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Abstract: We consider perturbations of the semiclassical harmonic oscillator of the form
P=—BA+Z 4+ W(x), x € R", with W(x) ~ (x)27/ as|x| — +oo ands, u €

(0, 1), and we investigate the fundamental solutim, x, y) of the corresponding time-
dependent Schrédinger equation. We prove that at resonanttimess (n € Z) it
admits a semiclassical asymptotics of the fofitur, x, y) ~ h="1+V)/2qqe! S/

with ag # 0 andv = §/(1 — w), under the conditions # (—1)"y andv < 1.

1. Introduction and Main Result
We consider time dependent Schrédinger equatiat?ifR”):

P hZ 2
iha—l: =~ Au+t %u F WU = P, (1.2)
whereé € (0,1) andW(x) € C*°(R™) is real valued. We assume for some constants
C > 0andu € (0, 1):

%(xr“ < D?W(x) < C(x)7H,

1.2)
0% W (x)| < Cq(x)2 #7101 for |a| = 3

for x € R™. In particularW is subquadratic at infinity. Under this assumptiét#, on

Cg°(R™) admits a unique selfadjoint extension, which we denot@byagain, and the

solution of (1.1) with initial data:(0, x) = ¢ (x) is given byu(r) = exp(—it P/ h)¢.

The distribution kerneE(t, x, y) of exa(—it P/ h) is called the fundamental solution
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(FDS for short) of (1.1) and we investigate the behaviouk as 0+ of E(z, x, y) at
and assume & v < 1. Our

. )
the resonant times= nx (n € Z*). We setv = 1

main result is:

Theorem 1.1. Letn € Z*. Then, E(nr, x, y) isaC function of (x, y) and for 4 small
enough it can be written in the form:

E(nm, x,y) = h ™20 (x y, h)e!SE/1 (1.3)

where S(x, y) isthe action integral of classical trajectory corresponding to (1.1) con-
necting x(0) = y and x(nw) = x, and for any compact subset K of R?" \ A,
A = {(x,(=D)"x) ; x € R"},a(x, y, h) satisfies0 < C~1 < |a(x, y,h)| < C < 00
for (x, y) € K uniformly with respect to small 4.

The estimate (1.3) should be compared with the result at non-resonant tirger i,
then the FDS solution behavesias> 0+,

E(t,x,y) = h—m/Za(x’ y, h)eiS(x,y)/h _ O(h_m/z),

and (1.3) represents the anomalous increase of the amplitude>aB. We should also
remark that, ifW is sublinear, vizW = O((x)17¢), then for(x, y) € K, K being as
aboveE(nm, x, y) = O(h) foranyN ash — 0+. Indeed in this casé; (n, -, y) has
singularities at—1)"y. These remarks can be easily obtained by applying the standard
stationary phase method to (1.5) below.

Motivation to this work comes from the study of the behavior at infinfty- y2 — oo
of the FDS of Eq. (1.1) with fixed = 1 under the condition (1.2):

ou 1 x?2
i vl ZAu + > u+ W)u. (1.4)

Whent ¢ nZ, E(t,x,y) for (1.4) converges to the FDS solution of the harmonic
oscillator asx? + y2 — oo ([Ya-1]). At resonant times, however, we believe that
E(nm,x,y),n # 0, blows up agx — y| — oo. It turns out that proving the latter
is a little too intricate and still out of reach, although intimately related to the semiclas-
sical problem we investigate here. Indeed, in the déige) = |x|2* the change of
scaleu(t, x) — u(t, x/~/h) converts (1.4) to (1.1) with = ;/2 and the study of the
solution of (1.4) asx| — oo is equivalent to that of (1.1) at fixedash — 0. Thus, we
expect in generdlE (nr, x, y)| ~ |x — y|™ as|x — y| — oo, withv = /(2 — 2u).

The strategy for proving the theoremis as follows. First of all, one can see asin [Ya-1]
(see also [Ro,KK] for a semiclassical version for short time) thétz, x, y) can be
written under the form of an oscillatory integral:

Enm,x,y) =

IG5y (r.6)/hy, RVdE. 15

o | € (0. & hnds (1.5)
Hereb is a semiclassical symbol which is uniformly bounded together with all its deriva-
tives, andy is the function:

X(t,y, £)?

> - V&@, y, S))) dt, (1.6)

W%®=%m%@€—ﬁ (
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2
whereV (x) = % + h®W(x) andX(z, y, £) denotes the-projection at time of the

unique classical trajectory— (x(¢), p(¢)) satisfyingx(0) = y andp(nr) = &, thatis
the unique solution of:

x() = p)
p(t) ==VV(x(®))
xQO=y; plar) =£&

(notice that sincé/ depends ork, the same is true fat(z, y, £)). We then apply the
stationary phase method to (1.5). It is standard to show that:

Vey (y,§) =X(nm, y, &) (1.7)

and the point of stationary phase is given as the solution-efx(nn, y, &).

We study the properties Gf(nr, y, ) ash — 0 as well agé| — oo in Sect. 2.
Section 3 is devoted to studying the phase functign, £). We show there exits a unique
point of stationary phase far # (—1)"y and we estimatex — Ve (v, )| from below.
Estimates on the symbbls given in Sect. 4 and the proof of the theorem is completed in
Sect. 5. In the Appendix an implicit function theorem for mappingR'ihwith positive
definite differentials outside a compact set is given.

2. Estimates on the Classical Flow
The purpose of this section is to show the following proposition.
Proposition 2.1. Let a compact set K C R™ befixed and o, 8 € N™*. Then:
(1) For all € [0, nr] one has:

990 (1. y. &) — ycog — (~1)"&siny)| = O’ (&) 271D+ 1)

and

t
X(t,y, &) = ycog + (—1)"&sinr + h’gcos/ SinsVW (ycos + (—1)"&sins)ds
0

+h?r(t, y, £)
with
090 r (1, y. &) = O(E) F1P0+=2 1 [sinu| () -2

uniformly with respectto ¢ € R™, y € K and & > 0 small enough.
(2) For any ¢ > 0, thereexists hg = ho(e, K) such that

|090f (1. y, &) — ycog — (=1)"&siny)| = O((h° (&)™) P (n® ()11 1D+
uniformly with respectto |§| > ¢h™",0 < h < hg,t € [O,nr]and y € K.
Proof. For (y, k) € R?", we denotgx(z, y, k), p(t, y, k)) the unique classical trajec-

toryt — (x(t), p(t)) satisfying(x(0), p(0)) = (y, k). We also denote(y, &) the value
of k for which p(nm, y, k) = & (so that we hav&(z, y, &) = x(z, y, k(y, £))).
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We use the following lemma:
Lemma 2.2. (1) For & > 0 small enough and for all «, 8 € N, one has:

1890 (k(y. £) — (=1)"&)| = O(h® (g) X~ 1P+
and
k(y, &) = (=1)"& + h° / ” COSVW (ycos + (—1)"&sins)ds + h?ri(y, §)
0

with
020l ri(y, £) = O((E) %)

uniformly with respect to & and 4.
(2) For any ¢ > 0, thereexists hg = ho(e, K) such that for all o, B € N™,

1950F k(3. §) = (=1)"E)] = Ok (&) )P )11 31D

uniformly with respectto |§| > eh™,0 < h < ho,t € [O,nr]and y € K.

Proof of the lemma. By Duhamel principle, we have for any, y, k) € R x R2":

x(t, y, k) = ycos + ksint — h® [§ sin(t — s)VW (x(s, y, k))ds,

p(t,y, k) = —ysin + kcog — h® [j cost — s)VW (x(s, y, k))ds (2.1)
and thereforek = k(y, &) is the unique solution of the equation:
(=)' =k — h® f cos VW (x(s, y, k))ds. (2.2)
0
Denoting byF (v, k) the right-hand-side of (2.2), we see that:
oF o 9x
— =1 h? — k k))~Hd 2.3
Py +0< /0 ak(s,y, )|[(x (s, y, k) S) (2.3)

while, using Gronwall’s inequality iteratively, we deduce from (2.1) that forap €
N one has:

8‘;85 <8—x(s, v, k) — sim) H =0 <h8 /’“T (x(u, y, k))_“du> (2.4)
ok 0

uniformly with respect tc andi (here and in the sequels we have denoted &n
(sins)I, wherel is the identity matrix ofR™). Moreover, using the same arguments as
in [Ya] Lemmas 4.2-4.4, we see that:

[W (x(s, y, b)) Hds = O(k)™H). (2.5)
0

In particular||dx/9k]| is uniformly bounded and we deduce from (2.3)—(2.5) that for
anya, g € N"™:

a%af (%—Z - 1) H — O (k) ™) (2.6)
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uniformly. It follows from (2.6) thak — F(y, k) is a global diffeomorphism iR for
all y and forh small enough, and that moreover the solutigm, &) of (2.2) satisfies:

1090 (k(y. £) — (=1)"&)] = O(h® (£) X141y (2.7)

foranya, 8 € N™. Inserting this estimate in (2.2) and using again (2.4) as well as (1.2),
we get in particular:

k0,6 = (17 +° [ cos VW, . (~176nds + 0 (2 () %)
0

and analogous estimates for the derivatives. Then the result follows by using (see (2.1))
thatx (s, y, (—1)"£) = ycos + (—1)"&sins + O(h® (£)11).
For proving the second statement, we need two lemmas.

Lemma23.Letp > 0and ¢ > 0. Let T > 0 and a compact set K ¢ R™ be fixed.
Then, for any ¢ > 0, thereexist hg = ho(e, K) and C = C(e, K) > 0 such that

T .
/ (x(t, y, k) "PIsine|*dr < C(k|TL RO k|TH)E + k|~ ™ALLY (2.8)
0

fory e Kand|k| > eh™",0 < h < ho. Herewe have assumed p ¢ N for simplicity.

Proof. We have

T
hS/ sin(t — s)Ve W (x(s, y, k)ds| < Crh’|k|¥™* for k| > Co.
0

SetCe.x = &Y/ A"W sup g | so thatCe xh®[k|*# > suply| for [k| = eh™", 0 <
yekK
h < 1. Define

Dy ={t €[0,T]: |sin| < 2(Cr + Ce.x)h° k| 7"}, D2 =[0,T]\ D1.

Fort € D1, we havelx(t, y, k)| < 3(Cr + Ce.x)R®|k|I** < /|k|2 + y2/10 if |k| >
¢h™" and, as in [Ya] Lemma 4.2, we see that

(x (1)) ~P(sine)tdr
Dy

scy [ -l —apl
- J|—jm|<0

where we have sét= 3(Cr + C.. x)h®|k|~* and where the sum ovgrinteger is finite,
anda; € [-2T, 2T] is the unique time i jr — /10, jw + 7/10] for which lx(0)|?is
minimal. In particular, using that(z, y, k) = ycos + ksint + Ok’ (k)1=*) we get:

laj — jm| = O®) (2.9)
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uniformly. Therefore, denoting; = a; — jm we get by a change of variable:

‘ / (x(1)) P (sinr)dr
Dy

< CZ/ |+ bj|“ (tk)Pdt
j |l+bj|§9

4
<Y byl / 019 (tk) P dr

i g=0 [t|=Co

¢

<C Z |k|—min(q+1,p>9€—q+(q+1—£)+
q=0

< C(k|7P0 "t + k| 10Y).

Now, if # € Do, then|x(z, y, k)| > (1/2)|(sint)k| and we have

T .
< c/ I(sint)¢|((sint)k) ~Pdt < C|k|~ MnE+L0),
0

/ (x(t, y, k))~P(sint)‘dt
D2

Adding all the contributions completes the proof of the lemma.

Lemma2.4. Let a compact set K ¢ R™ and T > 0 be fixed. Then, for any ¢ > 0 we
have for any |8| > 1,

|a;‘a,f(x(t, y, k) — ycost — ksint)| < O((h®k=*)IP1,
1950¢ (p(1, v, k) + ysint — kcosn)| < O((h°k !PTy
for k| >eh™,0<h <hg=ho(e, K)andy € K.

Proof. We prove the case = 0 only. The proofs for other cases are similar. We write
t
x(t) = sint — i’ / sin(r — s)afW(x(s))akx(s)ds =sint + X (). (2.10)
0

Then|X (r)] < Ch®|k|~* and this proves the ca$g| = 1. We prove the general case
by induction on|8|. We assume that the lemma holds f8t < ¢ — 1 and let|8| = ¢,
¢ > 2. We have by Leibniz’ formula

t
3 x () =h5/ sin(r — )92W (x(5))3 x (s)ds
0

+) 0 /[ sin(t — S)afaxW(X(s))<Ha’fjx(s))ds’
0

where the sum is taken ov@r such thath B;j = B, lk| = 2 and|«| is the number
of the factors in the product. We estimate each integral under the sign of summation.

Replacing allo;x(s) by sins + X (s) and using the induction hypothesis ﬂ@f‘fx(s)|
with |8;| > 2 and|X (s)| < Ch®[k|~, we estimate it by

(2.11)

T
hO (h? k| =) lPl=a . / (x (o)) sing|ds,
0
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whereq < |«| is the number of sisis which appear from the factoggx(s) = sins +
X (s). We haveu+ |x| —1 > g+ 1 unless; > |«|—1. Hence, we have from Lemma 2.3
that, ifg < || — 2,

T
h5/ (x(s) K sins|7ds < CRO(Jk| (R0 |k|7*)9 + k|~ @tD) (2.12)
0
andifle| —1<gq < k|,
T
hS/ (x(s)X Kl sins|?ds < CRE(Jk| X (R81k|=H) + |k|FH9). (2.13)
0

Using thatk| > ¢h™", we see that the right-hand sides of (2.12) and (2.13) are bounded
by C (h?|k|~*)? and the lemma follows by applying Gronwall’s inequality to (2.11

Completion of the proof of Lemma 2.2. When|é| > ¢h™", we improve (2.6) to

oF
oo (5 - I) ” = O((h* (k) =) \PI*

by using the argument of the proof of the previous Lemma 2.4 which leads to the
following improvement of (2.7):

1820 (k(y. ) — (=1)"&)| = O((h* (&) )P’ () 1) A-1PD+),
This completes the proof of the lemman
Completion of the proof of Proposition 2.1. Going back to (2.1) and using the first

estimate of Lemma 2.2, we first get:

t
~ _ L s . _ _\n
F,3.6) = yoos +k©siv — i [ sing - VW Dol

+ h%rot, v, £)
with
a;lagr?(f, v, &)= (’)((§>(1—Iﬁl)+—2u)

and the first estimate of statement (1) follows by using also (2.5). The second estimate of
statement (1) is also obtained immediately from (2.14) by using the second estimate of
Lemma 2.2. Statement (2) may be proved by differentiafifagy, £) = x(¢, y, k(y, £))

and applying Lemma 2.4 and Lemma 2.2. Note tbat- |k| by virtue of (2.2). O

3. Estimates on the Phase

Let ¢y be the phase defined in (1.6). In this section we show:
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Proposition 3.1. For all (x, y) € R?" with x # (—1)"y, there exists a unique &, =
&.(x,y,h) € R™ for 0 < h small enough such that:

Ve (y, &) = x.

Moreover, if (x, y) remainsin acompact set K of RZ” N {x # (—1)"y}, thenthereexists
aconstant Cx > 0 such that:

1
—h™V < |&(x,y,h)| < Cxh™"
Ck

withv = L,andfor any & € R™:
1—p

8

h
-V , > — &cl-
VOOl e e — e

Proof. By (1.7) and (2.1), we have to solve the equation:

=D"'x—y

5 (3.1)

nim
/ sinsVW(x(s, y, k))ds =
0

wherek = k(y, &). Actually, since the mapping — k(y, &) is one-to-one o™ (for
y fixed), it is enough to solve (3.1) by takirigas the unknown variable. Denote by
G (y, k) the function defined by the left-hand side of (3.1). Then computing as

nw . 2 ax
ViG(y, k) = / sinsD“W(x(s, y, k))a—k(s, v, k)ds
0

and using (2.4) and (1.2), we see as in [Ya], tNaG (y, k) satisfies||ViG(y, k) —
P(k)|| < C(k)~2*for some positive definite matriR (k) such that ~1(k)=* < P(k) <
C{k)~". Itfollows from the global implicit function theorem given in the appendix that,
for large enougtr > 0, the mapping

ni
k> G(y, k) = / SinsVW (x(s, y, k))ds
0

is a diffeomorphism from the exteri®d. g C R™ of the ball of radiusr to its image
and the image contains another exterior doni&if, . In particular, forh small enough
we get the existence of a unique solution= k(y, &) of (3.1).

Moreover, we have:

Lemma 3.2. For y remaining in a fixed compact set of R™ and for |k| large enough, one
has:

L <
= <

nmw
/ sinsVW (x(s, v, k))ds| < Clk|*™*
0

for some constant C > 0 and uniformly with respect to 4 and k.
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Proof of the lemma. Since the upper-bound is obvious, we concentrate on the lower-
bound. We see from (2.1) that

x(s, y, k) = ycoss + ksins + O’ (k)1=H)

and we also use (2.4) to obtain:
8 nmw ni
@/ sinsVW(x(s, y, 8k))ds = / SinstZW(yCOSs + 0ksins)k ds
0 0
+ 0 (0K 1kl + (k).

Integrating with respect té from O to 1, this gives:

nm 1 pnm
/ sinsVW (x(s, v, k))ds = / / sin’s D’>W (ycoss + 0ksins)k dsd6
0 o0 Jo 3.2)
+ O+ R (k).
Then we fixp € (u, 1), and we consider the set:
D, ={(9,s) €[0,1] x [0,nr]; |fsins| > (k)~"}

and its complementa@bg in [0, 1] x [0, nr]. Since onD, we have|@ksins| — +oo
as|k| — +oo, we can use (1.2) to get:

<f sin’s D’W (ycoss + 0ksins)k dsd6, k>
Dﬂ
Sinés o 2
> T(yCOSs + Oksins) ™" dOds |k|
Dy

and thus, by Cauchy-Schwarz inequality and sincdiptarge enoughD,, contains
{@,s) €[0,1] x [0,nx]; |@sins| > 81} (of measure~ 1) for any fixeds; > 0 small
enough, we get (with some other constént- 0):

>

> %(kﬂ—“. (3.3)

/ sin’s D2W (ycoss + 0ksins)k ds do
Dy

On the other hand, since the Lebesgue measuﬂgds Ok)~PIn(k)*) as|k| — +oo,
we have:

f sin’s D*W (ycoss + 0ksins)k dsde' = O PIn(k)?) = O((k)#7%)
g

(3.4)
for somee > 0. Then the result follows from (3.2)—(3.4)0

Completion of the proof of Proposition 3.1. We deduce from the lemma and from (3.1)
that|k.| (and thus als¢t.|) behaves likei " ash — 0.
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Now, denoting

nm

Gy, &) = /m sSinsVW (x(s, y, k(y, &) ds = / sSinsVW (X(s, v, &))ds,
0 0

(3.5)
we can write:
X—=Vey(n,6) =x — (=D"y — (=D"K’G(y, &)
= (=D"n° (G(y,&) — G(y,£))
a5 [LOG
= (=1)"h f — (O, the + (L—1)E) - (& — &)dt,
o 0§
that is:
1 nmw
X = Ve (5 £) = (—1)'R? / / At x. y. £)dsdr (3.6)
0 JO
with

A(t,s, x,y, &) = sinsD*W (X(s, y, k. + (1 — 1)§)) a—x(s, yithe + (1 —1)§)

9§
“(Ec—86).
Now, given some constaat> 0 large enough, we split the integral in (3.6) in two pieces
by setting:
B=B(x,y,&)={(s,t) € [0,nm] x [0,1]; |(t& + (1L — r)&)sins| > A}

and
L(x,y, &) = (—1)"115/ A(t, s, x, v, £)dsdt,
B

I(x,y, &) = (—1)”h5/ A(t, s, x,y, E)dsdt.
BC

If A is taken sufficiently large, fofs, r) € B we can apply (1.2) withh = X(s, y, & +
(1—1)¢). Since also, by Proposition 2.1, we have

Z—;‘(s, V.£) = (—D)sins + O (&) )

this permits us to get:

)
(& —) = / SIS (%5, v, 160 + (L — DE)) (&, — £[2ds di
Co /g (3.7)

— Oh?) / (16 + (L — D)E) Mg, — £%ds d.
B

Now, let us estimate the measure®f. Sincel&, + (1 — 1)(& — &)| > ||&] — (1 —
1|E — &|, itis easy to see that ifs, 1) € BC, thenr belongs to an interval of length

Min (1, @—5%) When e.glé — £.| > |£.|/2, this gives a set if0, n] x [0, 1] of
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1§ —&cl
measure)(|&.|1). Thus we get in any case:

measure) ('”'5’5”'). On the other hand, it — &.| < |£.|/2 thens belongs to a set of

In(l&| + € — &)
M B¢ :0( ) 3.8
sasues) &l + € & &9
It follows that
h5|s—sc|ln<|sc|+|s—sc|))
=0 3.9
! ( &l + 1€ — &l 59

and also, in view of 3.7):

(& ~8) = ¢ / / S5 (R(s, v, 1€ + (L — DE) e — £Pdsd
0

8 2
_O< g — &|

6N o0 [+ o -
|§C|+|€_§C|> ( )o(t§+( NE)H|E — &|°dt

that is:
(I, & — >>—// SIS (X5, v, 1o + (L — DE)ME, — £[2ds di

(3.10)
s 2 281 _ £12
—(9< h°l§ —&| h*°|§ — §&| )

&l 416 — &l " A+ 15| + 18 = &D*

As a consequence, Sinf&(s, v, £)| = O(|&]) uniformly, we get from (3.10):
)

h 1
(& —£) = C—/ (ke + (L= DE) M. — £[2dt
1Jo0

Sl _ £ |2 21 _ g2
_O<h|s il et 1 )
[Ecl +1& — & L+ &+ & —&DH
whereC1 > 0 is a constant, and thus (with some other constant 0):

<Il§_§>>/«_‘s & — &2
T T Co (L+ |&| + | — &~

Sig _ £ 12 281 _ g2
_O<h|5 &l h*°|& —&| >

(3.11)

|&cl + 15 — &l " A+ 15| + 18 = &D*

Putting together (3.6), (3.9) and (3.11), we getAi@mall enough:

lx — Vey(y, §)I
1 I —
2h3< _ Caln(&| + € sc|)>|gc_$| (3.12)
Ca(A+ [Ecl + 16 — &cDH Ecl + 15 — &l
with C3 > 0 constant. Now the result follows by observing tl§at ~ 2~V ~ 1+|&.| and,

forany fixedo € (11, 1), (16| +1& — &) (& |+ 15 — &) = O((I&|+1€ =& ") =
O "7 (5] + 1€ — &™) = ORY P~ (& + 1€ —&D™™). O

Remark. We deduce in particular from Proposition 3.1 that§osuch thaté — &.| =
O(l&|), one has:

lx = Vi (y, 8| = ]g—,lé &l

with C% > 0 constant.
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4. Estimates on the Symbol

Letb(y, &, h) be the amplitude functionin (1.5). We dendte &) ~* = ((y, &£))"*. The
purpose of this section is to prove:

Proposition 4.1. Ash — +0, 3%0f (b(y. &, h) — 1) = O (y, &)™) + O(h).
Proof. For smalle > 0 and largeT > O fixed, we setl, 7 = {|t| < T : |t — (m +
1/2)| > e, Vm € Z}. For|t| < T, we have

H—(t y, k) — cost|| < Crh®

and for 0< h small, the mag — p(z, y, k) is a diffeomorphism oR™ for every fixed
t € I, 7 andy € R™. It follows for suchr that the phase function is globally defined by

,k)?
Py E) = x (3 K) - & — /(M

—Vix(s,y, k))) ds
k being such tha¢ = p(¢, v, k), and thatE(t, x,y), n — 1/2)r <t < (n + 1/2)7,
can be written ([Ya-1], Theorem 5.5) in the form

c—n

i .
Et.x,y) = —— | @V £) e,
(169 (27Th)’"ICOSt|'"/2/e (t,y,8)d§

When|z| < Ty = (w/2) — ¢, it can be shown as in ([Ya-1]) that

bo(t, y, §)

b(t,y, k)= W

ap -1/2
= (detﬁ(t, y,k)) +hOQ), &=p(t, yk).

Sinceay"‘a,i3 (g—i(t, v, k) — cosr) = Oh*(y, k)™") ([Ya], Lemma 4.4) andy, &) ~

(v, k) for |z] < Ty, (4.1) holds for smalt. For obtaining the proposition, it suffices via
an induction argument to show the following lemma. We Jete Z. 1 be such that, for
someni, np,n3 € Z, |s —niw| < w/2,|t —now| < w/2 and|s +t —n3w| < /2 and
set

i o !
Fx,y,§) = Wel(xé YOy (bo(y, £) + hba(y, §)).
iz —— !
Gx,y,8) = We:(xg VEXEN R (eo(y, £) + hea(y, €))
and define

H(y, &) = /e—"xf/hF(x, 2, Gz, y, o)dtdzdndx.

Lemma 4.2. Suppose that by and co satisfy 8“8ﬁ(bo(y, Eh)—1) = OhS(y, &)1
and 3_335 (co(y, &, h) = 1) = O(h’(y, §)™*) and b1, c1 = O(1). Then

l'7n3efiw(t+s,y,§)/h
HO.8) = — sz (o0 €) + hda(v, ),

where 8997 (do(y, €. h) — 1) = O(h*(y. £)~*) and dy = O(D).
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Proof. Set®(x,z,n,y,¢) = —xE+xn—v(t, z,n)+z8 — ¥ (s, y, ). The derivatives
of @ of order higher than one are bounded and Hgss; @ is given by

1 —Yyy =¥z O | 1 —tanr —sex 0 s
0 =Yy Yz 1 10 -sexr —tantr 1 + O0°).
0 0 1 Y 0 0 1 —tans
Denote byA the matrix on the right. It is easy to see that
cogt "
|detA| = |tans tans — 1| = cosr+s5) £0
COSt - COSs

Thus the point of stationary phase exists uniquely for eygry) and is determined by
the system of equations
axq> = _‘i: + n= O’
P =x -0,y z,n) =0,
an) = _aZW(tv <5 77) + é. = O,
0, ®=z—0Y(s,y,¢)=0.

(4.1)

For anyk,

(x,n,2,8) =t +s,y,k), pt+5,y,k),x(s,y,k), p(s, y, k)) 4.2)

satisfies the last three equations of (4.1) anck) — (v, p(t + s, v, k)) is a diffeo-
morphism onR2”. It follows that the unique stationary phase paist, 7¢, zc, £c) is

given by the right hand side of (4.2) withbeing replaced by the solutidr(y, &) of

& = p( +s,y,k). The quadratic form defined by the matrix can be written for
X = (a, b, c,d) € R¥" in the form

tanstans —1 ,  tanstans tanstans — 1 )2
(AX, X) = a“ — -
tans tans tan tans — 1 tan: tans

tant tans — 1 tans sec 2 c \2
+ c— b | +tans <d — —) ,
tans tanrtans — 1 tans

and we see that the signaturefs given by
0 if tanrtans <1,

sgn(A) = { —2m if tanrtans > 1 and tan > 0, 4.3)
2m if tanstans > 1 and tary < O.

It follows by the standard stationary phase method Hét, &) is given by
i—nl—nzgiﬂsgr'(A)/4
[cog(t + s)|™/2

Notice that tantans < 1 if and only if|z + s — (n1 + n2)7| < 7/2 and, tarrtans >
1 and +tans > Oifand only if|t + s — (n1 + n2 £ V7| < 7/2 and that

=Y (t, 2esMe) +2e8e — W (s, 9, 8e) ==yt +5,y,8).
Moreover, becausgy, &) ~ (v, k) ~ (y, &) ~ (z¢, &), We have
bo(ze, nc)co(y, Cc) -1= (bo(zc, 770) - 1)C0(y» {c) + CO()’a Cc) -1
=0’ (y,&)™"). O

o TV e F2ebemV O DI (o (2, m)eo(y. &) + hda (. §)).
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5. Completion of the Proof

In what follows we fix a compact s&& C R™ and always assume thaty € K. We

apply the method of stationary phase to the integral on the right of (1.5). As the magnitude
of the critical pointé. of the phase functio§ — x& — ¥ (y, &, h) is of orderh™" as

was shown in Proposition 3.1, we change the variables 2~"¢ to make|&.| ~ 1in

the new scale. Thus, we consider

N

(Zn)mh(lJrU)m

SetW(x, y, &, h) = x& — h¥y(y, h""&, h) and denote by, = &.(x, y, k) the critical
point of the functiore — W (x, y, &, h). By virtue of Proposition 3.1,

X =%V, h &, h),  Cg* <&l <Ck,

£ — &
Vly 9 b 9h p— . 5-2
Ve S DI C A — g 52

E(x,y, h) = f I CERYOBTIEN/ W o pve pyge . (5.1)

In view of (5.2), we split the integral (5.15 (x, y, h) = E<.(x,y,h) + E>.(x, y, h)
by using the cutoff functiory.(§) = x (S — éc):
&

F—n

l
(27 h)A+v)m
*—n

1 . . N
W/elw,mmn (1 — e (ENb(y. h—"E. h)dE.

wherey e C3°(R™) is suchthaty(§) = 1for|&| < 1/2 andx (§) = O for [§] > 1.

Ee(x.y.h) = / VOO (E)b(y, hTVE, h)dE,

E-o(x,y, h) =

Lemmab5.1. Lete > 0. Forany N =0, 1,...,03%9" E~.(x, y, h) = O(h").
Proof. We apply integration by parts by using the identitity
N
h(l—H/)N VE‘IJ v ei\p/h1+\J _ ei\p/h1+\;
i|VeW|?
and write in the form
i~ pA+V)N

(27Th)(1+”)m

tN
Ly Ve W -
. / oY/t <1|V§—\IJ|2 . V&) (1= x)b(y, h™ "€, h)d§,

where T stands for the real transpose. Since
R VeW(x,y, &) =00, by, h™"E, 1) = OR™"),  o| = 1,
we have by virtue of (5.2),

EES(xa yah) =

—Nv
< < Cnh

Vew tN »
( -Vg) (1= xe(ENb(y,h™ "8, h) E—ENGw

IAIE

and we obtain the lemma for = 8 = 0 by letting N large enough. The proof for the
derivatives ofE; is similar. O
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We deal withE—, (x, y, h) next. Assume > O is small enough ang| > % for
& € suppxe. SinceVey (y, &) = X(nm, y, &), we have
HessW(x, y, ) = —h~"(8:X)(nm, y, h ™€)
and by Proposition 2.1 the right-hand side can be written as

(=1 +ip—v+e / SinsdZW (yCoss + (—1)"h™"&sins)ds + h? " O(h™ &) 7).
0
(5.3)

It follows by an estimate similar to the one used in the proof of Lemma 4.2 that the
symmetric matrix given by the integral (5.3) is larger th@h*¥ on the support of..
Thus we have fok, y € K andé € suppye:

0<C1 < (-1)"Hess ¥ (x, y,£) < Ca < 00. (5.4)

Moreover, by virtue of the second statement of Proposition 2.1, we have joe K
and¢ e suppye.:

ay“afw = O "B RS RVE|™H)) = O(). (5.5)
By Taylor’s formula we have
ly(xv Y, ‘i:) = \Il(x’ Yy, EL) + (E - EC’ B()C, Y, S)(é - éjc))/Z,

1
B(x,y,&) = 2/ (1—-0)Hess W (x,y, 08 + (1 —6)&.)d6.
0

It is obvious from (5.4) that fok, y € K and¢ e suppye.,
0<C1<(-)"™B(x,y,& < Cp < 0. (5.6)
SetM(x, y, &) = (D" B(x, y, £))Y/2 and define) = M (x, y, £)(§ — &:). Then

dgn = M(x,y, &) + (s M(x,y, ) — &)

and, if we replace > 0 by a smaller one if necessary, we see from (5.6) and (5.5) that
the mapt — 7 is a diffeomorphism on the bafk : |§ — &.| < 2¢} to its image with
uniformly bounded derivatives and the same for its inverse map. We change the variables
in the integral forE <. (x, y, ) from & to n:

i,nei\l/(x,y,éc)/hlﬂ
(2 ympdFvim
. n v a _l
. / el(_l) T/t Xg(s)b(y’ h_‘)%', ") (deté) an

where¢ = £(x, y, n) isthe inverse of — n(x, y, £). Since 1+v > 2v by our assump-
tion, we can apply the extended form of stationary phase and, in virtue of Proposition 4.1,

E§8(-x1 y,h) =

i—nei\I/(x,y,éc)/h1+”+i7r(—l)”+1m/4

ESS(-xa ya h) ==

(zn)m/Zh(l—&-v)m/Z
—1/2
A+ Oh*) + Oht™)y),

9%
deté(rm, v, h V)

This concludes the proof of the theorent
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6. Appendix
ForR > 0,wewriteB_.g = {x € R" : [x| > R}, Bo.g = {x € R™ : |x| < R}, and etc.

Lemma6.1. Let F be a smooth map from R™ to R™. SQuppose that the differential o, F
of F satisfies

19 F(x) = P)|| < C3(x)™®,  |x| = Ro
for a positive definite matrix P (x) such that
C1(x)° < P(x) < C2(x)™°, |x| > Ro

for some constants C1, C2, C3 > 0and 0 < § < 1. Then, there exists Ry such that
F (x) is a diffeomorphism from B. g, onto itsimage and such that the image F (B-g,)
contains the exterior domain B.. , for some p > 0.

Proof. TakeR> > 0 large enough such that for a constant> 0,
(0 F(x)u, u) > Calx)*|ul|?>, x € Bzg,, u € R™.

Thena, F (x) is non-singular and’(x) is a local diffeomorphism irB> g,. We suppose
R1 > 10R; and show first thaF is one to one oBx>g,. Letx, y € B>k, andx # y. If
x andy may be connected by a line segmént Bxg,, then we have

1
(F(x) = F(y)ox —y) = /0 @ F(tx +(L—Dy)(x —y).x —y)di >0 (6.1)

and F(x) # F(y). Suppose, thereford, N B.g, # #. Then, we havgx, y) <
—(49/50)|x||y| and, thereforéx — y| > (9/10)(|x| + |y]). LetM = sup |0, F (x)||

|[x]|<R2
andl ={r €[0,1] : tx + (1 — 1)y € B<g,}. It then follows thai/| < 2Ry/|x — y| <
20R2/(9(|x| + |y])) and
20M R>
M|l £ o—F——.
(x| + [yD

H/axF(tx + (A —1)y)dt
1

On the other hand, if ¢ 1, then(d, F (tx + (1 — 1)y)u, u) > Caltx + (1 —1)y)~% and,
if we write I1 = [0, 1] \ I, we have fom with |u| = 1,

0xF(tx + (L —=1t)y)u, u)dt > / Caltx + (1 — t)y>_‘sdt

Ih I

z/ Callx] + Iyl ds
I
> Cal27%(x| + [yD ™2 = 11}

Thus, we have, withh = x — y,

1
/ OxF(tx + (L —t)y)u, u)dt
0

B _« 20R>(Ca+ M
> (c42 Sxl+ 1y ™% = M) llue?

9(|x[ + 1y
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andF is one to one oBx g, if Ry is replaced by a larger; if necessary. We then want to
showthatthe imagE (Bx g, ) covers abalB , if we takep such thatf (B<g,) C B>y /2.

The proof follows that of the Hadamard global |mpI|C|tfunct|on theorem givenin [F]and
goes with the continuity argument. Letting= R1x, X = x/|x]| in (6.1), for|x| > R1,

we have

1
(F(x) — F(R1x),x) = / 0y F(tx + (1 — )R1x) - (x — R1X), x)dt
0
> C1(x)°(Jx| — Ry)

and we see thatF(x)| — oo as|x| — oo. Hence, we can fing € B-, such that
= F(x) for somex € Bsg,. Take anyy; € B, and connecy andy; by act
curvey(t),0 <t < 1in Bs,, y(0) = y andy (1) = y;. We show that there exists
a curveyi(r) in Bxg, such thatF(y1(t)) = y(¢t) for 0 < ¢ < 1. Such a curve. (1)
certainly exists for small O< ¢ < ¢ becauseF is a local diffeomorphism irBx g,
and F(B<g,) C Bp2. If it exists for 0 < ¢ < ¢, then it also exists for < ¢ < c.

Indeed,y;(t) = 0. F(y1())~1y/'(1) and, agly1(t)] < C for 0 < t < ¢ (otherwise
y (t) would not be bounded), we hayé, F(y1(t)) 1| < M and|y;(t)| < M|y’ ().
Hencey1(¢) is uniformly continuous ir0, ¢) and it has a Iimitt limy1(#) = y1(c) and

F(y1(c)) = y(c). y1(c) € B g, is obvious as otherwisg (c)| < p/2 and, again using
the local diffeomorphic property af, we further continue,; beyondec. In this way we
can continue (r) up to[0,1]. O
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