solve the following equations

$$u_t + 5u_x = 0$$
 $u(x, 0) = e^x$
 $u_t + 2u_x = 0$ $u(x, 0) = \sin(3x)$

$$u_t + t^2 u_x = t \quad u(x,0) = x$$

$$u_t + t^2 u_x = u \quad u(x,0) = x^2 + 1$$

$$u_t + (x^2 + 1)u_x = 0 \quad u(x,0) = x$$

$$u_t + \frac{t}{x} u_x = 0 \quad u(x,0) = x - 2$$

$$u_t - 3tu_x = 2 \quad u(x,0) = 4x^3$$

$$u_t + (2t - 1)u_x = 3u \quad u(x,0) = \cos(x)$$

$$u_t + (t + 3)u_x = u + 2 \quad u(x,0) = x + 1$$

$$u_t + xu_x = t \quad u(x,0) = x - 1$$

$$u_t + (2x - 1)u_x = 3t - 1 \quad u(x,0) = x^2$$

$$u_x + 3u_y = u$$
 $u(x, y) = 2x - y$ on the line $x + y = 1$
 $u_x + yu_y = 3u$ $u(x, y) = x + 4y$ on the line $x + 2y = 1$
 $u_x + xu_y = y$ $u(x, y) = 6x - y$ on the line $2x - y = 2$
 $3u_x + u_y = x$ $u(x, y) = 2x + 3y$ on the line $x + 2y = 1$
 $2u_x + 3u_y = x$ $u(x, y) = 3x + y$ on the line $x - 5y = 1$

$$u_t + uu_x = 0$$
 $u(x,0) = 4$ se $x < 1$ $u(x,0) = 1$ se $x > 1$
 $u_t + uu_x = 0$ $u(x,0) = 6$ se $x < 0$ $u(x,0) = 0$ se $x > 0$
 $u_t + u^2u_x = 0$ $u(x,0) = 3$ se $x < 2$ $u(x,0) = 1$ se $x > 2$
 $u_t + u^2u_x = 0$ $u(x,0) = 2$ se $x < 1$ $u(x,0) = 0$ se $x > 1$