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Numerical study of random superconductors
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Abstract

The XY model with quenched random disorder is studied numerically at T ¼ 0 by a defect scaling method as a model

of a disordered superconductor. In 3D we find that, in the absence of screening, a vortex glass phase exists at low T for

large disorder in 3D with stiffness exponent h � þ0:31 and with finite screening and in 2D this phase does not exist. For

weak disorder, a superconducting phase exists which we identify as a Bragg glass. In the presence of screened vortex–

vortex interactions, the vortex glass does not exist but the Bragg glass does.
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1. Introduction

The phase diagram and superconducting properties

of disordered superconductors have been of consider-

able interest for some time. The theoretical study of such

systems is extremely difficult as the obvious approach is

to find the low energy excitations about the ground state

of a particular sample and compute the free energy

F ðT ;H ; fJgÞ ¼ �kT ln Zðt;H ; fJgÞ where Z is the parti-

tion function for the particular realization of disorder

fJg. Physical measurable quantities are appropriate

derivatives of hF i, the average over realizations of dis-

order. Various tricks such as the replica trick have been

proposed to deal with quenched randomness.

We ask a very basic question about the existence of a

low T phase by the method of finite size scaling of the

defect energy. One argues that the disorder average of

the energy hDEðLÞi of a disordering defect of size L
scales as

hDEðLÞi � Lh ð1Þ

for large L. Of course, this is not an experimentally

measurable quantity nor does it give direct information
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about the putative phase transition at finite T . To obtain

a theoretical prediction by e.g. Monte Carlo requires

that the system is equilibrated which is almost impossi-

ble for a disordered system. A numerical estimate of the

defect energy, DEðLÞ, can be obtained by minimizing the

energy, EðLÞ, of a 3D system of size L subject to

appropriate boundary conditions. This avoids the

necessity of thermal equilibration and can be done to

sufficient accuracy to obtain very good fits to Eq. (1) and

an estimate of the stiffness exponent h. One argues that

the system is ordered if h > 0 and disordered if h < 0

provided the defect generated by the boundary condi-

tions is constructed properly [1].
2. Method and results

The model we study is an XY model with quenched

random phase shifts with Hamiltonian

H ¼
X

hiji
V ðhi � hj � AijÞ ð2Þ

where V ð/Þ is a 2p periodic function of /. The sum is

over all nearest neighbor pairs of sites and the coupling

constants are assumed uniform Jij ¼ J > 0. The random

bond variables Aij are taken to be independent and

uniform Aij 2 ð�ap;þap� with 06 a6 1. The parameter
ed.
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Fig. 1. Left: L dependence of DEBT
s , DERT

s , DERT
c , DEBT

c (top to bottom) for the 2D XY spin glass. Right: DEBT
s and DERT

s for the 3D XY
spin glass.
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Fig. 2. L dependence of defect energy for the 3D gauge glass.

Top curve is unscreened case. Bottom curve is a RT measure-

ment for this. Other curves are for screened interactions with k
decreasing from top to bottom.
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a is a measure of the strength of the disorder with a ¼ 0

no disorder and a ¼ 1 fully disordered. The next step is

to rewrite the Hamiltonian of Eq. (2) in the dual vortex

or Coulomb gas representation on a 3D torus to elimi-

nate surface effects.

H ¼ 4p2J
X

r;r

pr � pr0Gðr� r0Þ þ pJ
2L2

Q2

Qx ¼
X

r

zpyr
�

� ypzr0 þ Lðzpyrdy;1 � ypzrdz;1Þ
�
þ 2L2px1

ð3Þ

Here, pr ¼ qr � fr where qr is the integer valued vector

charge with r � qr ¼ 0 at each dual lattice site r,

fr ¼ r� Ar is the random frustration at r and Qy ;Qz are

obtained by cyclic permutation of xyz in Qx of Eq. (3).

The mismatch or twist in the global phase shift around

the torus in the x̂ direction is given by fx1 ¼
1
2p

PL
x¼1 A

xðx; 1; 1Þ. The interaction is

GðrÞ ¼ 1

L3

X

k 6¼0

eik�r � 1

6� 2
P

l cos kl þ k�2
ð4Þ

where k is the screening length with Gðr < kÞ � rð2�DÞ

and Gðr > kÞ � e�r=k.

The absolute ground state energy E0ðLÞ is obtained

by minimizing the Hamiltonian Hðqr; fr; qx1; fx1Þ with

respect to the integer charges qr, the integer global cir-

culation qx1 and to the global frustrations fl1 which have

the values f 0
l1 at the global minimum for a given sample.

This is analogous to periodic boundary conditions for a

uniform ferromagnet. The minimization is done by

simulated annealing [2] which works for an interacting

system of Eq. (3). In 3D, we are limited to system sizes

L6 6 by available computer power. In the infinite

screening limit k ! 0 there are some specialized algo-

rithms which can find the ground state to machine

accuracy in polynomial time [3] for large sizes L. The
ground state energy is given by Eq. (3) with the appro-

priate values of the fqrg and the best twist f 0
x1. The
energy of the system with a defect relative to the ground

state EDðLÞ is obtained by minimizing H with respect to

the fqrg with fl1 ¼ f 0
l1 þ 1=2 held fixed. The defect

energy is DEðLÞ ¼ EDðLÞ � E0ðLÞP 0.

To check our method, we looked at the XY spin glass

in 2D which has two stiffness exponents hs for the scaling
of a phase defect and hc describing the scaling of a chiral

defect. Since 2D is below the lower critical dimension we

expect that hs ¼ hc < 0. We find hs ¼ hc ¼ �0:37� 0:01
which proves our algorithm [1]. Results are shown in

Fig. 1. Encouraged by this, we investigated the XY spin

glass and the XY gauge glass in 3D. The latter system is a

zero field analogue of the putative vortex glass. We find

hs ¼ þ0:10� :02 for the 3D spin glass and h ¼
þ0:31� :01 for the gauge (vortex) glass (Fig. 2). These

results imply that a vortex glass phase exists in 3D when
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k ¼ 1 but not if k < 1. A realistic superconductor has

both disorder and k < 1. One could argue that k ! 0

under scaling when

H ¼ 1

2

X

r

ðqr � frÞ2 þ Oðk2Þ ð5Þ

We studied this with sizes L6 40 and find hs � �1:0
for strong disorder and hs � þ1:0 for weak disorder

which we postulate to be a Bragg glass [4]. This supports

the idea that a highly disordered vortex glass does not

exist in real systems and that a superconducting glass

exists only as a weakly disordered Bragg glass.
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