Completamento di curve e applicazione alla determinazione di difetti in materiali elastici

Francesco Colibazzi

Alma Mater Studiorum Università di Bologna

23 Marzo 2018

Relatore: Prof.ssa Giovanna Citti

Correlatori: Ing. Valeriano Ballardini, Ing. Alessandro Ghidotti Piovan

L'obbiettivo del nostro lavoro è quello di rilevare e ricostruire anomalie a forma di tagli in un materiale elastico.

- funzionale energia: $E(k(s)) = \int_0^l k(s)^2 ds$.
- modello di completamento in SE(2) con metrica sub-Riemanniana;
- filtraggio con funzioni di Gabor;
- classificazione mediante orientazione, curvatura e frequenza.

• • • • • • • • • • • •

Un filtro di Gabor è un filtro lineare ottenuto mediante la modulazione sinusoidale con una Gaussiana di deviazione standard σ .

$$\psi(x,y) = e^{\left(-\frac{(\tilde{x}^2 + \tilde{y}^2)}{2\sigma^2} + 2\pi i\omega \tilde{y}\right)},$$

ove la mappa $(x,y)
ightarrow (ilde{x}, ilde{y})$ è una rotazione di angolo heta:

$$\begin{aligned} \tilde{x} &= x\cos(\theta) + y\sin(\theta), \\ \tilde{y} &= -x\sin(\theta) + y\cos(\theta). \end{aligned}$$

$$O(x,y) = \int I(x',y')\psi_{\theta_j}(x'-x,y'-y) = (I * \psi_{\theta_j})(x,y).$$

Riportiamo in output l'energia definita come

$$E(x, y, \theta) = \operatorname{Real}(O(x, y))^2 + \operatorname{Im}(O(x, y))^2.$$

イロト イポト イヨト イヨト

- 34

Lifting in *SE*(2) - Modello Citti-Sarti

- Sia $\gamma(t) = (x(t), y(t))$ un curva parametrizzata ad arco $\dot{\gamma}(t) = (\cos \theta(t), \sin \theta(t));$
- $\gamma(t)$ viene liftata in $\mathbb{R}^2 \times S^1$ $\tilde{\gamma}(t) = (x(t), y(t), \theta(t));$
- la curva liftata soddisfa $\dot{ ilde{\gamma}}(t) = X_1 + k X_2$ ove

$$X_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} = \cos \theta \partial_x + \sin \theta \partial_y, \quad X_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \partial_\theta.$$

- l'insieme dei vettori a₁X₁ + a₂X₂ definisce un piano e ogni curva liftata è tangente ad un vettore di tale piano;
- non esistono curve liftate con derivata in direzione $X_3 = \begin{pmatrix} -\sin\theta\\ \cos\theta\\ 0 \end{pmatrix} \text{ ortogonale a } X_1 \in X_2.$

Figura: G.Sanguinetti, Sub-Riemannian Fast Marching in SE(2).

23 Marzo 2018

4 / 16

Varietà sub-Riemanniane

Definizione

Sia M una varietà differenziabile di dimensione n. Sia Δ un sottofibrato del fibrato tangente. Δ è una distribuzione orizzontale se per ogni punto $\xi \in M$ esiste un intorno $U_{\xi} \subset M$ di ξ e mcampi vettoriali C^{∞} linearmente indipendenti $X_1, ..., X_m$ definiti su U_{ξ} tali che per ogni punto $\eta \in U_{\xi}$

$$Span(X_{1_{|\eta}},...,X_{m_{|\eta}})=\Delta_\eta\subseteq T_\eta M.$$

Definizione

Chiamiamo varietà sub-Riemanniana una tripla (M, Δ, g) ove:

- M è una varietà differenziabile;
- 2 Δ é distribuzione orizzontale di rango m;
- 3 $g := \langle \cdot, \cdot \rangle$ è un prodotto scalare definito su Δ .

Definizione

Sia (M, Δ, g) una varietà sub-Riemanniana. Una curva $\gamma : [a, b] \to M$ di classe C^1 è detta orizzontale, se e solo se $\gamma'(t) \in \Delta_{\gamma_t}$, per ogni $t \in [a, b]$.

Siano X, Y campi vettoriali su M varietà differenziabile. Definiamo parentesi di Lie, o commutatore, il campo vettoriale

$$[X, Y] = XY - YX.$$

Chiamiamo algebra di Lie generata da $X_1, ... X_m$, denotata

$$\mathcal{L}(X_1,...,X_m)$$

・ロト ・ 四ト ・ ヨト ・ ヨト

23 Marzo 2018

6 / 16

lo span degli operatori $X_1, ..., X_m$ e dei rispettivi commutatori di ogni ordine.

Condizione di Hörmander - Teorema di Chow

Definizione

Sia M una varietà differenziabile di dimensione n e $\{X_j\}_j$, j = 1, ..., m una famiglia di campi vettoriali C^{∞} su M. Se vale la seguente condizione

$$\mathcal{L}(X_1,...,X_m)|_{\xi} = T_{\xi}M \simeq \mathbb{R}^n \quad \forall \xi \in M$$

diciamo che i campi vettoriali $\{X_j\}_{j=1,...,m}$ soddisfano la condizione di Hörmander.

Teorema

Sia (M, Δ, g) una varietà sub-Riemmanniana, se i campi $X_1, ... X_m$ soddisfano la condizione di Hörmander in ogni punto, allora per ogni coppia di punti p, q, esiste una curva orizzontale γ che li congiunge.

・ロト ・ 四ト ・ ヨト ・ ヨト

Struttura sub-Riemanniana dello spazio SE(2)

 Una base per il fibrato tangente è data dalla terna {X₁, X₂, X₃}. In ogni punto p ∈ SE(2), i campi

 $X_1 = \cos(\theta)\partial_x + \sin(\theta)\partial_y, \quad X_2 = \partial_\theta, \quad X_3 = [X_2, X_1] = -\sin(\theta)\partial_x + \cos(\theta)\partial_y;$

generano lo spazio tangente $T_p(SE(2))$;

 i campi X₁, X₂, definiscono una distribuzione
 Δ = span{X₁, X₂} che soddisfa la condizione di Hörmander poichè

$$-[X_1, X_2] = [X_2, X_1] = X_3;$$

 l'Algebra generata da {X₁, X₂} dà tutto il fibrato tangente.

23 Marzo 2018

8 / 16

¹Figura: G. Sanguinetti, Invariant models of vision between phenomenology, image statistics and neurosciences

Geodetiche

Definita la norma di un vettore orizzontale $|v| = \langle v, v \rangle^{1/2}$, la lunghezza di una curva orizzontale C^1 a tratti, $\gamma : [a, b] \to M$, risulta: $I(\gamma) := \int_a^b |\dot{\gamma}(t)| dt$.

Definizione

Data (M, Δ, g) una varietà sub-Riemmanniana, definiamo *distanza di Carnot-Carathéodory* tra due punti $p, q \in M$

$$d(p,q) := \inf \{ I(\gamma), \gamma : [a,b] \to M, \gamma(a) = p, \gamma(b) = q,$$

 γ curva orizzontale assolutamente continua.}

$$\lambda(\tilde{\gamma})(t) = \int_a^b |\dot{\tilde{\gamma}}(s)| ds = \int \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{\theta}^2} = \int_a^b \sqrt{1 + k^2} ds.$$

Definizione

Sia (M, Δ, g) una varietà sub-Riemmanniana. Una curva $\gamma : [a, b] \to M$ con $\gamma(a) = p$, $\gamma(b) = q$, assolutamente continua, che realizza la distanza d(p, q) è chiamata geodetica.

Geodetiche normali e lunghezza minima di una curva

Teorema

Le geodetiche normali sono localmente curve orizzontali di lunghezza minima.

Esempio

Consideriamo i campi

$$X_1 = \cos(\theta)\partial_x + \sin(\theta)\partial_y, \quad X_2 = \partial_\theta, \quad X_3 = [X_2, X_1] = -\sin(\theta)\partial_x + \cos(\theta)\partial_y;$$

le geodetiche normali associate a questi campi sono localmente dei cerchi

A (10) × (10) × (10)

23 Marzo 2018

10/16

-	<u> </u>		
Francesco	ഹ	п	h a 7 7 I
1141100000	~~		

Metrica sub-Riemanniana del modello

L'integrazione delle curve integrali $\dot{\tilde{\gamma}}(t) = X_1(t) + k(t)X_2(t)$ con k costante dà l'espressione di $\tilde{\gamma}$

$$\begin{cases} x = \frac{\sin(kt)}{k} \\ y = \frac{1 - \cos(kt)}{k} \\ \theta = kt \end{cases}$$

La proiezione in 2D delle curve liftate $\tilde{\gamma}(t)$ dà i completamenti cercati.

Classificazione sull'orientazione

- l'orientazione θ di ciascun pixel (x, y) viene selezionata con funzioni di Gabor;
- essendo i tagli quasi verticali, cancelliamo le componenti con orientazioni eccessive.

12 / 16

Classificazione sulla curvatura

$$k = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{(\dot{x}^2 + \dot{y}^2)^{3/2}} = \dot{\theta}\cos^2\theta + \dot{\theta}\sin^2\theta = \dot{\theta}.$$

Consideriamo come filtro il disco B((x, y), 5)

$$u^{+}(x,y) := \frac{\sum_{\substack{(d,e) \in I}} G(d,e)}{card(B((x,y),5) \cap A_{i})} \quad \text{tali che} \quad (d,e) \in B_{i+},$$
$$u^{-}(x,y) := \frac{\sum_{\substack{(d,e) \in I}} -G((d,e))}{card(B((x,y),5) \cap A_{i})} \quad \text{tali che} \quad (d,e) \in B_{i-}.$$

Si ha quindi l'espressione della derivata direzionale di G in direzione F

$$D_F G = u^+ + u^-.$$

23 Marzo 2018

13 / 16

.

Classificazione sulle frequenza

- f profilo in sezione superficie;
- f' funzione |uminosità;
- f" derivata seconda.

• • • • • • • • • • • •

э

Connessione mediante curve di Bézier

- La scelta della costante k nell'equazione delle elastiche risulta determinante per il calcolo delle geodetiche sub-Riemanniane;
- Ie H-bump incidono sull'energia della frattura;
- nelle aree comprese tra due H-bump effettueremo delle connessioni con archi di cerchi; ۲
- occorrerebbe introdurre una metrica opportuna nello spazio decodificando numericamente le geodetiche associate.

Sia $\gamma(t)$: $[0,1] \rightarrow \mathbb{R}^d$. Una curva piana di Bézier $\gamma(t)$ di grado *n* è definita a partire da un insieme di punti, detti *punti* di controllo, $P_i \in \mathbb{R}^2$ i = 0, ..., n ed è data da

$$\gamma(t)=\sum_{i=0}^n P_iB_{i,n}(t),\quad t\in[0,1],$$

ove
$$B_{i,n}$$
 è il polinomio $B_{i,n}(t) = inom{n}{i} (1-t)^{n-1} t^i.$

15/16

Conclusioni

- Per un'ulteriore distinzione fra tagli e bump sarebbe interessante rivedere l'assetto dell'illuminatore;
- utilizzo di tecniche di shape from shading;
- studio di una metrica alternativa per il modello di completamento.

A (10) < A (10) </p>