) given by

�l(z) :=
∑

x=Gl(x)

zpF (x)
l−1∏
k=0

(Gk(x))2 =
∞∑

n=0

zl+n
∑

x=Gl(x)=F l+n(x)

l−1∏
k=0

(Gk(x))2. (4.107)

The sum over periodic points yields(
n + l − 1

l − 1

)
=

(
n + l − 1

n

)
terms, corresponding to the number of ways of distributing n identical objects into l distinct
boxes. According to (2.27), (2.28) and (4.107), we can also write �l(z) in the following way:

�l(z) =
∞∑

n=0

zl+n
∑

k1+···+kl=n+l

l∏
i=1

x2
ki ,...,klk1,...,ki−1

, (4.108)

where xk1,...,kl
= [k1, . . . , kl] denotes the irrational number whose continued fraction expansion

is periodic of period l and starts with the entries k1, . . . , kl . Putting together the above
observations we obtain the next result, to be compared with proposition 3.1.

Proposition 4.3. Consider the two-variable ζ -function given by

ζ2(s, z) = exp
∞∑
l=1

sl

l
�l(z). (4.109)

Then we have

ζ2(1, z) = (1 − z) ζF(z) and ζ2(s, 1) = ζG(s), (4.110)

wherever the series expansions converge absolutely.
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In order to study the analytic properties of the function ζ2(s, z), we further generalize (3.39)
by introducing a family of operator-valued functions Qz,q , q = 0, 1, . . . , acting as (see [Ma1]
and [D] for related quantities)

Qz,qf (x) = (−1)q
∞∑

n=1

zτ(�n(x))|�′
n(x)|1+qf (�n(x)), (4.111)

together with a family of function spaces H1,q ⊆ H1 such that a function f ∈ H1,q can be
represented as

f (w) = (Lq[ϕ])(w) :=
∫ ∞

0
dm(t) e−tw tq ϕ(t), ϕ ∈ L2(m). (4.112)

In particular, Qz,0 ≡ Qz, L0 ≡ L and H1,0 ≡ H1. We have the following result.

Proposition 4.4. For any given q = 0, 1, . . . the operator-valued function z → Qz,q when
acting on H1,q can be analytically continued to the entire z-plane with a cross cut along the
ray (1, +∞). For each z in this domain, we have

Qz,q Lq [ϕ] = Lq [Kz,qϕ], (4.113)

where Kz,q : L2(m) → L2(m) is given by

(Kz,qϕ)(t) := (−1)q z (1 − M)(1 − zM)−1
∫ ∞

0
dm(s)

J2q+1(2
√

st)√
st

ϕ(s). (4.114)

The operators Qz,q : H1,q → H1,q and Kz,q : L2(m) → L2(m) are both of trace class.

Proof. The first part follows from a straightforward extension to non-zero q values of the
arguments of the previous section. The proof of the last assertion can be extracted from
([Ma1], theorem 3). �

Now, the trace of the operator Kz,q is easily obtained (see also [Ma1]):

tr Kz,q = (−1)q z

∫ ∞

0

J2q+1(2t)

et − z
dt

= (−1)q
∞∑

k=1

zk

∫ ∞

0
e−kt J2q+1(2t) dt

= (−1)q
∞∑

k=1

zk x
2(q+1)

k

1 + x2
k

, (4.115)

where the numbers xk = (
√

k2 + 4 − k)/2 = [k, k, k, . . .] ≡ [k̄] are the fixed points of G(x)

and the identity [GR]∫ ∞

0
e−ktJp(2t) dt = (

√
k2 + 4 − k)p

2p
√

k2 + 4
, p = 0, 1, . . . (4.116)

has been used. From (4.115) we immediately obtain the trace formula

�1(z) = tr Kz,0 − tr Kz,1. (4.117)

But we can say more. Indeed, a straightforward adaptation of ([Ma1], corollaries 4 and 5) to
our z-dependent situation leads to the following general expressions:

�l(z) = tr Kl
z,0 − tr Kl

z,1 = tr Ml
z,0 − tr Ml

z,1, (4.118)

with

tr Kl
z,q = (−1)ql

∞∑
k1,...,kl=1

zk1+···+kl

∏l
i=1 x

2(q+1)

ki ,...,klk1,...,kl−1

1 − (−1)l
∏l

i=1 x2
ki ,...,klk1,...,kl−1

. (4.119)
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Formula (4.118) along with standard arguments (see [Ma1]) allow us to write the two-variables
ζ -function (4.109) as a ratio of Fredholm determinants:

ζ2(s, z) = exp
∞∑
l=1

sl

l
�l(z) = det (1 − s Kz,1)

det (1 − s Kz,0)
= det (1 − s Mz,1)

det (1 − s Mz,0)
, (4.120)

where by definition

det (1 − s Kz,q) = exp

(
−

∞∑
l=1

sl

l
tr Kl

z,q

)
(4.121)

is in the sense of Grothendieck [G]. We have thus proved the following result.

Theorem 4.5. Set Kz ≡ Kz,0, then we have:

(a) for each s ∈ C, the function ζ2(s, z), considered as a function of the variable z, extends
to a meromorphic function in the cut plane C \ [1, ∞). Its poles are located among those
z-values such that Kz : L2(m) → L2(m) has 1/s as an eigenvalue;

(b) for each z ∈ C \ (1, ∞), the function ζ2(s, z), considered as a function of the variable s,
extends to a meromorphic function in C. Its poles are located among the inverses of the
eigenvalues of Kz : L2(m) → L2(m).

Putting together the above theorem and proposition 4.3 we obtain the following.

Corollary 4.3. The dynamical ζ -functions ζF and ζG of the Farey and Gauss maps have the
following properties:

(a) ζF(z) has a meromorphic extension to the cut plane C \ [1, ∞);
(b) ζG(s) has a meromorphic extension to C. All poles are real and are located among the

inverses of the eigenvalues of K : L2(m) → L2(m).

Remark 13. Statement 1 of corollary 4.3 is akin to corollary 1.3 in [Rug]. On the other hand,
the validity of conjecture 1 would imply that ζF(z) is actually analytic in C\ [1, ∞). Statement
2 was proved by Mayer in [Ma3], where he also showed (using results from [Rue]) that the
poles of ζG(s), if arranged in increasing absolute values and according to their order, tend to
infinity exponentially fast.
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