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Abstract: We consider perturbations of the semiclassical harmonic oscillator of the form
P = −h2

2 �+ x2

2 + hδW(x), x ∈ Rm, with W(x) ∼ 〈x〉2−µ as|x| → +∞ andδ, µ ∈
(0,1), and we investigate the fundamental solutionE(t, x, y) of the corresponding time-
dependent Schrödinger equation. We prove that at resonant timest = nπ (n ∈ Z) it
admits a semiclassical asymptotics of the form:E(nπ, x, y) ∼ h−m(1+ν)/2a0e

iS(x,y)/h

with a0 �= 0 andν = δ/(1 − µ), under the conditionsx �= (−1)ny andν < 1.

1. Introduction and Main Result

We consider time dependent Schrödinger equation inL2(Rm):

ih
∂u

∂t
= −h2

2
�u+ x2

2
u+ hδW(x)u = Phu, (1.1)

whereδ ∈ (0,1) andW(x) ∈ C∞(Rm) is real valued. We assume for some constants
C > 0 andµ ∈ (0,1):

1

C
〈x〉−µ ≤ D2W(x) ≤ C〈x〉−µ,

|∂αW(x)| ≤ Cα〈x〉2−µ−|α| for |α| ≥ 3
(1.2)

for x ∈ Rm. In particularW is subquadratic at infinity. Under this assumption,Ph on
C∞

0 (Rm) admits a unique selfadjoint extension, which we denote byPh again, and the
solution of (1.1) with initial datau(0, x) = φ(x) is given byu(t) = exp(−itP h/h)φ.
The distribution kernelE(t, x, y) of exp(−itP h/h) is called the fundamental solution

� Investigation supported by University of Bologna. Funds for selected research topics
�� Partly supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports

and Culture, Japan #11304006



358 A. Martinez, K. Yajima

(FDS for short) of (1.1) and we investigate the behaviour ash → 0+ of E(t, x, y) at

the resonant timest = nπ (n ∈ Z∗). We setν = δ

1 − µ
and assume 0< ν < 1. Our

main result is:

Theorem 1.1. Let n ∈ Z∗. Then, E(nπ, x, y) is a C∞ function of (x, y) and for h small
enough it can be written in the form:

E(nπ, x, y) = h−m(1+ν)/2a(x, y, h)eiS(x,y)/h, (1.3)

where S(x, y) is the action integral of classical trajectory corresponding to (1.1) con-
necting x(0) = y and x(nπ) = x, and for any compact subset K of R2m \ �,
� = {(x, (−1)nx) ; x ∈ Rm}, a(x, y, h) satisfies 0 < C−1 ≤ |a(x, y, h)| ≤ C < ∞
for (x, y) ∈ K uniformly with respect to small h.

The estimate (1.3) should be compared with the result at non-resonant time: Ift �∈ πZ,
then the FDS solution behaves ash → 0+,

E(t, x, y) = h−m/2a(x, y, h)eiS(x,y)/h = O(h−m/2),

and (1.3) represents the anomalous increase of the amplitude ash → 0. We should also
remark that, ifW is sublinear, viz.W = O(〈x〉1−ε), then for(x, y) ∈ K, K being as
above,E(nπ, x, y) = O(hN) for anyN ash → 0+. Indeed in this case,E(nπ, ·, y) has
singularities at(−1)ny. These remarks can be easily obtained by applying the standard
stationary phase method to (1.5) below.

Motivation to this work comes from the study of the behavior at infinityx2+y2 → ∞
of the FDS of Eq. (1.1) with fixedh = 1 under the condition (1.2):

i
∂u

∂t
= −1

2
�u+ x2

2
u+W(x)u. (1.4)

When t �∈ πZ, E(t, x, y) for (1.4) converges to the FDS solution of the harmonic
oscillator asx2 + y2 → ∞ ([Ya-1]). At resonant times, however, we believe that
E(nπ, x, y), n �= 0, blows up as|x − y| → ∞. It turns out that proving the latter
is a little too intricate and still out of reach, although intimately related to the semiclas-
sical problem we investigate here. Indeed, in the caseW(x) = |x|2−µ the change of
scaleu(t, x) → u(t, x/

√
h) converts (1.4) to (1.1) withδ = µ/2 and the study of the

solution of (1.4) as|x| → ∞ is equivalent to that of (1.1) at fixedx ash → 0. Thus, we
expect in general|E(nπ, x, y)| ∼ |x − y|mν as|x − y| → ∞, with ν = µ/(2 − 2µ).

The strategy for proving the theorem is as follows. First of all, one can see as in [Ya-1]
(see also [Ro,KK] for a semiclassical version for short time) thatE(nπ, x, y) can be
written under the form of an oscillatory integral:

E(nπ, x, y) = 1

(2πh)m

∫
ei(xξ−ψ(y,ξ))/hb(y, ξ, h)dξ. (1.5)

Hereb is a semiclassical symbol which is uniformly bounded together with all its deriva-
tives, andψ is the function:

ψ(y, ξ) = x̃(nπ, y, ξ) · ξ −
∫ nπ

0

( ˙̃x(t, y, ξ)2
2

− V (̃x(t, y, ξ))

)
dt, (1.6)
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whereV (x) = x2

2
+ hδW(x) and x̃(t, y, ξ) denotes thex-projection at timet of the

unique classical trajectoryt �→ (x(t), p(t)) satisfyingx(0) = y andp(nπ) = ξ , that is
the unique solution of: 

ẋ(t) = p(t)

ṗ(t) = −∇V (x(t))
x(0) = y ; p(nπ) = ξ

(notice that sinceV depends onh, the same is true for̃x(t, y, ξ)). We then apply the
stationary phase method to (1.5). It is standard to show that:

∇ξψ(y, ξ) = x̃(nπ, y, ξ) (1.7)

and the point of stationary phase is given as the solution ofx = x̃(nπ, y, ξ).
We study the properties of̃x(nπ, y, ξ) ash → 0 as well as|ξ | → ∞ in Sect. 2.

Section 3 is devoted to studying the phase functionψ(y, ξ). We show there exits a unique
point of stationary phase forx �= (−1)ny and we estimate|x−∇ξψ(y, ξ)| from below.
Estimates on the symbolb is given in Sect. 4 and the proof of the theorem is completed in
Sect. 5. In the Appendix an implicit function theorem for mappings inRm with positive
definite differentials outside a compact set is given.

2. Estimates on the Classical Flow

The purpose of this section is to show the following proposition.

Proposition 2.1. Let a compact set K ⊂ Rm be fixed and α, β ∈ Nm. Then:

(1) For all t ∈ [0, nπ ] one has:

|∂αy ∂βξ (̃x(t, y, ξ)− ycost − (−1)nξsint)| = O(hδ〈ξ〉(1−|β|)+−µ)

and

x̃(t, y, ξ) = ycost + (−1)nξsint + hδcost
∫ t

0
sins∇W(ycoss + (−1)nξsins)ds

+h2δr(t, y, ξ)

with
∂αy ∂

β
ξ r(t, y, ξ) = O(〈ξ〉(1−|β|)+−2µ + |sint |〈ξ〉1−2µ)

uniformly with respect to ξ ∈ Rm, y ∈ K and h > 0 small enough.
(2) For any ε > 0, there exists h0 = h0(ε,K) such that

|∂αy ∂βξ (̃x(t, y, ξ)− ycost − (−1)nξsint)| = O((hδ〈ξ〉−µ)|β|(hδ〈ξ〉1−µ)(1−|β|)+)

uniformly with respect to |ξ | ≥ εh−ν , 0 < h < h0, t ∈ [0, nπ ] and y ∈ K .

Proof. For (y, k) ∈ R2m, we denote(x(t, y, k), p(t, y, k)) the unique classical trajec-
tory t �→ (x(t), p(t)) satisfying(x(0), p(0)) = (y, k). We also denotek(y, ξ) the value
of k for whichp(nπ, y, k) = ξ (so that we havẽx(t, y, ξ) = x(t, y, k(y, ξ))).
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We use the following lemma:

Lemma 2.2. (1) For h > 0 small enough and for all α, β ∈ Nm, one has:

|∂αy ∂βξ (k(y, ξ)− (−1)nξ)| = O(hδ〈ξ〉(1−|β|)+−µ)

and

k(y, ξ) = (−1)nξ + hδ
∫ nπ

0
coss∇W(ycoss + (−1)nξsins)ds + h2δr1(y, ξ)

with
∂αy ∂

β
ξ r1(y, ξ) = O(〈ξ〉1−2µ)

uniformly with respect to ξ and h.
(2) For any ε > 0, there exists h0 = h0(ε,K) such that for all α, β ∈ Nm,

|∂αy ∂βξ (k(y, ξ)− (−1)nξ)| = O((hδ〈ξ〉−µ)|β|(hδ〈ξ〉1−µ)(1−|β|)+)

uniformly with respect to |ξ | ≥ εh−ν , 0 < h < h0, t ∈ [0, nπ ] and y ∈ K .

Proof of the lemma. By Duhamel principle, we have for any(t, y, k) ∈ R × R2m:{
x(t, y, k) = ycost + ksint − hδ

∫ t

0 sin(t − s)∇W(x(s, y, k))ds,

p(t, y, k) = −ysint + kcost − hδ
∫ t

0 cos(t − s)∇W(x(s, y, k))ds
(2.1)

and therefore,k = k(y, ξ) is the unique solution of the equation:

(−1)nξ = k − hδ
∫ nπ

0
coss∇W(x(s, y, k))ds. (2.2)

Denoting byF(y, k) the right-hand-side of (2.2), we see that:

∂F

∂k
= I + O

(
hδ

∫ nπ

0

∥∥∥∥∂x∂k (s, y, k)
∥∥∥∥〈x(s, y, k)〉−µds

)
(2.3)

while, using Gronwall’s inequality iteratively, we deduce from (2.1) that for allα, β ∈
Nm one has:∥∥∥∥∂αy ∂βk (

∂x

∂k
(s, y, k)− sins

)∥∥∥∥ = O
(
hδ

∫ nπ

0
〈x(u, y, k)〉−µdu

)
(2.4)

uniformly with respect tok andh (here and in the sequels we have denoted sins for
(sins)I , whereI is the identity matrix ofRm). Moreover, using the same arguments as
in [Ya] Lemmas 4.2–4.4, we see that:∫ nπ

0
〈x(s, y, k)〉−µds = O(〈k〉−µ). (2.5)

In particular‖∂x/∂k‖ is uniformly bounded and we deduce from (2.3)–(2.5) that for
anyα, β ∈ Nm: ∥∥∥∥∂αy ∂βk (

∂F

∂k
− I

)∥∥∥∥ = O(hδ〈k〉−µ) (2.6)
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uniformly. It follows from (2.6) thatk �→ F(y, k) is a global diffeomorphism inRm for
all y and forh small enough, and that moreover the solutionk(y, ξ) of (2.2) satisfies:

|∂αy ∂βξ (k(y, ξ)− (−1)nξ)| = O(hδ〈ξ〉(1−|β|)+−µ) (2.7)

for anyα, β ∈ Nm. Inserting this estimate in (2.2) and using again (2.4) as well as (1.2),
we get in particular:

k(y, ξ) = (−1)nξ + hδ
∫ nπ

0
coss∇W(x(s, y, (−1)nξ))ds + O

(
h2δ〈ξ〉1−2µ

)
and analogous estimates for the derivatives. Then the result follows by using (see (2.1))
thatx(s, y, (−1)nξ) = ycoss + (−1)nξsins + O(hδ〈ξ〉1−µ).

For proving the second statement, we need two lemmas.

Lemma 2.3. Let ρ > 0 and 2 ≥ 0. Let T > 0 and a compact set K ⊂ Rm be fixed.
Then, for any ε > 0, there exist h0 = h0(ε,K) and C = C(ε,K) > 0 such that

∫ T

0
〈x(t, y, k)〉−ρ |sint |2dt ≤ C(|k|−1(hδ|k|−µ)2 + |k|− min(1+2,ρ)) (2.8)

for y ∈ K and |k| ≥ εh−ν , 0 < h < h0. Here we have assumed ρ �∈ N for simplicity.

Proof. We have∣∣∣∣hδ ∫ T

0
sin(t − s)∇xW(x(s, y, k))ds

∣∣∣∣ ≤ CT h
δ|k|1−µ for |k| ≥ C0.

SetCε,K = ε−1/(1−µ) supy∈K |y| so thatCε,Kh
δ|k|1−µ ≥ sup

y∈K
|y| for |k| ≥ εh−ν , 0 <

h < 1. Define

D1 = {t ∈ [0, T ] : |sint | ≤ 2(CT + Cε,K)h
δ|k|−µ}, D2 = [0, T ] \D1.

For t ∈ D1, we have|x(t, y, k)| ≤ 3(CT + Cε,K)h
δ|k|1−µ ≤ √|k|2 + y2/10 if |k| ≥

εh−ν and, as in [Ya] Lemma 4.2, we see that∣∣∣∣∫
D1

〈x(t)〉−ρ(sint)2dt

∣∣∣∣ ≤ C
∑
j

∫
|t−jπ |≤θ

|t − jπ |2〈(t − aj )k〉−ρdt,

where we have setθ = 3(CT +Cε,K)h
δ|k|−µ and where the sum overj integer is finite,

andaj ∈ [−2T ,2T ] is the unique time in[jπ −π/10, jπ +π/10] for which |x(t)|2 is
minimal. In particular, using thatx(t, y, k) = ycost + ksint + O(hδ〈k〉1−µ) we get:

|aj − jπ | = O(θ) (2.9)
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uniformly. Therefore, denotingbj = aj − jπ we get by a change of variable:∣∣∣∣∫
D1

〈x(t)〉−ρ(sint)2dt

∣∣∣∣ ≤ C
∑
j

∫
|t+bj |≤θ

|t + bj |2〈tk〉−ρdt

≤ C
∑
j

2∑
q=0

|bj |2−q
∫

|t |≤Cθ
|t |q〈tk〉−ρdt

≤ C

2∑
q=0

|k|− min(q+1,ρ)θ2−q+(q+1−2)+

≤ C(|k|−ρθ2+1 + |k|−1θ2).

Now, if t ∈ D2, then|x(t, y, k)| ≥ (1/2)|(sint)k| and we have∣∣∣∣∫
D2

〈x(t, y, k)〉−ρ(sint)2dt

∣∣∣∣ ≤ C

∫ T

0
|(sint)2|〈(sint)k〉−ρdt ≤ C|k|− min(2+1,ρ).

Adding all the contributions completes the proof of the lemma.��
Lemma 2.4. Let a compact set K ⊂ Rm and T > 0 be fixed. Then, for any ε > 0 we
have for any |β| ≥ 1,

|∂αy ∂βk (x(t, y, k)− ycost − ksint)| ≤ O((hδk−µ)|β|),

|∂αy ∂βk (p(t, y, k)+ ysint − kcost)| ≤ O((hδk−µ)|β|)

for |k| ≥ εh−ν , 0 < h < h0 = h0(ε,K) and y ∈ K .

Proof. We prove the caseα = 0 only. The proofs for other cases are similar. We write

∂kx(t) = sint − hδ
∫ t

0
sin(t − s)∂2

xW(x(s))∂kx(s)ds = sint +X(t). (2.10)

Then|X(t)| ≤ Chδ|k|−µ and this proves the case|β| = 1. We prove the general case
by induction on|β|. We assume that the lemma holds for|β| ≤ 2 − 1 and let|β| = 2,
2 ≥ 2. We have by Leibniz’ formula

∂
β
k x(t) = hδ

∫ t

0
sin(t − s)∂2

xW(x(s))∂
β
k x(s)ds

+
∑

hδ
∫ t

0
sin(t − s)∂κx ∂xW(x(s))

( ∏
∂
βj
k x(s)

)
ds,

(2.11)

where the sum is taken overβj such that
∑

j βj = β, |κ| ≥ 2 and|κ| is the number
of the factors in the product. We estimate each integral under the sign of summation.

Replacing all∂kx(s) by sins + X(s) and using the induction hypothesis for|∂βjk x(s)|
with |βj | ≥ 2 and|X(s)| ≤ Chδ|k|−µ, we estimate it by

hδ(hδ|k|−µ)|β|−q ·
∫ T

0
〈x(s)〉1−µ−|κ||sins|qds,
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whereq ≤ |κ| is the number of sins’s which appear from the factors∂kx(s) = sins +
X(s). We haveµ+|κ|−1 > q+1 unlessq ≥ |κ|−1. Hence, we have from Lemma 2.3
that, if q ≤ |κ| − 2,

hδ
∫ T

0
〈x(s)〉1−µ−|κ||sins|qds ≤ Chδ(|k|−1(hδ|k|−µ)q + |k|−(q+1)) (2.12)

and if |κ| − 1 ≤ q ≤ |κ|,

hδ
∫ T

0
〈x(s)〉1−µ−|κ||sins|qds ≤ Chδ(|k|−1(hδ|k|−µ)q + |k|1−µ−q). (2.13)

Using that|k| ≥ εh−ν , we see that the right-hand sides of (2.12) and (2.13) are bounded
byC(hδ|k|−µ)q and the lemma follows by applying Gronwall’s inequality to (2.11).��

Completion of the proof of Lemma 2.2. When|ξ | ≥ εh−ν , we improve (2.6) to∥∥∥∥∂αy ∂βk (
∂F

∂k
− I

)∥∥∥∥ = O((hδ〈k〉−µ)|β|+1)

by using the argument of the proof of the previous Lemma 2.4 which leads to the
following improvement of (2.7):

|∂αy ∂βξ (k(y, ξ)− (−1)nξ)| = O((hδ〈ξ〉−µ)|β|(hδ〈ξ〉1−µ)(1−|β|)+).

This completes the proof of the lemma.��
Completion of the proof of Proposition 2.1. Going back to (2.1) and using the first
estimate of Lemma 2.2, we first get:

x̃(t, y, ξ) = ycost + k(y, ξ)sint − hδ
∫ t

0
sin(t − s)∇W(x(s, y, (−1)nξ)ds

+ h2δr2(t, y, ξ)

(2.14)

with

∂αy ∂
β
ξ r2(t, y, ξ) = O(〈ξ〉(1−|β|)+−2µ)

and the first estimate of statement (1) follows by using also (2.5). The second estimate of
statement (1) is also obtained immediately from (2.14) by using the second estimate of
Lemma 2.2. Statement (2) may be proved by differentiatingx̃(t, y, ξ) = x(t, y, k(y, ξ))

and applying Lemma 2.4 and Lemma 2.2. Note that|ξ | ∼ |k| by virtue of (2.2). ��

3. Estimates on the Phase

Letψ be the phase defined in (1.6). In this section we show:
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Proposition 3.1. For all (x, y) ∈ R2m with x �= (−1)ny, there exists a unique ξc =
ξc(x, y, h) ∈ Rm for 0 < h small enough such that:

∇ξψ(y, ξc) = x.

Moreover, if (x, y) remains in a compact setK of R2m∩{x �= (−1)ny}, then there exists
a constant CK > 0 such that:

1

CK
h−ν ≤ |ξc(x, y, h)| ≤ CKh

−ν

with ν = δ

1 − µ
, and for any ξ ∈ Rm:

|x − ∇ξψ(y, ξ)| ≥ hδ

CK(|ξc| + |ξ − ξc|)µ |ξ − ξc|.

Proof. By (1.7) and (2.1), we have to solve the equation:∫ nπ

0
sins∇W(x(s, y, k))ds = (−1)nx − y

hδ
, (3.1)

wherek = k(y, ξ). Actually, since the mappingξ �→ k(y, ξ) is one-to-one onRm (for
y fixed), it is enough to solve (3.1) by takingk as the unknown variable. Denote by
G(y, k) the function defined by the left-hand side of (3.1). Then computing as

∇kG(y, k) =
∫ nπ

0
sinsD2W(x(s, y, k))

∂x

∂k
(s, y, k)ds

and using (2.4) and (1.2), we see as in [Ya], that∇kG(y, k) satisfies‖∇kG(y, k) −
P(k)‖ ≤ C〈k〉−2µ for some positive definite matrixP(k) such thatC−1〈k〉−µ ≤ P(k) ≤
C〈k〉−µ. It follows from the global implicit function theorem given in the appendix that,
for large enoughR > 0, the mapping

k �→ G(y, k) =
∫ nπ

0
sins∇W(x(s, y, k))ds

is a diffeomorphism from the exteriorB>R ⊂ Rm of the ball of radiusR to its image
and the image contains another exterior domainB>R1. In particular, forh small enough
we get the existence of a unique solutionkc = k(y, ξc) of (3.1).

Moreover, we have:

Lemma 3.2. For y remaining in a fixed compact set of Rm and for |k| large enough, one
has:

1

C
|k|1−µ ≤

∣∣∣∣∫ nπ

0
sins∇W(x(s, y, k))ds

∣∣∣∣ ≤ C|k|1−µ

for some constant C > 0 and uniformly with respect to h and k.
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Proof of the lemma. Since the upper-bound is obvious, we concentrate on the lower-
bound. We see from (2.1) that

x(s, y, k) = ycoss + ksins + O(hδ〈k〉1−µ)

and we also use (2.4) to obtain:

∂

∂θ

∫ nπ

0
sins∇W(x(s, y, θk))ds =

∫ nπ

0
sin2sD2W(ycoss + θksins)k ds

+ O(hδ)
(
〈θk〉1−µ|k| + 〈k〉1−µ)

.

Integrating with respect toθ from 0 to 1, this gives:∫ nπ

0
sins∇W(x(s, y, k))ds =

∫ 1

0

∫ nπ

0
sin2sD2W(ycoss + θksins)k dsdθ

+ O(1 + hδ〈k〉1−µ).
(3.2)

Then we fixρ ∈ (µ,1), and we consider the set:

Dρ = {(θ, s) ∈ [0,1] × [0, nπ ] ; |θsins| ≥ 〈k〉−ρ}
and its complementaryDC

ρ in [0,1] × [0, nπ ]. Since onDρ we have|θksins| → +∞
as|k| → +∞, we can use (1.2) to get:〈∫

Dρ

sin2sD2W(ycoss + θksins)k dsdθ, k

〉

≥
∫
Dρ

sin2s

C
〈ycoss + θksins〉−µ dθds |k|2

and thus, by Cauchy–Schwarz inequality and since for|k| large enoughDρ contains
{(θ, s) ∈ [0,1] × [0, nπ ] ; |θsins| ≥ δ1} (of measure∼ 1) for any fixedδ1 > 0 small
enough, we get (with some other constantC > 0):∣∣∣∣ ∫

Dρ

sin2sD2W(ycoss + θksins)k ds dθ

∣∣∣∣ ≥ 1

C
〈k〉1−µ. (3.3)

On the other hand, since the Lebesgue measure ofDC
ρ isO(〈k〉−ρ ln〈k〉ρ) as|k| → +∞,

we have:∣∣∣∣ ∫
DC
ρ

sin2sD2W(ycoss + θksins)k dsdθ

∣∣∣∣ = O(〈k〉1−ρ ln〈k〉ρ) = O(〈k〉1−µ−ε)

(3.4)

for someε > 0. Then the result follows from (3.2)–(3.4).��
Completion of the proof of Proposition 3.1. We deduce from the lemma and from (3.1)
that|kc| (and thus also|ξc|) behaves likeh−ν ash → 0.
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Now, denoting

G(y, ξ) :=
∫ nπ

0
sins∇W (x(s, y, k(y, ξ))) ds =

∫ nπ

0
sins∇W(̃x(s, y, ξ))ds,

(3.5)

we can write:

x − ∇ξψ(y, ξ) = x − (−1)ny − (−1)nhδG(y, ξ)

= (−1)nhδ (G(y, ξc)−G(y, ξ))

= (−1)nhδ
∫ 1

0

∂G

∂ξ
(y, tξc + (1 − t)ξ) · (ξc − ξ)dt,

that is:

x − ∇ξψ(y, ξ) = (−1)nhδ
∫ 1

0

∫ nπ

0
A(t, s, x, y, ξ)dsdt (3.6)

with

A(t, s, x, y, ξ) = sinsD2W (̃x(s, y, tξc + (1 − t)ξ))
∂x̃

∂ξ
(s, y, tξc + (1 − t)ξ)

· (ξc − ξ).

Now, given some constantλ > 0 large enough, we split the integral in (3.6) in two pieces
by setting:

B = B(x, y, ξ) = {(s, t) ∈ [0, nπ ] × [0,1] ; |(tξc + (1 − t)ξ)sins| ≥ λ}
and

I1(x, y, ξ) = (−1)nhδ
∫
B

A(t, s, x, y, ξ)dsdt,

I2(x, y, ξ) = (−1)nhδ
∫
BC

A(t, s, x, y, ξ)dsdt.

If λ is taken sufficiently large, for(s, t) ∈ B we can apply (1.2) withx = x̃(s, y, tξc +
(1 − t)ξ). Since also, by Proposition 2.1, we have

∂x̃

∂ξ
(s, y, ξ) = (−1)nsins + O(hδ〈ξ〉−µ)

this permits us to get:

〈I1, ξc − ξ〉 ≥ hδ

C0

∫
B

sin2s 〈̃x(s, y, tξc + (1 − t)ξ)〉−µ|ξc − ξ |2ds dt

− O(h2δ)

∫
B

〈tξc + (1 − t)ξ〉−µ|ξc − ξ |2ds dt.
(3.7)

Now, let us estimate the measure ofBC . Since|ξc + (1 − t)(ξ − ξc)| ≥ ||ξc| − (1 −
t)|ξ − ξc||, it is easy to see that if(s, t) ∈ BC , thent belongs to an interval of length

Min
(
1, 2λ

|(ξ−ξc)sins|
)
. When e.g.|ξ − ξc| ≥ |ξc|/2, this gives a set in[0, nπ ] × [0,1] of
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measureO
(

ln|ξ−ξc||ξ−ξc|
)
. On the other hand, if|ξ − ξc| ≤ |ξc|/2 thens belongs to a set of

measureO(|ξc|−1). Thus we get in any case:

Measure(BC) = O
(

ln(|ξc| + |ξ − ξc|)
|ξc| + |ξ − ξc|

)
. (3.8)

It follows that

|I2| = O
(
hδ|ξ − ξc|ln(|ξc| + |ξ − ξc|)

|ξc| + |ξ − ξc|
)

(3.9)

and also, in view of (3.7):

〈I1, ξc − ξ〉 ≥ hδ

C0

∫ 1

0

∫ nπ

0
sin2s 〈̃x(s, y, tξc + (1 − t)ξ)〉−µ|ξc − ξ |2dsdt

− O
(

hδ|ξ − ξc|2
|ξc| + |ξ − ξc|

)
− O(h2δ)

∫ 1

0
〈tξc + (1 − t)ξ〉−µ|ξc − ξ |2dt

that is:

〈I1, ξc − ξ〉 ≥ hδ

C0

∫ 1

0

∫ nπ

0
sin2s 〈̃x(s, y, tξc + (1 − t)ξ)〉−µ|ξc − ξ |2ds dt

− O
(

hδ|ξ − ξc|2
|ξc| + |ξ − ξc| + h2δ|ξc − ξ |2

(1 + |ξc| + |ξ − ξc|)µ
)
.

(3.10)

As a consequence, since|̃x(s, y, ξ)| = O(|ξ |) uniformly, we get from (3.10):

〈I1, ξc − ξ〉 ≥ hδ

C1

∫ 1

0
〈tξc + (1 − t)ξ〉−µ|ξc − ξ |2dt

− O
(

hδ|ξ − ξc|2
|ξc| + |ξ − ξc| + h2δ|ξc − ξ |2

(1 + |ξc| + |ξ − ξc|)µ
)
,

whereC1 > 0 is a constant, and thus (with some other constantC2 > 0):

〈I1, ξc − ξ〉 ≥ hδ

C2

|ξc − ξ |2
(1 + |ξc| + |ξ − ξc|)µ

− O
(

hδ|ξ − ξc|2
|ξc| + |ξ − ξc| + h2δ|ξc − ξ |2

(1 + |ξc| + |ξ − ξc|)µ
)
.

(3.11)

Putting together (3.6), (3.9) and (3.11), we get forh small enough:

|x − ∇ξψ(y, ξ)|
≥ hδ

(
1

C3(1 + |ξc| + |ξ − ξc|)µ − C3ln(|ξc| + |ξ − ξc|)
|ξc| + |ξ − ξc|

)
|ξc − ξ | (3.12)

withC3 > 0 constant. Now the result follows by observing that|ξc| ∼ h−ν ∼ 1+|ξc|and,
for any fixedρ ∈ (µ,1), (|ξc|+|ξ−ξc|)−1ln(|ξc|+|ξ−ξc|) = O((|ξc|+|ξ−ξc|)−ρ) =
O(|ξc|µ−ρ(|ξc| + |ξ − ξc|)−µ) = O(hν(ρ−µ)(|ξc| + |ξ − ξc|)−µ). ��
Remark. We deduce in particular from Proposition 3.1 that forξ such that|ξ − ξc| =
O(|ξc|), one has:

|x − ∇ψ(y, ξ)| ≥ hν

C′
K

|ξ − ξc|
with C′

K > 0 constant.
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4. Estimates on the Symbol

Letb(y, ξ, h) be the amplitude function in (1.5). We denote〈y, ξ〉−µ = 〈(y, ξ)〉−µ. The
purpose of this section is to prove:

Proposition 4.1. As h → +0, ∂αy ∂
β
ξ (b(y, ξ, h)− 1) = O(hδ〈y, ξ〉−µ)+ O(h).

Proof. For smallε > 0 and largeT > 0 fixed, we setIε,T = {|t | < T : |t − (m +
1/2)π | > ε, ∀m ∈ Z}. For |t | < T , we have∥∥∥∥∂p∂k (t, y, k)− cost

∥∥∥∥ ≤ CT h
δ

and for 0< h small, the mapk �→ p(t, y, k) is a diffeomorphism ofRm for every fixed
t ∈ Iε,T andy ∈ Rm. It follows for sucht that the phase function is globally defined by

ψ(t, y, ξ) = x(t, y, k) · ξ −
∫ t

0

(
p(s, y, k)2

2
− V (x(s, y, k))

)
ds,

k being such thatξ = p(t, y, k), and thatE(t, x, y), (n − 1/2)π < t < (n + 1/2)π ,
can be written ([Ya-1], Theorem 5.5) in the form

E(t, x, y) = i−n

(2πh)m|cost |m/2
∫
ei(xξ−ψ(t,y,ξ))/hb(t, y, ξ)dξ.

When|t | ≤ T1 ≡ (π/2)− ε, it can be shown as in ([Ya-1]) that

b(t, y, k) = b0(t, y, ξ)

(cost)m/2
=

(
det

∂p

∂k
(t, y, k)

)−1/2

+ hO(1), ξ = p(t, y, k).

Since∂αy ∂
β
k

(
∂p

∂k
(t, y, k)− cost

)
= O(hδ〈y, k〉−µ) ([Ya], Lemma 4.4) and〈y, ξ〉 ∼

〈y, k〉 for |t | ≤ T1, (4.1) holds for smallt . For obtaining the proposition, it suffices via
an induction argument to show the following lemma. We lett, s ∈ Iε,T be such that, for
somen1, n2, n3 ∈ Z, |s − n1π | < π/2, |t − n2π | < π/2 and|s + t − n3π | < π/2 and
set

F(x, y, ξ) = i−n1

(2πh)m|cost |m/2e
i(xξ−ψ(t,y,ξ))/h(b0(y, ξ)+ hb1(y, ξ)),

G(x, y, ξ) = i−n2

(2πh)m|coss|m/2e
i(xξ−ψ(s,y,ξ))/h(c0(y, ξ)+ hc1(y, ξ))

and define

H(y, ξ) =
∫
e−ixξ/hF (x, z, η)G(z, y, ζ )dζdzdηdx.

Lemma 4.2. Suppose that b0 and c0 satisfy ∂αy ∂
β
ξ (b0(y, ξ, h) − 1) = O(hδ〈y, ξ〉−µ)

and ∂αy ∂
β
ξ (c0(y, ξ, h)− 1) = O(hδ〈y, ξ〉−µ) and b1, c1 = O(1). Then

H(y, ξ) = i−n3e−iψ(t+s,y,ξ)/h

|cos(t + s)|m/2 (d0(y, ξ)+ hd1(y, ξ)),

where ∂αy ∂
β
ξ (d0(y, ξ, h)− 1) = O(hδ〈y, ξ〉−µ) and d1 = O(1).
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Proof. SetC(x, z, η, y, ζ ) = −xξ +xη−ψ(t, z, η)+ zζ −ψ(s, y, ζ ). The derivatives
of C of order higher than one are bounded and Hessx,η,z,ζC is given by 0 1 0 0

1 −ψηη −ψzη 0
0 −ψηz −ψzz 1
0 0 1 −ψζζ

 =
 0 1 0 0

1 − tant − sect 0
0 − sect − tant 1
0 0 1 − tans

 + O(hδ).

Denote byA the matrix on the right. It is easy to see that

| detA| = | tant tans − 1|m =
∣∣∣∣ cos(t + s)

cost · coss

∣∣∣∣m �= 0.

Thus the point of stationary phase exists uniquely for every(ξ, y) and is determined by
the system of equations

∂xC = −ξ + η = 0,
∂ηC = x − ∂ηψ(t, z, η) = 0,
∂zC = −∂zψ(t, z, η)+ ζ = 0,
∂ζC = z − ∂ζψ(s, y, ζ ) = 0.

(4.1)

For anyk,

(x, η, z, ζ ) = (x(t + s, y, k), p(t + s, y, k), x(s, y, k), p(s, y, k)) (4.2)

satisfies the last three equations of (4.1) and(y, k) �→ (y, p(t + s, y, k)) is a diffeo-
morphism onR2m. It follows that the unique stationary phase point(xc, ηc, zc, ζc) is
given by the right hand side of (4.2) withk being replaced by the solutionk(y, ξ) of
ξ = p(t + s, y, k). The quadratic form defined by the matrixA can be written for
x = (a, b, c, d) ∈ R4m in the form

〈Ax, x〉 = tant tans − 1

tant tans
a2 − tant tans

tant tans − 1

(
b − tant tans − 1

tant tans
a

)2

+ tant tans − 1

tans

(
c − tant sect

tant tans − 1
b

)2

+ tans
(
d − c

tans

)2
,

and we see that the signature ofA is given by

sgn(A) =


0 if tant tans < 1,
−2m if tan t tans > 1 and tans > 0,
2m if tan t tans > 1 and tans < 0.

(4.3)

It follows by the standard stationary phase method thatH(y, ξ) is given by

i−n1−n2eiπsgn(A)/4

|cos(t + s)|m/2 ei(−ψ(t,zc,ηc)+zcζc−ψ(s,y,ζc))/h · (b0(zc, ηc)c0(y, ζc)+ hd1(y, ξ)).

Notice that tant tans < 1 if and only if |t + s − (n1 + n2)π | < π/2 and, tant tans >
1 and ± tans > 0 if and only if |t + s − (n1 + n2 ± 1)π | < π/2 and that

−ψ(t, zc, ηc)+ zcζc − ψ(s, y, ζc) = −ψ(t + s, y, ξ).

Moreover, because〈y, ξ〉 ∼ 〈y, k〉 ∼ 〈y, ζc〉 ∼ 〈zc, ζc〉, we have

b0(zc, ηc)c0(y, ζc)− 1 = (b0(zc, ηc)− 1)c0(y, ζc)+ c0(y, ζc)− 1

= O(hδ〈y, ξ〉−µ). ��
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5. Completion of the Proof

In what follows we fix a compact setK ⊂ Rm and always assume thatx, y ∈ K. We
apply the method of stationary phase to the integral on the right of (1.5).As the magnitude
of the critical pointξc of the phase functionξ �→ xξ − ψ(y, ξ, h) is of orderh−ν as
was shown in Proposition 3.1, we change the variablesξ �→ h−νξ to make|ξc| ∼ 1 in
the new scale. Thus, we consider

E(x, y, h) = i−n

(2π)mh(1+ν)m

∫
ei(xξ−hνψ(y,h−νξ,h)/h1+ν

b(y, h−νξ, h)dξ. (5.1)

SetD(x, y, ξ, h) = xξ − hνψ(y, h−νξ, h) and denote byξc = ξc(x, y, h) the critical
point of the functionξ �→ D(x, y, ξ, h). By virtue of Proposition 3.1,

x = ∂ξψ(y, h
−νξc, h), C−1

K ≤ |ξc| ≤ CK,

|∇ξD(x, y, ξ, h)| ≥ |ξ − ξc|
CK(1 + |ξ − ξc|)µ . (5.2)

In view of (5.2), we split the integral (5.1)E(x, y, h) = E≤ε(x, y, h) + E≥ε(x, y, h)

by using the cutoff functionχε(ξ) = χ

(
ξ − ξc

ε

)
:

E≤ε(x, y, h) = i−n

(2πh)(1+ν)m

∫
eiD(x,y,ξ)/h

1+ν
χε(ξ)b(y, h

−νξ, h)dξ,

E≥ε(x, y, h) = i−n

(2πh)(1+ν)m

∫
eiD(x,y,ξ)/h

1+ν
(1 − χε(ξ))b(y, h

−νξ, h)dξ,

whereχ ∈ C∞
0 (Rm) is such thatχ(ξ) = 1 for |ξ | < 1/2 andχ(ξ) = 0 for |ξ | > 1.

Lemma 5.1. Let ε > 0. For any N = 0,1, . . . , ∂αx ∂
β
y E≥ε(x, y, h) = O(hN).

Proof. We apply integration by parts by using the identitity

h(1+ν)N
( ∇ξD

i|∇ξD|2 · ∇ξ

)N

eiD/h
1+ν = eiD/h

1+ν

and write in the form

E≥ε(x, y, h) = i−nh(1+ν)N

(2πh)(1+ν)m

·
∫
eiD/h

1+ν
( ∇ξD

i|∇ξD|2 · ∇ξ

)†N

(1 − χε)b(y, h
−νξ, h)dξ,

where † stands for the real transpose. Since

∂αξ ∇ξD(x, y, ξ) = O(h−ν|α|), ∂αξ b(y, h
−νξ, h) = O(h−ν|α|), |α| ≥ 1,

we have by virtue of (5.2),∣∣∣∣∣
( ∇ξD

i|∇ξD|2 · ∇ξ

)†N

(1 − χε(ξ))b(y, h
−νξ, h)

∣∣∣∣∣ ≤ CNh
−Nν

〈ξ − ξc〉N(1−µ) ,

and we obtain the lemma forα = β = 0 by lettingN large enough. The proof for the
derivatives ofE≥ε is similar. ��
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We deal withE≤ε(x, y, h) next. Assumeε > 0 is small enough and|ξ | ≥ 1

2CK
for

ξ ∈ suppχε. Since∇ξψ(y, ξ) = x̃(nπ, y, ξ), we have

HessξD(x, y, ξ) = −h−ν(∂ξ x̃)(nπ, y, h−νξ)
and by Proposition 2.1 the right-hand side can be written as

(−1)n+1h−ν+δ
∫ nπ

0
sin2s∂2

ξ W(ycoss + (−1)nh−νξsins)ds + h2δ−νO(〈h−νξ〉−2µ).

(5.3)

It follows by an estimate similar to the one used in the proof of Lemma 4.2 that the
symmetric matrix given by the integral (5.3) is larger thanChµν on the support ofχε.
Thus we have forx, y ∈ K andξ ∈ suppχε:

0 < C1 ≤ (−1)n+1HessξD(x, y, ξ) ≤ C2 < ∞. (5.4)

Moreover, by virtue of the second statement of Proposition 2.1, we have forx, y ∈ K

andξ ∈ suppχε:

∂αy ∂
β
ξ D = O(h−ν(|β|+1)(hδ|h−νξ |−µ)) = O(1). (5.5)

By Taylor’s formula we have

D(x, y, ξ) = D(x, y, ξc)+ (ξ − ξc, B(x, y, ξ)(ξ − ξc))/2,

B(x, y, ξ) = 2
∫ 1

0
(1 − θ)HessξD(x, y, θξ + (1 − θ)ξc)dθ.

It is obvious from (5.4) that forx, y ∈ K andξ ∈ suppχε,

0 < C1 ≤ (−1)n+1B(x, y, ξ) ≤ C2 < ∞. (5.6)

SetM(x, y, ξ) = ((−1)nB(x, y, ξ))1/2 and defineη = M(x, y, ξ)(ξ − ξc). Then

∂ξη = M(x, y, ξ)+ (∂ξM(x, y, ξ))(ξ − ξc)

and, if we replaceε > 0 by a smaller one if necessary, we see from (5.6) and (5.5) that
the mapξ �→ η is a diffeomorphism on the ball{ξ : |ξ − ξc| < 2ε} to its image with
uniformly bounded derivatives and the same for its inverse map. We change the variables
in the integral forE≤ε(x, y, h) from ξ to η:

E≤ε(x, y, h) = i−neiD(x,y,ξc)/h1+ν

(2π)mh(1+ν)m

·
∫
ei(−1)n+1η2/h1+ν

χε(ξ)b(y, h
−νξ, h)

(
det

∂η

∂ξ

)−1

dη,

whereξ = ξ(x, y, η) is the inverse ofξ �→ η(x, y, ξ). Since 1+ν > 2ν by our assump-
tion, we can apply the extended form of stationary phase and, in virtue of Proposition 4.1,

E≤ε(x, y, h) = i−neiD(x,y,ξc)/h1+ν+iπ(−1)n+1m/4

(2π)m/2h(1+ν)m/2

·
∣∣∣∣det

∂x̃

∂ξ
(nπ, y, h−νξc)

∣∣∣∣−1/2

(1 + O(hµ)+ O(h1−ν)),

This concludes the proof of the theorem.��
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6. Appendix

ForR > 0, we writeB>R = {x ∈ Rm : |x| > R}, B<R = {x ∈ Rm : |x| < R}, and etc.

Lemma 6.1. Let F be a smooth map from Rm to Rm. Suppose that the differential ∂xF
of F satisfies

‖∂xF (x)− P(x)‖ ≤ C3〈x〉−2δ, |x| ≥ R0

for a positive definite matrix P(x) such that

C1〈x〉−δ ≤ P(x) ≤ C2〈x〉−δ, |x| ≥ R0

for some constants C1, C2, C3 > 0 and 0 < δ < 1. Then, there exists R1 such that
F(x) is a diffeomorphism from B>R1 onto its image and such that the image F(B>R1)

contains the exterior domain B>ρ for some ρ > 0.

Proof. TakeR2 > 0 large enough such that for a constantC4 > 0,

(∂xF (x)u, u) ≥ C4〈x〉−δ‖u‖2, x ∈ B≥R2, u ∈ Rm.

Then∂xF (x) is non-singular andF(x) is a local diffeomorphism inB≥R2. We suppose
R1 > 10R2 and show first thatF is one to one onB≥R1. Let x, y ∈ B≥R1 andx �= y. If
x andy may be connected by a line segmentL ⊂ B≥R2, then we have

(F (x)− F(y), x − y) =
∫ 1

0
(∂xF (tx + (1 − t)y)(x − y), x − y)dt > 0 (6.1)

and F(x) �= F(y). Suppose, therefore,L ∩ B<R2 �= ∅. Then, we have(x, y) <

−(49/50)|x||y| and, therefore|x − y| ≥ (9/10)(|x| + |y|). LetM = sup
|x|<R2

‖∂xF (x)‖
andI = {t ∈ [0,1] : tx + (1 − t)y ∈ B<R2}. It then follows that|I | ≤ 2R2/|x − y| ≤
20R2/(9(|x| + |y|)) and∥∥∥∥∫

I

∂xF (tx + (1 − t)y)dt

∥∥∥∥ ≤ M|I | ≤ 20MR2

9(|x| + |y|) .

On the other hand, ift �∈ I , then(∂xF (tx + (1− t)y)u, u) ≥ C4〈tx + (1− t)y〉−δ and,
if we write I1 = [0,1] \ I , we have foru with ‖u‖ = 1,∫

I1

(∂xF (tx + (1 − t)y)u, u)dt ≥
∫
I1

C4〈tx + (1 − t)y〉−δdt

≥
∫
I1

C4〈|x| + |y|〉−δdt

≥ C4{2−δ(|x| + |y|)−δ − |I |}.
Thus, we have, withu = x − y,∫ 1

0
(∂xF (tx + (1 − t)y)u, u)dt

≥
(
C42−δ(|x| + |y|)−δ − 20R2(C4 +M)

9(|x| + |y|)
)

‖u‖2,



On the Fundamental Solution of Semiclassical Schrödinger Equations at Resonant Times 373

andF is one to one onB≥R1 if R1 is replaced by a largerR1 if necessary. We then want to
show that the imageF(B≥R1) covers a ballB≥ρ if we takeρ such thatF(B≤R1) ⊂ B≥ρ/2.
The proof follows that of the Hadamard global implicit function theorem given in [F] and
goes with the continuity argument. Lettingy = R1x̂, x̂ = x/|x| in (6.1), for |x| ≥ R1,
we have

(F (x)− F(R1x̂), x̂) =
∫ 1

0
(∂xF (tx + (1 − t)R1x̂) · (x − R1x̂), x̂)dt

≥ C1〈x〉−δ(|x| − R1)

and we see that|F(x)| → ∞ as |x| → ∞. Hence, we can findy ∈ B≥ρ such that
y = F(x) for somex ∈ B≥R1. Take anyy1 ∈ B≥ρ and connecty andy1 by aC1

curveγ (t), 0 ≤ t ≤ 1 in B≥ρ , γ (0) = y andγ (1) = y1. We show that there exists
a curveγ1(t) in B≥R1 such thatF(γ1(t)) = γ (t) for 0 ≤ t ≤ 1. Such a curveγ1(t)

certainly exists for small 0≤ t < c becauseF is a local diffeomorphism inB≥R1

andF(B≤R1) ⊂ Bρ/2. If it exists for 0 ≤ t < c, then it also exists for 0≤ t ≤ c.
Indeed,γ ′

1(t) = (∂xF (γ1(t)))
−1γ ′(t) and, as|γ1(t)| ≤ C for 0 ≤ t < c (otherwise

γ (t) would not be bounded), we have‖∂xF (γ1(t))
−1‖ ≤ M and|γ ′

1(t)| ≤ M|γ ′(t)|.
Henceγ1(t) is uniformly continuous in[0, c) and it has a limit lim

t→c
γ1(t) ≡ γ1(c) and

F(γ1(c)) = γ (c). γ1(c) ∈ B>R1 is obvious as otherwise|γ (c)| ≤ ρ/2 and, again using
the local diffeomorphic property ofF , we further continueγ1 beyondc. In this way we
can continueγ1(t) up to[0,1]. ��
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