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Abstract. A new paradigm for the comparison of size functions is pre-
sented; it stresses the relevance of the “angular points” of the functions,
and gives greater value to the stable ones. A simple example of classifica-
tion of monograms (88 elements in the training set, 88 in the test set, for
22 classes, with a hit rate of 78%) is given, and a current enhancement
of the experiment is described.

1 Introduction

Size function theory (see next Section) is slowly affirming its validity as a math-
ematical tool for representing and comparing shapes. Its advantages are the
capability of formalizing qualitative concepts of shape, and the standard form
assumed by size functions in spite of the different criteria adopted by the user.
An intrinsic difficulty is the choice of a distance, or of a similarity measure be-
tween size functions; another one is the recognition of the relevant features of
size functions of a training set.

The present work tries to solve both problems, by defining a “training ma-
trix”, a “test matrix”, and a particular operation on them. Call training (respec-
tively test) size function the size function of an element of the training (resp.
test) set. Through the aforementioned matrices, only those parts — of a test size
function — are taken into account, which match a stable feature of the training
size functions.

A simple example, which applies this paradigm, completes the paper: classi-
fication of monograms.

2 Size functions

Size functions are modular shape descriptors. For extensive references on the
subject, see [8, 14]. Here we just recall the main concepts.

Shape — in our opinion — is not simply a quality of a set of points in space
or in a plane. It is rather a property of such a set, together with a real function



defined on it; e.g, “bumpiness” is the behaviour of the function “distance from
the center of mass” on the points of the considered object, “coarseness” is the
behaviour of “curvature”. We call a real function ϕ : M→ R defined on a subset
M of a Euclidean space a measuring function.

The size function of the pair (M, ϕ) is a function `M : R2 → N ∪ {∞}. For
each pair (u, v) ∈ R2, consider the set of points on which ϕ is worth ≤ u. Two
such points are then considered to be equivalent if they either coincide, or can
be connected in M by a path, on whose points ϕ is worth ≤ v. Then `M(u, v)
counts the equivalence classes so obtained.

For an example of the meaning of a size function, see Figure 1a, where a
plane curve M is depicted; ϕ is taken to be the distance from point B. Fig. 1b
represents the corresponding size function: The value `M(u, v) informs us on the
number of classes of points on the curve, which have distance ≤ u from B and
can be joined together by walking on the curve without exceeding distance v. In
other words, it is the number of those maximal arcs of M within distance v from
B, which contain at least one point not farther than u from the same point.

The size function of a curve (or more generally, of an image) can be thought
of as a sort of transform, which stresses only the aspect selected while choosing
the measuring function. Modularity is assured by this freedom of choice. Invari-
ance of the measuring function under a transformation implies invariance of the
corresponding size function under the same transformation [12]. Of course, in
practical cases only a discrete set of points is given (pixels of an image or, in the
application we are going to report, sample points of a contour). For technical
reference on the computation of size functions, see [6, 7, 13].



Another advantage of modularity is the possibility to use different “view-
points” (i.e. measuring functions) at the same time; we make them cooperate by
getting a fuzzy characteristic function from each, and then taking the average.
The measuring functions can be different occurrences of the same function type
— as will be the case for the example at the end of this paper — or be totally
unrelated, so bringing in different aspects and classification criteria — as we are
presently trying on the same problem.

3 Angular points

Whatever the measuring function, the outcoming size functions always have the
same “format”: it is determined by a finite set of points of R2 (called angular
points). They are those intersection points of the discontinuity lines of the size
function, at which the vertical value difference of the size function for slightly
greater u is bigger than the one for slightly lesser u.

In the example of Fig. 1b, we have (a, d) and (b, c) as angular points. These
convey all relevant information about the size function. Note that there are
other interesting points. One is (a,∞); this corresponds with the minimum value
of ϕ; in general, such points correspond to as many connected components of
M. Another interesting point is (e, e), corresponding to the maximum value
of ϕ. Anyway, we concentrate on angular points and their multiplicity, i.e. the
difference of the vertical differences on the right and on the left of the point.

4 Point selection

A distance between size functions may be defined as a point–by–point difference
(in absolute value) of the functions themselves. We used a slightly modified
version of this with a fair success in other projects. A progress has been the use
of a Hausdorff distance between the sets of angular points of two size functions
(see [2]).

In the present work, we concentrate on the fact that angular points don’t all
have — so to say — the same relevance for the recognition process. We realized
this first when dealing with occlusion. Size function are, by their very nature,
global invariants. All the same, by comparing the size functions of differently oc-
cluded images of the same object, we noted the constant presence of a particular
set of angular points. We observed the same phenomenon in those classification
problems where the objects are stricltly referrable to a prototype (leaves of the
same tree [14], on–line handwritten letters [4], signatures): Some contingent fea-
tures, e.g. the “tail” of the signature of the same writer, may differ strongly from
case to case, so giving angular points in very different positions. Other features
don’t vary that much, and the corresponding angular points are very stable.
This may not be the case with other classification problems, where the objects
can be referred to a common description, but not actually to a prototype (e.g.,
leukocytes [5], free–hand drawings [2], and also the sign language [11]).



Preprocessing of the object may work when the varying feature is cospicuous
as a signature tail (even forcing a research group to erase tails before classifying
[1]), but variations may be more deeply hidden, and difficult to get rid of. So we
have preferred to act on the size functions, instead.

We divide the (u, v)–plane into 32 × 32 cells. Now, take a fixed measuring
function, and the size functions of the members of the training set, belonging to
a fixed class. We define the 32 × 32 training matrix of the class. Each angular
point of each size function gives a contribution to the matrix, built by a Gaussian
mask centered on the cell to which the angular point belongs; the mask has sum
one, and a variance which increases with the distance from the diagonal u = v;
the values are also multiplied by the multiplicity of the angular point. The final
training matrix (ri

j) is the average of the ones coming from the various objects
of the training set, belonging to that class. Of course, cells below u = v have null
entry, and are inessential. Angular points in the cells just above this diagonal
are not taken into account, since they are too much affected by discretization
noise.

For each single element of the test set, we build a completely analogous test
matrix (si

j), with the only difference that angular points falling in the leftmost
column or in the topmost row are not taken into account.

Given a test matrix, we now compute the likelihood of the corresponding
object to belong to the given class. First, we sum

p =
∑

i,j

min{ri
j , s

i
j}.

The likelihood is then
p∑

i,j(r
i
j + si

j)− p
.

An entry of the training matrix will be high, if several size functions in the
training set have an angular point in the corresponding cell. If the size function
of the test set has an angular point in that cell too, then this will give a good
contribution to p (less so if it is in a nearby cell). So, the numerator of the fraction
evaluates the correspondence of the angular points of the test size functions with
the stable ones of the training set.

As for the meaning of the denominator, imagine that the training set is built
by just one element, and that each angular point has multiplicity one, and gives
a sharp contribution of 1 to its cell (with no Gaussian smoothing); then the
denominator would just count the total number of cells occupied by the union
of angular points of the test and training size functions.

5 An application: Monogram recognition

The problem of monogram recognition is a nice one for testing our new paradigm,
for the following reasons:

– Monograms are “natural” objects, so well suited for analysis by size func-
tions.



– All the same, the elements of the training set can be seen as sort of true
“prototypes”.

– Variability is sufficient to make superposition methods ineffective.
– Context cannot help recognition.

We have gathered four elements for the training set and four for the test set,
from each of 22 subjects. Acquisition was by a hand–held scanner and a PC,
from black ink monograms. The only preprocessing is dilation. The program (In
Visual Basic and C) extracts the outline (i.e. the outer contour) of the monogram
under study; the outline will be the only input to the very classification process.
This choice makes us loose much information, as can be seen in Figures 2a and
2b, where the left colums show the monograms of the training sets of “cri” and
of “dan” respectively, and the right columns present the relative outlines. This
choice was supported by previous experiences on tools [9] and on signatures [10].
A connected curve is a good test, because the analysis of angular points becomes
simpler, and this makes it easier for us to understand what has happened. A fur-
ther, deeper investigation presently under study involves the entire monogram.
(More about this later in this section).

Simplification was applied also in the choice of measuring functions. Unlike
in other researches, where we strived to differentiate measuring functions, we
have adopted five versions of the same one, i.e. distances from points [3]. The
five points are the barycentre of the monogram and the middle points of the
edges of the horizontal rectangle circumscribed to the monogram. Again, this
choice was meant to simplify the analysis of the experiment.

Table 1 reports the results. The first four numerical columns show the placing
of the four elements of the test set; e.g., the figure 3 reported in the first column
of “dari” means that the first monogram of the test set of this subject has not
been recognized, and that there are two other subjects to whom the program
would rather ascribe the monogram as more likely. The last column resumes the
results as a fraction of hits over total.

We are particularly surprised — and deceived — by the totally negative
performance on “stef”, whose monograms look easy to recognize to a human
eye: see Figure 3a (training left, test right). Conversely, a fairly good 3/4 was
reached both by the monograms of “lup” and “monz”, which look rather similar
to each other (Figures 3b and 3c respectively). The overall hit ratio is 78%.

Since this classification problem turns out to be of interest in itself, we are
implementing — at the moment of revising the paper — a more complete analy-
sis which takes the whole monogram into account. This is done by computing
a sort of Radó transform of the monogram: For each of four directions we scan
the monogram by parallel and adjacent straight lines. For each line we sum the
number of black pixel present in a five pixel wide strip. After suitable normal-
ization, this number is assigned to a vertex of a linear graph (otherwise said, to
a pixel of an incident segment). Then the size function is computed; comparison
is carried out as in the outline case. The two “orthogonal” classifications yield
likelyhoods, the mean of which will be the final one.



Subject # 1 # 2 # 3 # 4 Hit/Tot

amm 1 1 2 1 3/4

clau 1 1 1 1 4/4

cri 1 1 1 1 4/4

cris 1 1 1 2 3/4

dan 1 1 1 1 4/4

dari 3 1 1 1 3/4

eric 1 2 7 12 1/4

fab 1 1 1 1 4/4

gui 1 5 3 4 1/4

luc 1 1 1 1 4/4

luis 1 1 1 1 4/4

lup 7 1 1 1 3/4

mai 1 8 2 1 2/4

mic 1 1 1 1 4/4

moca 1 1 1 1 4/4

moni 1 1 2 1 3/4

monz 1 2 1 1 3/4

pat 1 1 1 1 4/4

pie 1 2 1 1 3/4

ric 1 1 1 1 4/4

rim 1 1 1 1 4/4

stef 18 5 11 4 0/4
Table 1. Monogram recognition

We are confident that use of the whole monogram (not just the outline) and
cooperation of different measuring functions, can give competitive results.

6 Conclusions

We have proposed a new paradigm for comparing size functions. It consists on
stressing those angular points which are approximately in the same position in
the size functions of most elements of the training set. This seems to be more
efficient, and also faster, than other comparison methods.

An application to monogram recognition, although designed with big simpli-
fications (use of the mere outline), gives acceptable results.

Future developments will surely be: integration of different measuring func-
tions and use of the whole image in monogram classification with Radó-like
measuring functions; possibly, application of the method to retinal images, to
faces, and to other natural images for which a fixed (but not strictly geometric)
model is given.
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