Zernike Polynomials

Fitting irregular and non-rotationally symmetric surfaces
over a circular region.

Atmospheric Turbulence.
Corneal Topography
Interferometer measurements.
Ocular Aberrometry

Background

The mathematical functions
were originally described by
Frits Zernike in 1934.

They were developed to
describe the diffracted
wavefront in phase contrast
imaging.

Zernike won the 1953 Nobel
Prize in Physics for
developing Phase Contrast
Microscopy.




Phase Contrast Microscopy

Transparent specimens leave the amplitude of the illumination
virtually unchanged, but introduces a change in phase.

Applications

* Typically used to fit a wavefront or
surface sag over a circular aperture.

e Astronomy - fitting the wavefront entering
a telescope that has been distorted by
atmospheric turbulence.

< Diffraction Theory - fitting the wavefront
in the exit pupil of a system and using
Fourier transform properties to determine
the Point Spread Function.

Source:




Applications

¢ Ophthalmic Optics - fitting corneal
topography and ocular wavefront
data.

» Optical Testing - fitting reflected
and transmitted wavefront data
measured interferometically.

Surface Fitting

» Reoccurring Theme: Fitting a complex, non-rotationally
symmetric surfaces (phase fronts) over a circular domain.

 Possible goals of fitting a surface:
— Exact fit to measured data points?
— Minimize “Error” between fit and data points?
— Extract Features from the data?




1D Curve Fitting

Low-order Polynomial Fit
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In this case, the error is the vertical distance between the line and
the data point. The sum of the squares of the error is minimized.




High-order Polynomial Fit
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Cubic Splines

Piecewise definition of the function.




Fitting Issues

Know your data. Too many terms in the fit can be numerically
unstable and/or fit noise in the data. Too few terms may miss real
trends in the surface.

Typically want “nice” properties for the fitting function such as
smooth surfaces with continuous derivatives. For example, cubic
splines have continuous first and second derivatives.

Typically want to represent many data points with just a few terms of a
fit. This gives compression of the data, but leaves some residual error.
For example, the line fit represents 16 data points with two numbers: a
slope and an intercept.

Why Zernikes?

Zernike polynomials have nice mathematical properties.
— They are orthogonal over the continuous unit circle.
—  All their derivatives are continuous.

— They efficiently represent common errors (e.g. coma,
spherical aberration) seen in optics.

— They form a complete set, meaning that they can
represent arbitrarily complex continuous surfaces
given enough terms.




Orthogonal Functions

» Orthogonal functions are sets of surfaces which have some
nice mathematical properties for surface fitting.

» These functions satisfy the property
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Orthogonality - 1D Example
Consider the integral

2n
jsin(mx)cos(m‘x)dx where m and m'are integers
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Orthogonality - 1D Example
Two sine terms
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Orthogonality - 1D Example

Two sine terms with m =m’
2n
jsin(mx)sin(m'x)dx where m and m'are integers
0

271
= jsinz(mx)dx

0

. {X _Sm<2mX)}
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=7 Similar arguments for two cosine terms

Orthogonality - 1D Example

From the previous arguments, we can define

Cos(;xj jeven
V= _(’j+1j jodd
sin| ——X
2
Note that when j =0, V,=1 and

2n 2n
I V, (X )V, (x)dx = J'dx =2n
0 0

so the constant C; = 2x for j = 0, and C; = = for all other values of j.




Orthogonality - 1D Example

The functions satisfy the orthogonality condition over [0, 27]

ZJ.V(X)V’ (x)dx - {(1+§i0)n Otki1e_r\j/vise
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where 3 is the Kronecker delta function defined as
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Extension to Two Dimensions
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In many cases, wavefronts take on a complex shape defined over a
circular region and we wish to fit this surface to a series of simpler
components.

Wavefront Fitting
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Unit Circle

Divide the real Ay
radial coordinate

by the maximum radius
to get a normalized
coordinate p o

S

v

Orthogonal Functions on the Unit
Circle

 Taylor polynomials (i.e. 1, x, y, X2, Xy, y?,....) are not
orthogonal on the unit circle.

ZﬁV( OV (0, O)pdpdo =1 =
J AP VIR BIPEPTY Y 0 Otherwise

where C; is a constant for a given |

Many solutions, but let’s try something with the form

Vi(p,0) =R, (p) ©, (6)
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Orthogonal Functions on the Unit
Circle

» The orthogonality condition separates into the product of
two 1D integrals

1 21 JCJ | — J
[RIOIR (P)pdp | [©,(6)©;(6)d0 = |
g / g \ l 0 Otherwise
This has extra p in it, so This looks like the 1D Example,
we need different functions  so sin(me) and cos(m0) a possibility

ANSI Standard Zernikes

{ N"RI™ (p)cosmd ;form=0

Z)(p,0) = Moy

l — 1 Q‘R‘n ‘(p)smme ;form<0

A
Azimuthal

Double Index Component
n is radial order Radial
m is azimuthal Component
frequency

Normalization

ANSI Z80.28-2004 Methods for Reporting Optical Aberrations of Eyes.
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ANSI Standard Zernikes

—-m)/
RIM () :(ni‘i 2 , (=D (n-9)! o
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on |m| (i.e. same Constant that depends Powers of p
for both sine & onnand m

cosine terms

The Radial polynomia!s satisfy the orthogonality equation
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ANSI Standard Zernikes
Nﬂ“: 2Nn+2
\1+6,,

constant that
depends onn & m
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Orthogonality

Tj-zm.( 012" (6, 0)oclodd - C,, forn=n;m=m’
TN POIEIRERTEY =10 Otherwise
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) |sin(-m'0)] sin(~m0
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! 0  Otherwise

Orthogonality

NTN[S, o (L45 >]{8} C,,, forn=n;m=m
mon MmO one2 | [0 Otherwisé

This equals zero \ \

unless m=m’ This equals: Zer0  So this portion is
unless n=n satisfied

—

What happens when n=n’ and m=m’?
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Orthogonality

When n=n’ and m=m’
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The First Few Zernike
Polynomials

Zernike Polynomials

<——— Radial Polynomial, p

Z7 Z3? Z; Z;
Azimuthal Frequency,8 ——
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Caveats to the Definition of
Zernike Polynomials

At least six different schemes exist for the Zernike polynomials.

Some schemes only use a single index number instead of n and m.
With the single number, there is no unique ordering or definition for
the polynomials, so different orderings are used.

Some schemes set the normalization to unity for all polynomials.

Some schemes measure the polar angle in the clockwise direction from
the y axis.

The expansion coefficients depend on pupil size, so the maximum
radius used must be given.

Some groups fit OPD, other groups fit Wavefront Error.
Make sure which set is being given for a specific application.

Another Coordinate System

NON-
STANDARD

y

P=—"
r

max

4 X
d=tan"| =
y
p ranges from [0, 1]
¢ ranges from [-180°, 180°]

Normalized Polar Coordinates:
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Zernike Polynomials - Single

Index  ANS]
STANDARD

Starts at 0
Left-to-Right
Top-to-Bottom

ZJ where = nin +f) +m

«<—— Radial Polynomial, p

-
N
E.
N
©

Azimuthal Frequency,8 ——

Other Single Index Schemes
NON-

STANDARD

Starts at 1
cosines are even terms
sines are odd terms

ZlZ Zl3 Zl4 Z15

Noll, RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am 66;
207-211 (1976).

Also Zemax “Standard Zernike Coefficients”
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Other Single Index Schemes
. NON-
v STANDARD

Starts at 1

increases along diagonal

cosine terms first

35 terms plus two extra
f,‘;j"‘k\_ spherical aperrgtion termg
“ o I_\[o Normalization!!!

Zo Z, MENG M

! ' ‘?‘q .f;'
Zl7 Z18

s
)

Zemax “Zernike Fringe Coefficients”

Also, Air Force or University of Arizona

Other Single Index Schemes

* Born & Wolf NON-

° Ma|acara STAN DARD

¢ Others??? Plus mixtures of non-normalized, coordinate
systems.

Use two indices n, m to unambiguously define polynomials.
Use a single standard index if needed to avoid confusion.
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Examples

Example 1: 4mm

0.25 D of myopia for a 4 mm pupil (r,,, = 2 an'i)

r? (Zp)2 p2 1 0 1 0
f— _= = = Z ,9 Z )
8000 8000 2000 4000 ° (p )+ 4000\@ ’ (p )

Examples

Example 2:
2mm

1”“/)

1.00 D of myopia for a 2 mm pupil (r,,, = 1 mm)

r? pz 1 0 1 0
_ P 2%0)+———7%p.0
2000 2000 4000 O(p )+ 4000\/5 2(9 )

Same Zernike Expansion as Example 1, but different r, .

Always need to give pupil size with Zernike coefficients!!
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RMS Wavefront Error

* RMS Wavefront Error is defined as

N .
o ”pdpdd) n>Lallm o

Zeroth Order Zernike
Polynomials

The surface is constant over the entire circle, so
NO error or variance exists.

This term is called Piston and is usually ignored.
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First Order Zernike Polynomials

..
These terms represent a tilt in
- ’ the wavefront.
-1
21 Z1

Combining these terms results in a a,,Z;"(p,0)+2a,Z;(p,0)

general e_quation for a p_Iane, thus —a, psSinB+a,,pcosd
by changing the coefficients, a plane

at any orientation can be created. _2a y 13

This rotation of the pattern is true oy U

for the sine/cosine pairs of Zernikes

Second Order Zernike Polynomials

PN -
'y {1
N 4 -
752 Z9 Z3

These wavefronts are what you would expect from Jackson crossed
cylinder JO and J45 and a spherical lens. Thus, combining these terms
gives any arbitrary spherocylindrical refractive error.
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Third Order Zernike Polynomials

, - . ( . ., »

[ {

\ N - -
Z3° Z3! Z3 Z3

The inner two terms are coma and the outer two terms are trefoil.
These terms represent asymmetric aberrations that cannot be
corrected with convention spectacles or contact lenses.

Fourth Order Zernike

Polynomials
" - / » .“'_"‘. | 4 n
Tt ./ N~ .~
Z* Z;2 Z9 Z3 Z3
4t order Spherical 4t order

Quadroil  Astigmatism  Aberration ~ Astigmatism  Quadroil

These terms represent more complex shapes of the wavefront.
Spherical aberration can be corrected by aspheric lenses.
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Discrete data

» Up to this point, the data has been continuous, so we can
mathematically integrate functions to get expansion
coefficients.

» Real-world data is sampled at discrete points.

» The Zernike polynomials are not orthogonal for discrete
points, but for high sampling densities they are almost
orthogonal.

Speed

* The long part of calculating Zernike polynomials is
calculating factorial functions.

. N"RI™ (p)cosmd ;form>0
Z"(p,0) = o (p) |
—N; 'R, (p)sinmd ;form<0
(n-{m))/2 1\S(n _ <\l
R\ﬂm\ (p): Z ( 1) (n S)- n-2s

Z 905(n +|m)) —sJJo5(n —[m)) —s]}”
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Speed

e Chong et al.* developed a recurrence relationship that
avoids the need for calculating the factorials.

» The results give a blazing fast algorithm for calculating
Zernike expansion coefficents using orthogonality.

H:
Rpig—an(r)= HiRpglr) + (H: + f) R pig—mi(r),

where the coefficients 5y, Hz and H; are given by
Hip+g+2ip—q)

m=2D

2 8
_Hlptaip—g+d)
Hy = -1 + g — ),
_ —dg— 2)g—3)
(prag—2p—qg+4) *Pattern Recognition, 36;731-742 (2003).
Least Squares Fit
0 1 1 m aOO f
ZO(Xl'yl) Zl (Xl'yl) Zl(X1*Y1) Zm (X1ay1) (Xl’yl)
Zg(xzvyz) le(xzvyz) Zi(xzﬁYZ) Z:W”(Xz,yz) alil _ f(XZ:yz)
. . . . 11 | — :
Zg(XvaN) le(XvaN) Zi(XleN) ZIT(XNﬂyN) a. f(XN’yN)

nm

ZA=F
Z'ZA=Z7"F
A=(Z'Z)'Z'F
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Gram-Schmidt Orthogonalization

» Examines set of discrete data and creates a series of
functions which are orthogonal over the data set.

» Orthogonality is used to calculate expansion coefficients.

* These surfaces can then be converted to a standard set of
surfaces such as Zernike polynomials.

* Numerically stable, especially for low sampling density.

» Can be slow for high-order fits

« Orthogonal functions depend upon data set, so a new set
needs to be calculated for every fit.

Elevation Fit Comparison

0.125 Seconds 10 Seconds
Chong Algorithm Gram-Schmidt
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Shack-Hartmann Wavefront
Sensor

Lenslet Array Lenslet Array

Eye

Pldne Wavefronts

s

/

ye

[
>

Aberrated Wavefronts

wavefronts distort the grid pattern.

Perfect wavefronts give a uniform grid of points, whereas aberrated

[ dV,(x,y,)dx
dV;(x,,y,)/dx

dV, (X, yy)/dx

| dVi(x,,y,)/dy

dVi(x,,y,)/dy

LAVi (X, yy) 7 dy

ZA=F

Z'ZA=Z7"F

Least Squares Fit

dV, (x,, y;)/dx
dV,(x,,y,)/dx

dV, (X, yy)/dx -

dV,(x,,y,)/dy
dV,(x,,y,)/dy

dVZ(XvaN)/dy

dV, (%, y,)/dx ]
AV, (X, ,)/ dx

dV, (X, yy)/ dx
aV,(x,,y,)/dy

dV;(x,,y,)/dy [

dV; (X, yy)/dy |

[ dW(x,,y,)/dx |
dW(x,,y,)/dx

dW(x,,yy)/dx
dW(x,,y,)/dy
dW(x,,y,)/dy

LAW(Xy, yn)/dy |

Again, conceptually easy to understand,

A=(Z'2)'Z'F

although this can be relatively slow for
high order fits.
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Example Image

Wavefront Reconstruction

I Wavefiont Enos Mag.
Exam 99939

B[ | (i Actiactive Enor Hap H[EE
Exam 39999
0.0081 mm =
0.0073 mm
D.O0GE mm
0.0058 mm

51 mm

PSF

0047 mm

0.0034 mm

0.0027 mm

0.0019 mm
0.0011 mm
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