
Local triangle choice for impact computation

in the tactile exploration of a virtual surface

Francesco Domenicucci Massimo Ferri
Dip. di Matematica,

Piazza di Porta S.Donato, 5 I–40126 Bologna ITALY

Giorgio Nicoletti
Dip. di Matematica per le Scienze Economiche e Sociali,

Piazza Scaravilli, 2 I–40126 Bologna ITALY

Abstract

Evaluating the intersection of the trajectory of the exploring finger,
with the virtual surface representing the scene, is a key problem in the
VIDET project of an aid for the visually impaired. A substitute for
Delaunay triangulation, which permits of local computation for that
goal, is proposed.

1 Introduction

This paper is concerned with the intersection of a straight line with a sur-
face, interpolating a set of points labelled with a distance. Although some
techniques for dealing with height fields [1] and spatial data structures [2]
are available, we chose to develop a specific algorithm for the peculiar needs
of project VIDET, within which the research has been accomplished.

VIDET (VIsual DEcoder by Touch) will be a portable device by which a
visually impaired person will explore a virtual bas–relief of the environment
[3]. This will be performed by a camera pair, a portable computer and a
robotic apparatus (WireMan, a robotic device actuated by means of threads
[4, 5]). The project is presently under development at DEIS (Electronics,
Informatics and Systems Department), at DIEM (Department of Mechanical



Engineering) and at our Departments at the University of Bologna, under
the direction of Prof. Claudio Bonivento (DEIS).

The idea is to bring far objects within reach of the user. So, blind persons
will use the sense of touch for understanding shapes — what they already do
quite well for close objects (see Figure 1). This was quite impossible before
the recent big advances in virtual reality; in particular, this possibility was
suggested by the existence of very sophisticated force–feedback systems [6].

Figure 1: The VIDET system.

VIDET will consist of three phases:

1. A depth measuring device (most likely a pair of cameras together with
a program for stereo computing) solid with the user’s body (either head
or shoulders) yields a grid of points labelled with depth values;

2. a (virtual) surface is interpolated to fit the given points;

3. WireMan, a force–feedback device, is mounted in a rucksack; it consists
of three wires coming out of three corners of the rucksack, and converg-
ing to a thimble, where the user inserts his/her finger. WireMan then
realizes the surface by inhibiting the finger to cross the virtual surface,

2



so giving the user the impression to touch a bas–relief which represents
the framed scene [4, 5].

The need to render the surface in “real time” compels us to reduce the com-
putational burden as much as possible. One big challenge is the stereo phase,
but also a complete interpolation would take too long a time. Therefore we
have chosen to make the third phase drive the second one.

The algorithm we are going to describe is implemented on a standard Pen-
tium based PC. The computation is in real time, and enables us to conduct
experiments with the WireMan on synthetic and real data.

2 The specific interpolation problem

A whole interpolation surface is needed, and not only a set of isolated points,
however dense. In fact, the finger trajectory might miss a set of isolated
points and pass beyond them, if a surface is not there.

The problem of interpolating a set of points endowed with an elevation value
is generally solved, in cartography, by means of a Delaunay triangulation, or
of some of its variants [7, 8, 9]. In the VIDET problem, a still better solution
might be the use of B-splines [10] or of superquadrics [11], in order to give
the user a smooth surface to feel, instead of an edgy, triangulated one. This,
anyway, is far from our present possibilities, and will be considered only in
future developments of the project. An interpolation by means of triangles is
presently the only feasible solution. In this context, the global computation of
a Delaunay triangulation would yield the most faithful approximation of the
real scene surface. However, at least at the present development stage, it is
useless to keep the computer busy with this global task (even in a simplified,
constrained version [12]), while the use of the surface will be essentially local.
In fact, for each frame shot by the cameras, only a very limited part of the
resulting surface will be explored by the user’s finger.

It should be noted that, whatever depth measuring device is used, the surface
presented to the user (and actually also to a normal seeing person) could be
considered as the graph of a function from the set of directions to the real
numbers, yielding depth as a value for each direction. We prefer the use of
a Cartesian reference frame with the xy–plane vertical (actually parallel to
the plane of the rucksack), and the z–axis pointing away from the user. The
surface will then be considered as the graph of a function from the xy–plane
to the real numbers.

3



A very serious problem is, that the stereo algorithm [13] does not yield a
regular grid of points labeled with depth. Our algorithm, on the contrary,
assumes exactly that. Hence, everything works fine with synthetic data.
Anyway, we are also using this algorithm with real data, after a first (not
too costly) interpolation, which yields the required regular grid.

3 Local choice

The input data of the process are

1. stable data:

• a rectangular grid of points on the vertical xy–plane (the points
considered by the stereo computation)

• a real value z for each point of the grid (the depth values computed
by the stereo process)

• a maximum allowed trajectory length;

2. dynamic data:

• the three position coordinates (Px, Py, Pz) of the position P of the
user’s finger at a given instant

• the three components (vx, vy, vz) of the velocity vector v (given
by the coordinate difference between the present position and the
one at the previous sampling).

Output of the process are

1. coordinates of the impact point T with the interpolated surface (in the
hypothesis of constant velocity)

2. unit vector, normal to the triangle of impact

3. distance to impact

4. time to impact (in the hypothesis of constant velocity).

The main idea of this local process is to follow the estimated trajectory
of the finger, and to compare the finger third coordinate (depth) with the
same coordinate of the vertical and horizontal lines through the grid points.

4



The process performs the choice of an interpolating triangle pair along the
projection of the trajectory, until a change of sign of the coordinate difference
occurs. After that, a standard intersection computation yields the impact
point, and consequently the time to impact.

Four points in 3-space (in general position) determine a tetrahedron; this
exhibits, altogether, six pairs of adjacent triangles (one for each edge). If
a closed polygonal of four edges is imposed as a boundary, then only two
of these pairs are left for a choice. This is our case (See Figure 2a). The
polygonal in space is the one which projects to the boundary of one grid
square. The choice of the triangle pair corresponds to the choice of one of
the two possible diagonals of the projected square.

Figure 2: The two possible subdivisions of a square into triangles, and the
corresponding triangle pairs in space.

This is actually a very heavy simplifying hypothesis. More explicitly, we
are strongly constraining the triangulation, by imposing that each triangle
has one of its edges projecting to a horizontal segment (which joins two
consecutive points of the grid) and one projecting to a vertical segment (same
thing, but vertically). No mathematical reason can actually assure that a true
(unconstrained) Delaunay triangulation would admit exactly those triangles.
On the other hand, preliminary experiments show that the error (if any)
is not very inconvenient in standard use situations: horizontal and vertical
edges are pre–eminent in a human made environment.

5



4 The algorithm

Length units are changed so as to make the grid points in the xy–plane be
of integer coordinates. Let P , of coordinates (Px, Py, Pz), be the point in
space at the present instant, and Q be its projection on the xy–plane. We
determine the square to which Q belongs, by truncating its coordinates. It is
straightforward to determine whether Q lies on an edge (resp. is a vertex) of
the grid. In Subsection 4.4 we shall see how to determine to current square
in these cases.

Up to 4.4 we shall assume that Q lies in the interior of a square,
which we call the first square. We have then to divide the first square into
two triangles and to find which of the two contains Q: This is done by the
following routine.

4.1 Delaunay

There are two possible subdivisions (I and II) of the square into a pair of
triangles, according to which of the two diagonals is chosen (see Figure 2b).
Fix one of them (I): the two resulting triangles are projections of two space
triangles T1, T2; compute the difference of the maximum and minimum side
length of each, d(Ti), and take the minimum of the two differences dI =
min{d(T1), d(T2)}. Do the same for subdivision II, so obtaining dII . Then
choose the subdivision which yields the lower value between dI and dII . Now,
the coordinates of Q allow us to select which of the two triangles contains
it. Note that Q may belong to both, i.e. to their common edge; we can
arbitrarily choose either triangle.

4.2 Starting point

We now have to find the projection R of P on the surface (i.e. the surface
point which projects to Q too). Once we have determined the triangle to
which Q belongs, we compute the equation of the plane through the points
of the selected space triangle. This allows immediate computation of the
depth Rz of R. Of course, the other two coordinates Rx, Ry are the same as
those of Q and of P . Now, we need the difference ∆z = Pz −Rz (see Figure
3).

• If ∆z > 0, then P is beyond the surface, and we suspend the search.
An alert signal is given to the user.

6



• If ∆z = 0 (within the given approximation), then P = R, and this is
already the impact point T .

• If ∆z < 0, then we have to find the sequence of intersection points.
Note that this is immediate if vector v is along the z–axis: In this case
T = R. In the following routine we exclude this case.

Figure 3: Trajectory, surface, and their projections.

4.3 Exploring the first square

Consider the half–line r starting in P and with vector v (best expressed by
parametric equations); call s the half–line which is its projection on the xy–
plane (obviously starting from Q). Recall that the square to which Q belongs
has already been divided while executing the Delaunay routine of 4.1, so a
diagonal of it has been chosen.

The half–line s intersects either an edge or the diagonal of the square. Find
this intersection B. Finally, find point A of coordinates (Ax, Ay, Az) of r,
and point C of coordinates (Cx, Cy, Cz) of the surface, which both project
to B (i.e. such that Ax = Bx = Cx, Ay = By = Cy). This is easily done by

7



using the parametric equations of r and the equations of the line projecting
to the given edge or diagonal. Compute the difference ∆z = Az − Cz.

• If ∆z > 0, then A is beyond the surface, so the impact occurs within
the present square, nay within the present triangle. Compute the coor-
dinates of the impact point T by intersecting r with the space triangle.

• If ∆z = 0 (within the given approximation), then A = C, and this is
already the impact point T .

• If ∆z < 0, then the impact occurs outside of the triangle, and we go
on with the search of the next triangle. B may belong to the diagonal;
then determining if the impact is in the other triangle and — if not —
determining the next square to search, requires intersection with the
edges of the present square and the computation of a new ∆z.

Assume that the impact does not occur in either triangle; then we have a new
point, the one of intersection with the edge, from which to start again the
procedures of the present and preceding Subsections. Note, however, that
we have gone back to the situation we are in, when the point is not in the
interior of a square.

4.4 Particular cases

The point from which we start the whole exploration, or the exploration of
a new square, might project to

1. a vertex of the grid (Figure 4a), or

2. a point of the interior of an edge of the grid (Figure 4b).

First, note that coordinate z of the point can very easily obtained in case 1:
It is part of the input data. In case 2, the z coordinate is computed by using
the equations of the space straight line which projects to the line containing
the edge.

In both cases, we must select the square to search; the choice is among four
squares, in case 1, between two in case 2. Assume that vector v is not directed
along an edge; then we have to test the intersection of the half–line s with
eight edges in case 1, with six in case 2.

8



Figure 4: Particular cases.

If v is directed along an edge, either of the adjacent squares can be arbitrarily
chosen as the current square. The same applies to the case of v along the
selected diagonal of a square: either triangle can be chosen.

4.5 End of the algorithm

The algorithm stops in either of the following cases:

• An impact point T has been reached. Then the output (coordinates,
normal vector, distance to impact) are easily computed and passed to
the control section of the system.

• The maximum allowed distance has been reached while exploring the
sequence of squares. This information is passed to the control section
of the system.

Remark - One might think that it is not necessary to triangulate all squares
along the trajectory: it might seem sufficient to compute ∆z just at the
intersection with the square edges. It is not so: s can cross two edges of a
square and have a negative ∆z at both places, but can yield a positive ∆z
at the intersection with the selected diagonal, so revealing impact within the
square.

5 Conclusions

We have described a technique for locally interpolating points in space, whose
projections on a plane form a regular rectangular grid. The interpolation
actually reduces to the choice of a triangle in a pair — for the few squares

9



met along the trajectory — and is driven by the movement of the point,
whose impact with the surface is then computed.

The procedure has already been inserted into a program for controlling the
motion of the end-effector (i.e. the thimble of WireMan, and finally the user’s
finger) by force-feedback.

Acknowledgements

Research accomplished under support of CNR–GNSAGA, of ASI, and of the
University of Bologna, funds for selected research topics. Unfortunately, we
can no more thank David Searby, whose helpful discussions on the subject
showed once more that he cared more for others than for himself.

References

[1] D.W. Paglieroni, “Parametric height field ray tracing”, Proc. Graphics
Interface ’92, Vancouver, Morgan–Kaufmann Publ. Inc. (1992), 192–200.

[2] J. Nievergelt, P. Widmayer, “Spatial data structures: Concept and design
choices”, in: Handbook of computational geometry, Eds. J.–R. Sack et
al., North–Holland (2000) 725–764.

[3] L. Di Stefano, A. Eusebi, M. Ferri, C. Melchiorri, M. Montanari, and
G. Vassura, “A robotic System for Visually Impaired People based on
Stereo–Vision and Force–Feedback”, IARP Int. Workshop on Medical
Robots, Vienna (1996), 39–46.

[4] C. Bonivento, A. Eusebi, C. Melchiorri, M. Montanari, and G. Vassura,
“WireMan: A Portable Wire Manipulator for Touch-Rendering of Bas-
Relief Virtual Surfaces”, 8th Int. Conf. on Advanced Robotics (ICAR97),
Monterey (1997).

[5] C. Melchiorri, M. Montanari, and G. Vassura, “Control Strategies for a
Defective, Wire-Based, Haptic Interface”, Int. Conference on Intelligent
Robots and Systems (IROS’97) Grenoble (1997).

[6] M. Bergamasco, B. Allotta, L. Bosio, L. Ferretti, G. Parrini, F. Salse-
do and G. Sartini, “An Arm Exoskeleton System for Teleoperation and
Virtual Environments Applications” IEEE Int. Conf. on Robotics and
Automation, San Diego (1994).

[7] I. Babuska and A.K. Aziz, “On the angle condition in the finite element
method”, SIAM J. Numer. Anal. 13 (1976), 214–226.

10



[8] E. Bruzzone, M. Cazzanti, L. De Floriani and F. Mangili, “Applying two-
dimensional Delaunay triangulation to stereo data interpolation”, Proc.
ECCV ’92, S. Margherita Ligure, Springer–Verlag (1992), 368–372.

[9] J.D. Boissonnat and M. Teillaud, “On the randomized construction of
the Delaunay tree”, INRIA, Sophia Antipolis, Res. Rep. 1140 (1991).

[10] L. Piegl, “On NURBS: A survey”, IEEE Proc. on Comp. Graph. and
Appl. 11 (1991), 55–71.

[11] R. Bajcsy, F. Solina, “Recovery of parametric models from range images:
the case for superquadrics with global deformations”, IEEE Trans PAMI
12 (1990), 131–147.

[12] L. De Floriani and E. Puppo, “An on-line algorithm for constrained
Delaunay triangulations”, CVGIP: Graph. Mod. and Image Process. 54
(1992), 290–300.

[13] P. Fua, “Combining stereo and monocular information to compute dense
depth maps that preserve depth discontinuities”, Proc. 12th Int. Joint
Conf. on Artificial Intelligence, Sydney (1991), 1292–1298.

11


