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Abstract

We investigate the problem of removing singularities from a non-manifold tetrahe-
dral mesh so as to convert it to a more exploitable manifold representation. Given
the twofold combinatorial and geometrical nature of a 3D simplicial complex, we
propose two conversion algorithms that, depending on the targeted application,
modify either its connectivity only or both its connectivity and its geometry. In the
first case, the tetrahedral mesh is converted to a combinatorial 3-manifold, whereas
in the second case it becomes a piecewise linear (PL) 3-manifold. For both the ap-
proaches, the conversion takes place while using only local modifications around the
singularities. We outline sufficient conditions on the mesh to guarantee the feasibility
of the approaches and we show how singularities can be both identified and removed
according to the configuration of their neighborhoods. Furthermore, besides adapt-
ing and extending surface-based approaches to a specific class of full-dimensional
simplicial complexes in 3D, we show that our algorithms can be implemented us-
ing a flexible data structure for manifold tetrahedral meshes which is suitable for
general applications. In order to exclude pathological configurations while providing
sound guarantees, the input mesh is required to be a sub-complex of a combinatorial
ball; this makes it possible to assume that all the singularities are part of the mesh
boundary.

Key words: tetrahedral mesh, model repair, singularity removal

∗ Corresponding author
Email addresses: marco.attene@ge.imati.cnr.it (Marco Attene),

daniela.giorgi@ge.imati.cnr.it (Daniela Giorgi), ferri@dm.unibo.it
(Massimo Ferri), bianca.falcidieno@ge.imati.cnr.it (Bianca Falcidieno).

Preprint submitted to Elsevier 26 May 2009



1 Introduction

Digital 3D shape models are crucial in many sectors such as industrial de-
sign, gaming, simulation and medicine, to cite a few, and their impact on
forthcoming multimedia-enabled systems is foreseen to grow significantly.

3D models can be either conceived using computer-aided tools, or recon-
structed out of digitized real 3D objects. Recent technological advances have
made available cost-effective scanning devices that could not even be imagined
a decade ago: it is now possible to acquire 3D data of a physical object in few
seconds and produce a digital model of its shape that can be easily shared
and distributed in virtual worlds.

Although today 3D shapes can be modelled in several ways (29), the most
common approach relies on the so-called Boundary Representation (B-Rep),
which represents a solid indirectly as the volume bounded by a given, explicit
surface. B-Reps are particularly appropriate for both the designer and the
computer; NURBS, for example, make it possible for a designer to control the
shape of smooth surface patches through few control points, while, from the
point of view of the computer, triangle meshes are directly supported by the
graphic hardware for rendering complex shapes at exceptional speeds.

Nevertheless, in some cases it is necessary to explicitly model also the inner
parts of a shape. Fully solid shape models, for example, come directly from
CT or MRI scans in medicine. In this case, the volume is typically represented
in raster form as the space being digitized is subdivided into a regular grid of
voxels.

In other scenarios, a B-Rep may need to be converted to a volumetric sim-
plicial mesh (i.e. a tetrahedral mesh) in order to apply physically-based simu-
lation techniques. In Computer Graphics, for example, realistic simulation of
deformable objects are based on volume meshes (37) while, more in general,
in computational sciences numerical solvers for partial differential equations
need a discrete domain to apply finite-element or finite-volume methods.

The representation of simplicial meshes in a computer has been widely stud-
ied, and a number of data structures have been proposed in the literature
(7; 12; 11; 15). The most efficient structures, however, can represent only man-
ifold meshes. Moreover, in a number of applications the manifold condition of
the input model is mandatory. Hence a lot of research has been devoted to
the conversion of generic simplicial meshes to more efficient manifold meshes.
Unfortunately, while state-of-the-art solutions to convert surface meshes are
satisfactory, for higher-dimensions some problems have been encountered (16).
Hence, in this article we deal with a specific class of volumetric simplicial
meshes and propose two solutions for their conversion to combinatorial and
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PL manifolds. In order to exclude pathological configurations while providing
sound theoretical guarantees, the input simplicial mesh is required to be a
sub-complex of a combinatorial ball, which implies that all the singularities
can be assumed to be on the boundary.

1.1 Motivation

In medical applications, CT or MRI scans of a patient generate raster 3D
images in which the brightness of each voxel is related to the type of tissue
sampled in that position. In several cases it is important to extract from the
3D image the shape of a particular tissue (e.g. an organ or a bone). This
procedure, known as segmentation, may generate volumetric simplicial meshes
(6; 23). The suitability of these meshes for specific kinds of analysis often
requires them to be manifold, as it happens for example in the context of
surgical simulation (17).

Similarly, recent variational meshing techniques (1) allow one to easily convert
a surface mesh to a volume mesh in which the placement of vertices in inner
parts guarantees both a smooth transition in sampling density and well-shaped
tetrahedra, which are fundamental conditions for an effective application of
the finite-element method. Nevertheless, such volumetric models are not guar-
anteed to be manifold (see Figure 1). Although the manifold condition is not
mandatory for the finite-element method, non-manifold meshes may lead to
ill-conditioned equation systems, and instabilities may be observed around
singularities.

Fig. 1. A tetrahedral mesh obtained through the variational meshing algorithm
described in (1) in which a singular vertex is shown. Model courtesy of Pierre Alliez.

Working with non-manifold meshes is also a limitation in several other ap-
plications where efficiency is mandatory. On a data structure designed for
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manifold meshes specifically, in fact, traversal operations are much faster, and
this is fundamental to implement efficient algorithms to detect collisions, to
perform boolean or morphing operations, to simplify the model, or even simply
to render it efficiently.

Note that simplicial 3-complexes have a twofold nature. Indeed they can be
seen as either purely combinatorial objects (i.e. abstract simplicial complexes),
or as subsets of the Euclidean 3D space (namely polyhedra) through the notion
of geometric realization (see Section 3). Most data structures neatly separate
the connectivity of the mesh from its geometry, the latter defining the position
of each vertex in the 3D space. For some applications a manifold connectivity
may be sufficient, whereas for some others the polyhedron itself is required
to be a valid 3-manifold. The former condition does not imply the latter: a
polyhedron does not necessarily change as the connectivity is modified and,
even if the complex becomes a combinatorial manifold, no guarantees are given
on the validity of its geometric realization.

As far as efficiency is sought, it can be granted by the manifold condition
on the abstract complex defining the connectivity, because typical traversal
operations are independent of the geometry.

In other cases, having combinatorial complexes that define manifold polyhedra
is desirable. In surgical simulation, for example, each point of the polyhedron’s
surface is a candidate for a virtual cut, and existing systems assume that each
such point has a well-defined thick neighborhood that can be split to simulate
the cut itself (17).

Summarizing, it is important to develop both efficient approaches to convert
the connectivity of a volumetric simplicial mesh into a manifold abstract com-
plex and algorithms to derive polyhedra that are manifold in the Euclidean
space.

1.2 Overview and contributions

In this article two algorithms are presented: (1) a purely combinatorial method
to process the connectivity of a tetrahedral mesh so as to make it manifold,
and (2) a geometric approach to edit the neighborhood of singularities so that
the resulting complex defines a manifold polyhedron. A preliminary version of
the combinatorial approach was previously introduced in a conference paper
(5), whereas the geometric method along with an extended notation and a
deeper discussion are novel contributions of this article. A further additional
contribution within the context of the geometric approach is the strategy
employed to encode the history of the converted shape through an XML
wrapper.

4



Existing related work is described in section 2, where both the most important
state-of-the-art algorithms used to process B-reps and the attempts done so
far to treat higher dimensional complexes are presented. The mathematical
background is then presented in section 3 and, based on this, the problem
tackled in the article is stated formally. The combinatorial approach is then
described in section 4 both at a conceptual level using a mathematical termi-
nology, and at a practical level using a more computer-driven language and
pseudo-code snippets. Similarly, the geometric methodology is introduced in
section 5 at the same two levels of abstraction. In section 6 we discuss some of
the choices made in the design of the algorithms and outline possible alterna-
tive approaches. Finally, we draw our conclusions and the directions of future
developments in section 7

2 Related Work

In geometric modeling, model repair is the task of removing artifacts from
a geometric model to produce an output model that is suitable for further
processing by applications that have specific input requirements (9). The con-
version to manifold presented in this article can be seen as a specific subtask
of model repairing.

Representations for non-manifold objects exist and are useful in several con-
texts (22; 25; 28). Also, some modelling frameworks allow the representation
of manifolds of mixed dimensionalities (33; 31). Nevertheless, the need for effi-
cient algorithms has called for the development of data structures specifically
dedicated to the manifold case. Manifold simplicial complexes can be repre-
sented in any dimension (10; 30), although most data structures have been
proposed specifically for the 2D and 3D cases (13; 21; 27; 29; 11).

In several practical applications, it happens that the simplicial complex result-
ing from a specific process (e.g. segmentation of a 3D image or digitization of a
real object) is mostly manifold, in the sense that only a small percentage of ver-
tices are singular. This fact prompted the development of several algorithms
that slightly modify the complex to edit the singularities without changing
anything far from them. To achieve this goal, a widely used approach consists
of decomposing non-manifold complexes into simpler parts, splitting at those
elements (vertices, edges, facets, etc.) where singularities occur (14; 20; 32).
The result of such a decomposition is a collection of singularity-free compo-
nents that can be represented by standard data structures for manifold com-
plexes. Note that in these methods the cuts are local, which means that the
topology of the mesh changes only in a neighborhood of the edited singularity;
thus splitting at a singular element does not necessarily subdivide the mesh
in topologically disjoint components. Most of these works have been proposed
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for the case of surface meshes, as detailed in the following section.

2.1 Manifold surface meshes

In (32) a method is proposed to convert a non-manifold set of triangles to a
set of manifold surface meshes. First, non-manifold edges (i.e. edges having
more than two incident faces) are identified, and each edge having 2k incident
faces is split into k manifold edges, so that if these edges are bent by a small
amount in the appropriate direction, the resulting shape will not have self-
intersections. This representation is called an edge-manifold representation,
and may still contain isolated non manifold vertices. Then, to guarantee a
manifold topology, one has to identify and duplicate properly the non manifold
vertices. A strategy is suggested to produce a minimum number of vertex
duplications (32).

In a similar setting, (20) introduces a strategy based on two high level oper-
ations: cutting and stitching. The cutting operation involves identifying non-
manifold edges and cutting the surface along such edges. Two strategies are
available for cutting: a global method, operating on all the surface elements,
which is appropriate for cuts covering a large portion of the surface, and a
local strategy, operating only on a set of marked vertices and edges, which
is more efficient in case of a small number of marked elements. The result of
the cutting operation is a manifold surface that may contain boundary edges.
Hence, a stitching operation is performed, which involves joining two bound-
ary edges while guaranteeing that the surface has a manifold topology. There
are two greedy strategies for stitching: pinching attempts to simply zip bound-
ary edges created during the cutting operation, while snapping attempts to
stitch along boundaries other than those, and reduces the number of connected
components of the surface. Differently from (32), the method in (20) does not
address geometric issues such as self-intersecting surfaces.

2.2 Manifold complexes in higher dimensions

In (16), it has been pointed out that the decomposition of a non-manifold
complex should not introduce artificial or arbitrary modifications to manifold
parts. Under these assumptions, a decomposition into manifold components is
possible, in general, only for two-dimensional complexes. Therefore, instead of
trying to obtain a set of manifold components, the solution proposed in (16)
converts a general non-manifold complex to a set of so-called initial quasi-
manifolds. While in 2 dimensions an initial quasi-manifold is also a 2-manifold
(and vice-versa), in higher dimensions this equivalnce does not hold, and mod-
els containing singular vertices (Figure 2) may satisfy all the conditions to
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be initial quasi-manifolds without being actual manifolds. Thus, to efficiently
work with initial quasi manifolds, proper data structures are required in which
the presence of such singularities do not represent a drawback; in (24) such
a data structure has been proposed for the specific 3D case. Though initial
quasi-manifolds have several interesting characteristics, and though they can
be represented through proper data structures, the presence of singularities
make them still not satisfactory for a number of applications.

Fig. 2. An example singular vertex in a 3D initial quasi-manifold. On the right, a
pair of adjacent tets have been detached to better show the singularity. In (16), this
configuration is called a pinched pie.

3 Background definitions

3.1 Simplicial complexes

A k-dimensional simplex, or k-simplex, Ak is a set V = {v0, . . . , vk} of k+ 1
objects called vertices, together with the set of real-valued functions α : V → R
satisfying

∑
vi∈V α(vi) = 1 and α(vi) ≥ 0. A function α is called a point of

Ak. The values α(v0), . . . , α(vk) are the barycentric coordinates of the point α
(18).

A (proper) face B of Ak, denoted B < Ak, is a simplex determined by the
(proper) subset W ⊂ V , whose points β : W → R are identified with the
points α : V → R such that α(vi) = β(vi) if vi ∈ W and α(vj) = 0 if
vj ∈ V −W . If B is a face of A, then A is said to be incident at B.

A finite simplicial complex K is a finite set of simplices such that:

i) if A ∈ K and B < A, then B ∈ K;
ii) if A, B ∈ K, then A ∩B is either empty or it is a face of both A and B.

From now on, we shall omit the term finite.
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The dimension of K is the dimension of the largest dimensional simplex be-
longing to K. A simplicial complex of dimension n is homogeneous if it is
made of n-simplices and their faces.

The boundary ∂A of a simplex A is the complex made of the proper faces of
A. The boundary ∂K of a homogeneous n-dimensional simplicial complex K
is the (n− 1)-complex obtained as the sum mod 2 of the (n− 1)-dimensional
simplices of the boundary ∂A of each of the n-simplices A ∈ K plus their faces
(18).

L is a subcomplex of K if L is a complex and L ⊂ K. For A ∈ K, the (closed)
star of A in K, star(A,K), is the subcomplex of K made of all simplices of
K having A as a face plus all their faces. If A ∈ K, then the link of A in K,
link(A,K), is the set of simplices in star(A,K) whose intersection with A is
empty.

A geometric realization |Ak| of a simplex Ak in the Euclidean space Rn, n ≥ k,
can be obtained by defining a bijection between the vertices of Ak and a
set of k + 1 affinely independent points p0, p1, . . . , pk of Rn, so that |Ak| =
{(t0p0 + t1p1 + . . . + tkpk) ∈ Rn | ti ≥ 0,

∑
i ti = 1}. Thus, |Ak| is the

convex hull of p0, . . . , pk. In particular, the standard k-simplex ∆k is defined
as the convex hull of the points e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . .,
ek = (0, 0, . . . , 1) ∈ Rk+1.

The underlying space |K| of K is the union ∪A∈K |A| of the geometric realiza-
tion of its simplices.

A complex L is a subdivision of the complex K if |L| = |K| and every sim-
plex of L lies in a simplex of K. In particular, we denote edgesplitK(e, v) a
subdivision of K in which the edge e = (v1, v2) is replaced with two edges
e1 = (v1, v) and e2 = (v, v2). We say that K ′ = edgesplitK(e, v) is obtained
from K through an edge-split subdivision (see Figure 3).

In this paper we deal with 3-dimensional complexes, and performing an edge-
split subdivision on such objects is equivalent to replacing an edge e with two
sub-edges e1, e2 and, consequently, replacing each tet incident at e with two
sub-tets, as shown in the example of Figure 5; calling f the edge opposite to
e in the original tet, these two sub-tets are given by the join of f with e1 and
e2. i.e. the convex hulls of f ∪ e1 and f ∪ e2. In the remainder of the paper we
will simply say that we split an edge of a 3-dimensional complex

If L is a subcomplex of a complex K, the simplicial neighbourhood of L in K
is N(L,K) = {A | A ∈ K,A < B,B ∩ |L| 6= ∅}. In other words, N(L,K) is
the smallest subcomplex of K whose realization is also a neighbourhood of |L|
in the Euclidean space (34). Hence, the simplicial neighborhood of a vertex
coincides with its star, whereas the star of a higher-dimensional simplex is a
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Fig. 3. Example of an edge-split subdivision of a 2-dimensional complex.

proper sub-complex of its simplicial neighborhood. The simplicial neighbor-
hood of a subcomplex L turns out to be the subcomplex, union of the stars of
the vertices of L. Though this paper deals with 3-dimensional complexes, sim-
plicial neighborhoods made of tets are difficult to visualize, thus in Figure 4 we
show an example simplicial neighbourhood of a 1-simplex in a 2-dimensional
complex.

Fig. 4. Simplicial neighbourhood of a 1-simplex e in a 2-dimensional complex.

3.2 Piecewise linear homeomorphisms

Let K and L be simplicial complexes whose sets of vertices are denoted V (K)
and V (L), respectively, and let f : V (K) → V (L) be a bijection such that
the vertices v0, . . . , vp of K span a simplex of K if and only if f(v0), . . . , f(vp)
span a simplex of L. Then, f is said to be a simplicial isomorphism and the
induced map |f | : |K| → |L|, taking v =

∑
i tivi to g(v) =

∑
i tif(vi), is called

a piecewise linear homeomorphism.

Given two simplicial complexes K1 and K2, a map g : |K1| → |K2| is a
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piecewise linear homeomorphism if and only if there exist subdivisions L1 of
K1 and L2 of K2 and a simplicial isomorphism f : L1 → L2 such that g = |f |.
|K1| and |K2| are said to be piecewise linear homeomorphic if there exists a
piecewise linear homeomorphism between them. For the sake of simplicity we
shall confuse, with a fairly usual abuse of language, every K with |K|, f with
|f |, and the notion of simplicial isomorphism with that of piecewise linear
homeomorphism.

A combinatorial n-ball is a complex piecewise linearly homeomorphic with the
standard simplex ∆n. A combinatorial n-sphere is a complex piecewise linearly
homeomorphic with the boundary ∂∆n+1 of the standard simplex ∆n+1.

3.3 Combinatorial and PL n-manifolds

A combinatorial n-manifold is a homogeneous n-dimensional complex K such
that for any vertex v of K, link(v,K) is a combinatorial (n−1)-ball if v ∈ ∂K
and a combinatorial (n− 1)-sphere if v /∈ ∂K.

A simplex Ap ∈ K is regular in K, where K is a homogeneous n-dimensional
complex, if link(Ap, K) is a combinatorial (n − p − 1)-ball if Ap ∈ ∂K and
a combinatorial (n − p − 1)-sphere if Ap /∈ ∂K; otherwise Ap is called a
singular simplex. It follows that a combinatorial n-manifold is a homogeneous
complex in which every vertex is regular. It also holds that in a combinatorial
n-manifold all simplices are regular (18).

A piecewise linear (PL) n-manifold is a subset of the Euclidean space, which
is the underlying space |K| of a combinatorial n-manifold K.

4 Building combinatorial 3-manifolds

In this article, we deal with three-dimensional simplicial complexes. In this
case, special names are given to simplices depending on their dimension.
Specifically, a 3-simplex is called a tetrahedron, or simply tet, a 2-simplex
is a facet, a 1-simplex is an edge and a 0-simplex is a vertex. We adopt the
term tetrahedrization to indicate a complex made of tetrahedra and their faces.
Recalling the definitions in section 3, a tetrahedrization K is a combinatorial
3-manifold if, for any vertex v of K, link(v,K) is a combinatorial 2-ball if
v ∈ ∂K and a combinatorial 2-sphere if v /∈ ∂K.
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4.1 Problem statement

LeK be a homogeneous, possibly non manifold sub-complex of a combinatorial
3-ball; without loss of generality, we assume that K has no vertices on the
boundary of the ball. Our aim is to locally edit K so as to transform it in
a manifold complex. Editing operations must influence the neighborhood of
the singularities exclusively, while the remaining parts of the complex must
remain unmodified. More in detail, supposing, without loss of generality, that
K has a single singular vertex (or edge) v, we shall obtain a new complex
K ′ that will be a combinatorial 3-manifold coincident with K everywhere but
star(v,K). Note that, differently from (16), we allow the modification of some
manifold faces which are incident at singular elements. Specifically, while in
(16) only the link of singular elements is modified, our approach is allowed to
modify also the link of some faces of singular elements.

Since the aim of this section is to alter the connectivity of the complex, we
will limit ourselves to showing a pseudo-realization of K ′ in |K|, that is we
will indicate a non-injective simplicial map from K ′ to K.

4.2 Approach

Roughly speaking, our approach consists of two phases: first we identify and
treat singular edges; in a second step, we deal with the remaining vertex sin-
gularities adopting two different procedures that depend on the configuration
of the link. Note that this is the same sequence employed in (32) to process
surface meshes. Also, notice that our assumption that K is a subcomplex of
a combinatorial ball, makes it impossible to have singular triangles.

More formally, let L be a combinatorial 3-ball, and K a homogeneous sub-
complex of L with no vertices in ∂L. The procedure we adopt to remove
singularities located at vertices requires that the link of each vertex has no
singularities. To achieve this condition, we treat singular edges first as follows
(refer to Figure 5 for an example showing a step of the procedure).

Let e = {v1, v2} be a singular edge in K. Then link(e,K) is a simplicial 1-
complex made of k > 1 components Li(e), with i = 1, . . . , k. We create k new
vertices wi, with i = 1, . . . , k, each positioned at the midpoint of e. For each
such vertex, we also create two new edges ei1 = {v1, wi} and ei2 = {wi, v2}.
Now, for each edge li,j = {ui,j1 , u

i,j
2 } in Li(e), with i = 1, . . . , k, we consider

the tet ti,j having both li,j and e as faces, and replace it with two new tets
ti,j1 = {v1, wi, u

i,j
1 , u

i,j
2 } and ti,j2 = {wi, v2, u

i,j
1 , u

i,j
2 }. Note that these operations

are similar in spirit to what is done in (32) to treat edges; roughly speaking,
the process is equivalent to (1) replacing e with k new edges sharing the same
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end-points and (2) splitting each such new edge at its midpoint. After these
operations, the original singular edge e has no remaining incident tets and is
removed from the complex.

Fig. 5. An example of singular edge e in which one of the components (L3(e)) of
its link is considered for the creation of a new vertex w3 and its incident elements.
The algorithm places the new vertex w3 at the midpoint of the singular edge e; in
the figure, however, it is depicted in a displaced position to better illustrate the
resulting connectivity.

In the new complex obtained by applying this procedure to all the singular
edges, that we still call K, all the newly created wis are manifold and all the
singular vertices have a manifold link.

Each remaining singular vertex v in K can then be treated as follows.

By hypothesis, link(v, L) is a combinatorial 2-sphere while link(v,K) is nei-
ther a combinatorial 2-sphere, nor a combinatorial 2-ball. Since link(v,K) is
a sub-complex of link(v, L), link(v,K) is the disjoint union of n ≥ 1 combina-
torial 2-spheres with holes. The boundary ∂link(v,K) of link(v,K) is made
up of k > 1 components, each of which is a combinatorial 1-sphere.

We proceed recursively with respect to k.

Among the combinatorial 1-spheres bounding link(v,K), at least one of them,
let it be C, bounds a 2-ball D of either link(v,K) or link(v, L−K) (note that
in our setting the Schoenflies conjecture holds (19)).

We add a new vertex w in K at the same position as v, and distinguish two
possible cases:
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i. If D ⊂ link(v,K), we replace each tet ti incident at v and having a face in
D with a tet τi obtained from ti by substituting v with w (Figure 6).

ii. If D ⊂ link(v, L −K), we consider the facets fi incident at v and having
an edge in C and, for each of them, we add a new tet τi made of w and the
vertices of fi (Figure 7).

Fig. 6. Vertex duplication and retriangulation of a configuration having two con-
nected components in the link of an isolated singular vertex. The algorithm places
the new vertex at the same position of the former singularity; in the figure, however,
it is depicted in a displaced position to better illustrate the resulting connectivity.

Fig. 7. Conversion of a pinched pie configuration to a combinatorial 3-ball. The
algorithm places the new vertex at the same position of the former singularity; in
the figure, however, it is depicted in a displaced position to better illustrate the
resulting connectivity.

Now, the new vertex w is clearly manifold, while the boundary ∂link(v,K) is
made of k − 1 components, each of which is a combinatorial 1-sphere. Hence,
we repeat the procedure as long as the number of components in ∂link(v,K)
is greater than 1.

In this way, we obtain a new complex K ′ in which all simplices are regular,
that is a combinatorial 3-manifold.
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Notice that, for simplicity, the new vertices w are assigned the same coor-
dinates of the singular vertex v in the Euclidean space. This implies that
our method does not produce a geometric realization of K in the Euclidean
space, but just a pseudo-realization. Actually, what happens is that a map
f : V (K ′)→ V (K) induces a simplicial map which is not injective. The com-
plex resulting after our combinatorial algorithm has the characteristic that it
is geometrically identical to the input when pseudo-realized within the Eu-
clidean space. This implies that the various copies of each singularity occupy
the same region of space: if the input is non self-intersecting, these are the only
self-intersections that can occur in the output. The issue of editing the com-
plex so as to obtain a valid, manifold geometric realization (i.e. a PL manifold)
is dealt with in Section 5.

4.3 Algorithm

We have implemented the algorithm based on the tetrahedral data structure
introduced in (11). Within such a structure, the four basic entities of a tetra-
hedrization (i.e. vertices, edges, facets and tets) are encoded, while only a
minimal set of topological relations are stored explicitly. Topological rela-
tions describe the connectivity of the complex by linking each simplex to its
boundary and co-boundary, that is, the set of its faces and the set of its inci-
dent simplices respectively.

For compactness, the tetrahedral data structure explicitly encodes only the
following four constant relations, each of which links an element with a con-
stant number of neighboring entities:

• tet-facet (TF) which returns the four facets bounding a tetrahedron;
• facet-tet (FT) which returns the tets (one or two) incident at a facet;
• facet-edge (FE) which returns the three edges bounding a facet;
• edge-vertex (EV) which returns the two vertices of an edge;

and the following two special relations, each of which links an element with
only one of the neighboring entities:

• edge-facet (EF*) which returns one of the facets incident at an edge;
• vertex-edge (VE*) which returns one of the edges incident at a vertex.

Provided that the tetrahedrization encoded is combinatorially manifold, from
this minimal set it is possible to compute all the other topological relations
in optimal time (i.e. in a number of operations linearly proportional to the
number of elements involved in the relation being computed). We point the
reader to (11) for a detailed description of the algorithms that compute these
implicit relations.
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Note that, if the tetrahedrization T is a sub-complex of a combinatorial ball,
each facet can have at least one, and at most two incident tets; in this case,
even if T is not a combinatorial manifold, it can be encoded by the tetrahedral
data structure and all the constant relations can be still computed in optimal
time.

The presence of singularities, however, does not allow to extract all the other
relations in optimal time. Therefore, to keep the complexity of the conversion
algorithm linear, we pre-compute the link of all the vertices and edges as
follows.

Each vertex v is assigned an additional relation L(v), initially empty, that
encodes its link. Note that, since such a link is a homogeneous simplicial
2-complex, L needs to explicitly store only the facets; all the other lower-
dimensional elements of the link are faces of such facets and can be extracted
through the FE and EV relations. Then, for each tet t in the tetrahedrization
we consider its four facets, and add each such facet to the link L of its opposite
vertex in t. This procedure is sketched in the pseudo-code of Listing 1, where
the constant relation FV returning the vertices of a facet is obtained as the
combination FV (f) = EV (FE(f)), and the constant relation TV returning
the vertices of a tet is obtained as the combination TV (t) = FV (TF (t)).

The star of v can be computed starting from L(v) in optimal time through
the FT relation.

Listing 1. Construction of the links of all the vertices

CreateVertexLinks(Tetrahedrization T )
{

for each vertex v in T
L(v) := new empty facet list

for each tet t in T
for each facet f in TF (t)
{
v := the vertex of TV (t) which is not in FV (f)
Add f to L(v)

}
}

Similarly, each edge e is assigned an additional relation L(e) that encodes
the edges constituting its link, which is a homogeneous simplicial 1-complex.
Thus, for each tet t in the tetrahedrization we consider its six edges, and add
each such edge to the link L(e) of its opposite edge e in t.

Unfortunately, the star of e cannot be computed starting from L(e) in optimal
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time. Hence, during the computation of L(e), we also fill a further relation T(e)
with the tets t used to build L(e) (i.e. the tets incedent at e that, together
with their faces, constitute the star of e).

The procedure to compute the links and the stars of all the edges is sketched
in Listing 2, where the relation TE is computed as the composition of FE and
TF.

Listing 2. Construction of the links and the stars of all the edges

CreateEdgeLinksAndStars(Tetrahedrization T )
{

for each edge e in T
{
L(e) := new empty edge list()
T (e) := new empty tet list()

}

for each tet t in T
for each edge e in TE(t)
{
e2 := the edge in TE(t) sharing no vertex with e
Add e to L(e2) and t to T (e2)

}
}

Afterwards, the link L(e) of each edge is analyzed, and if it is not connected
e is declared to be a singular edge.

In this case, one component of the link remains as it is, while for each ad-
ditional component Li(e) of L(e) a copy ei of e is created, and the following
topological relations are updated in the data structure:

• EV(ei) := EV(e)
• for each tet t in T (e) having an edge in Li(e), and for each facet f of t such

that FE(f) contains e, replace e with ei in FE(f). Take one of these facets
as the value of EF*(ei)

Finally, e and the eis are split at their midpoints to eliminate duplicated edges
in the structure, and the L and T structures are updated accordingly for all
the elements involved in the modification.

At this stage, we are guaranteed that the link of each vertex is a combinato-
rial 2-manifold with some boundaries and possibly more than one connected
component.
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In particular, if the link L(v) of v has more than one boundary component,
then v is declared to be singular. In this case, the algorithm proceeds as
described in Listing 3.

Once such algorithm terminates, the data structure represents a combinatorial
3-manifold, thus the L and T relations can be deleted, and all the topological
relations can now be extracted in optimal time.

Since the tetrahedral data structure is suitable for a wide spectrum of appli-
cations, it is worth to implement the conversion algorithm directly on such a
structure. Note that the use of this structure has no effects on the overall com-
plexity of the algorithm; all the operations needed to perform the conversion,
in fact, can be executed in optimal time.

Listing 3. Conversion algorithm

EditSingularVertex(Vertex v)
{

1. Look for a connected component in L(v) which is a combinatorial 2-ball

2. if there is such a component , let it be D
3. Compute the set T of tets incident at v and having a facet in D
4. Create a new vertex w
5. Remove all the tets in T from the tetrahedrization

6. Create a new tet {w,wi
1,w

i
2,w

i
3} for each facet {wi

1,w
i
2,w

i
3} in D

7. Remove D from L(v)
8. If L(v) has more than one component go to 1, else go to 15

9. else (i.e. if there are no combinatorial 2-balls in L(v))
10. Extract a boundary loop B of L(v)
11. Compute the set D of facets incident at v and having an edge in B
12. Create a new vertex w

13. Create a new tet {w,wi
1,w

i
2,v} for each facet {wi

1,w
i
2,v} in D

14. Add all the facets {w,wi
1,w

i
2} to L(v)

15. If L(v) has more than one boundary component go to 10, else terminate

}

5 Building simplicial 3-manifolds

Editing the simplicial complex, as in Section 4.2, to obtain a combinatorial
manifold is useful in many contexts in which only a manifold connectivity is
required. Nonetheless, there are cases in which having vertices at the same
position is a problem, as the underlying space (or realization) of the complex
is required to be a valid 3-manifold within the Euclidean topology. In other
words, the complex is required to be a PL manifold.

A very simple approach to achieve such a requirement would be the “displace-
ment” of those new vertices that have been inserted in the complex while
making it a combinatorial manifold. This approach would require to move the
newly inserted vertices to new positions, so that the underlying space does
not have non-manifold points (also called singularities). Unfortunately, such
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a strategy requires to perform several consistency checks because the new
position of a vertex might cause the realized complex to self-intersect or to
contain degenerate or inverted tetrahedra. While checking for self-intersections
in a topological neighborhood is relatively easy, it turns out to be computa-
tionally expensive for parts of the complex which are combinatorially far but
potentially close when realized in the Euclidean space. The problem can be
tackled more efficiently if the complex’s complementary part is available, but
unfortunately this is not the case for most practical scenarios.

Thus, our solution is based on a completely different approach in which the
“geometric” nature of the complex is considered from the very beginning.

5.1 Problem statement

As with the combinatorial approach of section 4, let K be a homogeneous,
possibly non manifold sub-complex of a combinatorial 3-ball L. Having as-
sumed that L can be geometrically realized, we want to devise a strategy to
locally edit K so as to obtain a PL manifold. In other words, we seek for a
combinatorial 3-manifold K ′, with a valid, non self-intersecting and manifold
underlying space |K ′|. As an additional requirement, editing operations must
modify only simplices which are incident at singular elements and must not
introduce additional singularities to be processed.

5.2 Approach

Roughly speaking, our approach aims at removing small amounts of material
around singular points, so as to resolve the singularities while keeping changes
local.

A singular point p in |K| may be either the image (through the map defining
the geometric realization of simplices in K) of a vertex v ∈ K, or a point
within the image of an edge e ∈ K. Let σ ∈ K denote this pre-image simplex,
whose dimension can be either 0 or 1.

If p ∈ |K| is singular, we want to remove from |K| all the points of a small
neighborhood of p. Defining the shape and size of the neighborhood to be
removed is not trivial due to the requirements imposed so far. Indeed, we
want the editing operations to modify only simplices in K that are incident at
the pre-image σ. Removing plain Euclidean neighborhoods such as balls, for
example, is not appropriate. The removal of a ball B(p, ε) around the singular
point p, indeed, requires the choice of a radius ε > 0 that guarantees that all
the simplices whose realization intersects B are also incident at σ. Thus, to
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verify that ε is small enough, also simplices which are combinatorially far from
σ must be checked for a potential intersection, and this is computationally
expensive.

Hence, our solution is to remove from |K| only points around p whose pre-
image belongs to the simplicial neighbourhood N(σ,K) of the simplex σ in
K. Being the simplicial neighbourhood of σ in K the smallest subcomplex of
K whose realization is also a neighbourhood of |σ| in the Euclidean space (see
section 3), this guarantees that the removal is local in both combinatorial and
geometric senses.

Note that the complete removal of a tetrahedron is not allowed as it might
introduce new singularities in the complex, thus we have to guarantee that at
least a portion of each realized tetrahedron remains in |K| after the neighbour-
hood removal. To achieve this, we perform a subdivision of the the simplicial
neighbourhood N(σ,K) based on edge-splits, as detailed in the following sec-
tion.

5.2.1 Editing Operations

Let p be a singular point whose pre-image is the simplex σ ∈ K (a singular
vertex or a singular edge), and let E(σ) be the set {e1, ..., en} of all the edges
which are incident or adjacent to σ. Denote with pi the point of |ei| having
distance from |σ| equal to ε (see the example in Figure 9 where σ is the edge
e), with 0 < ε < εmax(σ)/2. The threshold εmax(σ) is the minimum distance of
|σ| from the boundary of N(σ,K). Then, let K ′ be the complex obtained by
splitting each ei at pi. By definition, K ′ is a subdivision of K, and N(σ,K ′)
is a subcomplex of K ′. Thus we can simply remove N(σ,K ′) from K ′ to get
rid of the singular simplex σ while respecting the editing constraints. We call
erosion of σ the sequence of operations including the subdivision of K into
K ′ and the subsequent removal of N(σ,K ′) (Figure 8).

Fig. 8. Erosion of a singular simplex σ in K. Left: σ is a singular edge. Right: σ is
a singular vertex. From left to right (for both the cases): the set of points having
distance from |σ| less than ε; the subdivision K ′ of K; the removal of N(σ,K ′).

Note that for each singular simplex to be eroded, ε is less than the mini-
mum distance of the simplex from the corresponding simplicial neghborhood’s
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boundary, thus only elements within such simplicial neighborhood are modi-
fied.

Having this in mind, we also point out that, in principle, a different value of ε
might be used for each singular simplex, provided that it is strictly positive and
does not exceed the threshold. Nevertheless, when singularities are adjacent
(eg. two singular edges sharing a common vertex) it is possible to reduce the
number of splits by using a common value of ε. For this reason, in our prototype
implementation we compute an overall threshold εmax(K) = minσ∈K{εmax(σ)}
and let the user choose a value for ε within the range (0, εmax(K)/2). A default
value of εmax(K)/4 is used if the conversion is required to be fully automatic.

5.3 Algorithm

Also in this case, we have implemented the algorithm based on the tetrahedral
data structure. After having pre-computed the link of each vertex and edge as
described in section 4.3 we tag the identified singularities and process them
one by one starting from edges. For each such singular edge e = (v1, v2), we
compute the set E(e) of all the edges which are incident at either v1 or v2;
E(e) can be computed by composing the relation L (see Listing 1) with the
constant relations FT, TF and FE. Each edge ei ∈ E(e) incident at v1 (resp.
v2) must be split at the point pi whose distance di from v1 (resp. v2) depends
on the angle α between e and ei (see Figure 9). Specifically, di can be computed
as follows:

di =


ε, if α > π

2

ε
sin(α)

, otherwise

(1)

Fig. 9. Computation of the splitting points to process singular edges.

Simplicial edge-splits are standard operations widely discussed in the literature
(2) and, as such, we do not explain here implementation details; however, it is
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worth to specify that in our setting any implementation must also take care
of updating the temporary relation L (Listing 1) because, since the complex is
not a combinatorial manifold, this relation cannot be re-computed in optimal
time after splitting. Also, after having split an edge e which is tagged as
singular, the two resulting sub-edges must be tagged as well.

After having processed all the singular edges, each remaining singular vertex
can be processed by simply splitting its incident edges E(v) that, as for sin-
gular edges, can be computed by composing the relation L with the constant
relations FT, TF and FE. Each such edge ei must be split at a distance di = ε
from the singular vertex.

The whole algorithm is described in the pseudo-code of Listing 4, while an
example of result is shown in Figure 10.

Listing 4. Conversion algorithm. Simplices are stored in lists which are scanned from
head to tail through the ”for each” statements. Edge-splits append newly created
simplices to the tail of the lists; so, if a split is performed within a ”for each” block,
newly created elements will be processed properly.

ToPLManifold(Tetrahedrization K)
{

CreateVertexLinks(K)
CreateEdgeLinksAndStars(K)
for each edge e of K

if L(e) is not connected
tag e and its vertices as singular

for each vertex v of K
if L(v) is not simply connected

tag v as singular
Compute ε
for each e = (v1, v2) of K

if e is tagged as singular
for each ei 6= e of E(v1) ∪ E(v2)

split ei at pi
for each t of FT (L(v1) ∪ L(v2))

if t is incident at v1 or v2
remove t from K

for each v of K
if v is tagged as singular

for each ei of E(v)
split ei at pi

for each t of FT (L(v))
if t is incident at v

remove t from K
}
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Fig. 10. The bunny model (left) has some singular simplices (center). After having
run our algorithm, the sigularities have been properly eroded (right).

Note that the input to our process is a subcomplex of a combinatorial ball,
which means that degenerate elements are not allowed. Thus, the two vertices
of each edge have necessarily different coordinates, and the vertices inserted
to split edges are computed as linear combinations of pairs of different ver-
tices. In principle, our choice of ε guarantees that the new vertices do not
coincide with existing ones, but in practice this may happen due to numeri-
cal approximation, and this may lead to the creation of degenerate elements.
This problem never occured during our experiments, but it must be consid-
ered. Hence, though in theory it is sufficient that no degenerate elements are
present in the input, in practice we need to verify that the computation of ε
(see Section 5.2.1) does not lead to a too small value.

5.4 Geometric content preservation

We foresee that in most scenarios our conversion algorithm will be used as a
pre-processing step for subsequent processing and analysis. Although it is a lo-
cal operation, the erosion of a singularity may substantially alter the topology
of the mesh (e.g., disconnect two components that were formerly attached) or,
more in general, remove material in areas where such material had a particular
meaning (e.g., in shapes resulting from optimization processes in CAD). While
these problems can be negligible in some contexts, we may not assume that
this is true in the range of all the possible applications, and we want to ensure
that the editing operations do not jeopardize the targeted use of the model.
In other words, in some scenarios it is necessary to reason on the “intended”
nature of the complex rather than on its explicit representation.

To achieve this, additional knowledge must be encoded together with the
edited tetrahedrization. In (4) high-level knowledge is linked to the geometry
through references within XML files, hence we inspired from such a previ-
ous work. Specifically, in our prototype we have chosen to save the converted
model as an XML file containing references to two other files: one containing
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the actual PL manifold, and another containing information about the editing
process. Specifically, to keep track of the modifications introduced by the con-
version, all the simplicial neighborhoods that were removed during the editing
process are stored along with the manifold polyhedron (see Figure 11). This
means that the XML file contains all the necessary information to recover the
original polyhedron by merging the PL manifold and the realizations of the
removed parts so that, if necessary, one can unambiguously reason about the
original geometry of the shape.

Clearly, if only the manifold polyhedron is required, the corresponding file can
be accessed directly without using the XML wrapper.

Fig. 11. Schematic summary of the output produced by our prototype to keep track
of the modifications introduced by the conversion.

6 Discussion

The conversion of a complex to a PL manifold as described in Section 5 leads
to a resulting simplicial complex which is a combinatorial manifold with a valid
geometric realization. In other words, the conversion described in Section 5 is
more general than the purely combinatorial algorithm presented in Section 4,
which produces a combinatorial manifold but does not provide its geometric
realization. Nonetheless, if the targeted application has requirements on the
connectivity only, the method of Section 4 should be preferred as it introduces
less modifications and keeps the geometry unaltered.

Both the algorithms presented assume that the input mesh is a homoge-
neous subcomplex of a combinatorial ball, which guarantees that singular
simplices are on the boundary. Note that this condition is not too restric-
tive. In medicine, for example, segmented 3D images can generate tetrahedral
meshes by simply triangulating the voxels; though not necessarily manifold,
the resulting mesh is clearly a subcomplex of a combinatorial ball (i.e. the fully
tetrahedrized 3D image). Also, our algorithm is applicable to the tetrahedriza-

23



tions produced by popular meshing methods (e.g. (1)) based on a constrained
Delaunay tetrahedrization of the input’s convex hull.

The approach we have chosen to build combinatorial manifolds is inspired by
existing methods for surface meshes. In the case of surfaces, however, all the
isolated singular vertices can be treated using the same scheme (32). Con-
versely, for tetrahedral meshes we need to use different procedures depending
on the configuration of the link of each singularity, and each such procedure
has a different impact on the type of connectivity of the mesh.

Note that, in general, existing methods such as (32) or (20) cannot be used to
achieve the objective of our combinatorial algorithm. To resolve configurations
such as the pinched-pie shown in Figure 1, for example, it is not sufficient to
duplicate the singular vertex; after the duplication, in fact, it is necessary
to re-triangulate the part between the two copies with new tets to fill the
resulting “combinatorial hole”.

Thus, to treat a singular vertex we need to analyze its link and recursively
apply a proper procedure to each component of the link. If the component
is a combinatorial 2-ball we duplicate the singular vertex by changing the
type of connectivity of its star (i.e. its fundamental group); otherwise, if the
component is a 2-ball with n holes, we emboss the singularity n times without
modifying the fundamental group of its star. These two strategies, namely i.
and ii. in section 4.2, are illustrated in Figure 6 and Figure 7 respectively.

Though the modification of the fundamental group deriving from our approach
is suitable for most real-world practical applications, alternative solutions can
be implemented. For example, the two combinatorial cones depicted in Figure
6 can be merged together instead of being separated; similarly, the pinched pie
configuration in Figure 7 can be converted to a solid torus instead of becoming
a ball. The difference between the results of these approaches can be seen in
the real-world example illustrated in Figure 12.

Note that the same arguments have been dealt with for the case of surface
meshes in (20), where surface patches connected through singular points can
be either separated or regularly merged.

For the geometric treatment of singularities (section 5) we have introduced the
erosion operation. In this case an alternative solution would be the addition
of material instead of the erosion, but this might produce self-intersecting
meshes. Unfortunately, as we mentioned, typical tetrahedral meshes do not
include explicit information about the complementary part of the solid, and
this makes self-intersection checks computationally expensive. This is one of
the reasons that made us exclude the possibility of displacing the copies of the
singularities to transform combinatorial manifolds to PL manifolds. Further-
more, we cannot guarantee that such a displacement strategy is feasible for all
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Fig. 12. Through our approach, a tetrahedral mesh resulting from a segmentation
of a medical image (left) is converted to a combinatorial manifold. Its boundary
has been subdivided twice using Loop’s scheme (26) (right) to show the resulting
connectivity around formerly singular vertices (magnified). An additional magnifi-
cation shows the result of the same part subdivided after being processed by the
alternative approaches discussed in section 6.

the possible configurations. Let us consider, for example, the untetrahedriz-
able Schönhardt prism (35). If we contract one of the side edges of the prism,
thus making the two bases touch at one vertex v, the resulting polyhedron is
made of 5 vertices, and thus it is guaranteed to be tetrahedrizable (35). Now,
consider such a tetrahedrized polyhedron to be a slice of a pinched-pie configu-
ration having v as singular vertex. After having duplicated the singular vertex
v, let us consider the set of the allowed displacement directions for the copy
v′ of v. Clearly, v′ cannot be moved towards the interior of the pinched-pie
becuase this would lead to inverted tetrahedra having negative volume. On
the other hand, we argue that the cone of the outward displacement directions
may happen to contain only points that make our slice become again a sort of
Schönhardt prism, which means that any displacement within this cone would
necessarily produce self-intersections.

7 Conclusions

We have shown that, under specific conditions, a tetrahedral mesh with sin-
gularities can be converted either to a combinatorial 3-manifold or to a PL
3-manifold by using only local modifications.

Based on well-established mathematical concepts, we have outlined sufficient
conditions that make such a conversion possible, and developed novel con-
version algorithms. Moreover, we have shown that these algorithms can be
implemented on a data structure designed for manifold complexes; in this
way, the algorithms can be implemented as part of more general applications
dealing with manifold tet meshes without the need of introducing additional
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structures.

In our future work, we wish to investigate procedures to minimize the topologi-
cal complexity of the complex resulting from the conversion to a combinatorial
manifold; in principle, in fact, the system may decide whether to emboss a
singularity or to disconnect the components around it depending on the Betti
numbers characterizing the result. Also, based on results obtained so far for
surface meshes (8; 3), in our future research we wish to target a broader class
of complexes, allowing the removal of possible degenerate elements prior to
their conversion to PL-manifolds.

Finally, thanks to recent advances in boundary-constrained 3D mesh gener-
ation (36), we plan to implement algorithms to compute the complementary
part of a tetrahedrization within its convex hull, which will allow us to propose
efficient alternative solutions also for the geometric approach, in analogy with
the combinatorial treatment.
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[29] M. Mäntylä. Introduction to Solid Modeling. Computer Science Press,
Rockville, Maryland, USA, 1988.

[30] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-
independent modeling with simplicial complexes. ACM Transactions on
Graphics, 12(1):56–102, 1993.

[31] J. Rossignac. Structured Topological Complexes: A feature-based API
for non-manifold topologies. In Procs of the ACM Symposium on Solid
Modeling, pages 1–9, 1997.

[32] J. Rossignac and D. Cardoze. Matchmaker: manifold breps for non-
manifold r-sets. In Procs of 5th ACM symposium on Solid modeling and
applications, pages 31–41, New York, NY, USA, 1999. ACM Press.

[33] J. Rossignac and M. O’Connor. SGC: A Dimension-Independent Model
for Pointsets with Internal Structures and Incomplete Boundaries. In
Procs of the IFIP Workshop on CAD/CAM, pages 145–180, 1989.

[34] C. P. Rourke and B. J. Sanderson. Introduction to piecewise linear topol-
ogy, volume 1. Springer-Verlag Berlin Heidelberg New York, 1972.
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