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Zernike Polynomials

• Fitting irregular and non-rotationally symmetric surfaces 
over a circular region.

• Atmospheric Turbulence.
• Corneal Topography
• Interferometer measurements.
• Ocular Aberrometry

Background
• The mathematical functions 

were originally described by 
Frits Zernike in 1934.

• They were developed to 
describe the diffracted 
wavefront in phase contrast 
imaging.

• Zernike won the 1953 Nobel 
Prize in Physics for 
developing Phase Contrast 
Microscopy.
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Phase Contrast Microscopy

Transparent specimens leave the amplitude of the illumination
virtually unchanged, but introduces a change in phase.

Applications
• Typically used to fit a wavefront or 

surface sag over a circular aperture.

• Astronomy - fitting the wavefront entering 
a telescope that has been distorted by 
atmospheric turbulence.

• Diffraction Theory - fitting the wavefront 
in the exit pupil of a system and using 
Fourier transform properties to determine 
the Point Spread Function.

Source:
http://salzgeber.at/astro/moon/seeing.html



3

Applications

• Ophthalmic Optics - fitting corneal 
topography and ocular wavefront 
data. 

• Optical Testing - fitting reflected 
and transmitted wavefront data 
measured interferometically.

Surface Fitting

• Reoccurring Theme: Fitting a complex, non-rotationally 
symmetric surfaces (phase fronts) over a circular domain.

• Possible goals of fitting a surface:
– Exact fit to measured data points?
– Minimize “Error” between fit and data points?
– Extract Features from the data?
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1D Curve Fitting
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In this case, the error is the vertical distance between the line and
the data point.  The sum of the squares of the error is minimized.
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High-order Polynomial Fit
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Fitting Issues
• Know your data.  Too many terms in the fit can be numerically 

unstable and/or fit noise in the data.  Too few terms may miss real 
trends in the surface.

• Typically want “nice” properties for the fitting function such as 
smooth surfaces with continuous derivatives. For example, cubic 
splines have continuous first and second derivatives.

• Typically want to represent many data points with just a few terms of a 
fit.  This gives compression of the data, but leaves some residual error.  
For example, the line fit represents 16 data points with two numbers: a 
slope and an intercept.

Why Zernikes?

• Zernike polynomials have nice mathematical properties.
– They are orthogonal over the continuous unit circle.
– All their derivatives are continuous.
– They efficiently represent common errors (e.g. coma, 

spherical aberration) seen in optics.
– They form a complete set, meaning that they can 

represent arbitrarily complex continuous surfaces 
given enough terms.
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Orthogonal Functions

• Orthogonal functions are sets of surfaces which have some 
nice mathematical properties for surface fitting.

• These functions satisfy the property
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Orthogonality - 1D Example
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Orthogonality - 1D Example
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Orthogonality - 1D Example
The functions satisfy the orthogonality condition over [0, 2π]
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Extension to Two Dimensions

In many cases, wavefronts take on a complex shape defined over a 
circular region and we wish to fit this surface to a series of simpler 
components.

Wavefront Fitting
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+ 0.001 x
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Unit Circle
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Divide the real
radial coordinate
by the maximum radius
to get a normalized
coordinate ρ

Orthogonal Functions on the Unit 
Circle

• Taylor polynomials (i.e. 1, x, y, x2, xy, y2,….) are not 
orthogonal on the unit circle.
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Orthogonal Functions on the Unit 
Circle

• The orthogonality condition separates into the product of 
two 1D integrals
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ANSI Z80.28-2004 Methods for Reporting Optical Aberrations of Eyes.
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ANSI Standard Zernikes

only depends
on |m| (i.e. same
for both sine &
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Orthogonality

⎩
⎨
⎧ ==

=θρρθρθρ∫∫
π

           Otherwise
m'm;n'n for

  
    0

C
dd),(Z),(Z mn,m

n

2

0

1

0

'm
'n

( )
( )

( )
( )

⎩
⎨
⎧ ==

=ρρρρ×

θ
⎭
⎬
⎫

⎩
⎨
⎧

θ−
θ

⎭
⎬
⎫

⎩
⎨
⎧

θ−
θ

∫

∫
π

           Otherwise
m'm;n'n for

  
    0

C
d)(R)(R             

d
msin

mcos
'msin

'mcos
NN

mn,m
n

1

0

'm
'n

2

0

m
n

'm
'n

Orthogonality

( )[ ]
⎩
⎨
⎧ ==

=⎥⎦
⎤

⎢⎣
⎡

+
δ

πδ+δ
           Otherwise

m'm;n'n for
  

    0
C

2n2
 1NN mn,n'n

0mm'm
m
n

'm
'n

This equals zero
unless m=m’ This equals zero

unless n=n’
So this portion is
satisfied

What happens when n=n’ and m=m’?



16

Orthogonality
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The First Few Zernike 
Polynomials
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Caveats to the Definition of
Zernike Polynomials

• At least six different schemes exist for the Zernike polynomials.
• Some schemes only use a single index number instead of n and m. 

With the single number, there is no unique ordering or definition for 
the polynomials, so different orderings are used.

• Some schemes set the normalization to unity for all polynomials.
• Some schemes measure the polar angle in the clockwise direction from 

the y axis.
• The expansion coefficients depend on pupil size, so the maximum 

radius used must be given.
• Some groups fit OPD, other groups fit Wavefront Error.
• Make sure which set is being given for a specific application.

Another Coordinate System
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Zernike Polynomials - Single 
Index

Azimuthal Frequency, θ
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ANSI 
STANDARD

Starts at 0
Left-to-Right
Top-to-Bottom

Other Single Index Schemes

Z1
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Z4 Z6Z5

Z10Z8Z7 Z9

Z15Z13Z11 Z12 Z14

Z2

NON-
STANDARD

Starts at 1
cosines are even terms
sines are odd terms

Noll, RJ. Zernike polynomials and atmospheric turbulence. J Opt Soc Am 66; 
207-211 (1976).

Also Zemax “Standard Zernike Coefficients”
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Other Single Index Schemes

Z1

Z3

Z4 Z5 Z6

Z10Z7 Z8 Z11

Z18Z13Z9 Z12 Z17

Z2

NON-
STANDARD

Starts at 1
increases along diagonal
cosine terms first
35 terms plus two extra
spherical aberration terms
No Normalization!!!

Zemax “Zernike Fringe Coefficients”

Also, Air Force or University of Arizona

Other Single Index Schemes

• Born & Wolf
• Malacara
• Others??? Plus mixtures of non-normalized, coordinate 

systems.

NON-
STANDARD

Use two indices n, m to unambiguously define polynomials.
Use a single standard index if needed to avoid confusion.
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Examples
Example 1:

4m

0.25 D of myopia for a 4 mm pupil (rmax = 2 mm)
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Example 2:

1m

1.00 D of myopia for a 2 mm pupil (rmax = 1 mm)
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Same Zernike Expansion as Example 1, but different rmax.

Always need to give pupil size with Zernike coefficients!!
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RMS Wavefront Error

• RMS Wavefront Error is defined as
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This term is called Piston and is usually ignored.
The surface is constant over the entire circle, so
no error or variance exists.
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First Order Zernike Polynomials
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These terms represent a tilt in 
the wavefront.

max
11

max
11

1111

1
111

1
111

r
xa

r
ya

cosasina
),(Za),(Za

+=

θρ+θρ=
θρ+θρ

−

−

−
−Combining these terms results in a

general equation for a plane, thus
by changing the coefficients, a plane
at any orientation can be created.
This rotation of the pattern is true
for the sine/cosine pairs of Zernikes

Second Order Zernike Polynomials

Z2
0 Z2

2Z2
2−

These wavefronts are what you would expect from Jackson crossed
cylinder J0 and J45 and a spherical lens.  Thus, combining these terms
gives any arbitrary spherocylindrical refractive error.



24

Third Order Zernike Polynomials

Z3
1− Z3

1Z3
3− Z3

3

The inner two terms are coma and the outer two terms are trefoil. 
These terms represent asymmetric aberrations that cannot be 
corrected with convention spectacles or contact lenses.

Fourth Order Zernike 
Polynomials

Z4
0 Z4

2Z4
2− Z4

4Z4
4−

Spherical
Aberration

4th order
Astigmatism

4th order
AstigmatismQuadroil Quadroil

These terms represent more complex shapes of the wavefront.
Spherical aberration can be corrected by aspheric lenses.
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Discrete data

• Up to this point, the data has been continuous, so we can 
mathematically integrate functions to get expansion 
coefficients.

• Real-world data is sampled at discrete points.
• The Zernike polynomials are not orthogonal for discrete 

points, but for high sampling densities they are almost 
orthogonal.

Speed
• The long part of calculating Zernike polynomials is 

calculating factorial functions.
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Speed
• Chong et al.* developed a recurrence relationship that 

avoids the need for calculating the factorials.
• The results give a blazing fast algorithm for calculating 

Zernike expansion coefficents using orthogonality.

*Pattern Recognition, 36;731-742 (2003).

Least Squares Fit
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Gram-Schmidt Orthogonalization
• Examines set of discrete data and creates a series of 

functions which are orthogonal over the data set.
• Orthogonality is used to calculate expansion coefficients.
• These surfaces can then be converted to a standard set of 

surfaces such as Zernike polynomials.
Advantages
• Numerically stable, especially for low sampling density.
Disadvantages
• Can be slow for high-order fits
• Orthogonal functions depend upon data set, so a new set 

needs to be calculated for every fit.

Elevation Fit Comparison

0.125 Seconds
Chong Algorithm

10 Seconds
Gram-Schmidt

32 Orders or 560 total 
polynomials
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Shack-Hartmann Wavefront 
Sensor

Plane Wavefronts
Eye

Lenslet Array

Aberrated Wavefronts
Eye

Lenslet Array

Perfect wavefronts give a uniform grid of points, whereas aberrated
wavefronts distort the grid pattern.

Least Squares Fit
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although this can be relatively slow for 
high order fits.
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Example Image

Wavefront Reconstruction

PSF


