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ABSTRACT

In this seminar we introduce the theory of differential forms in Carnot groups that is
basically due to M. Rumin, providing several examples in particular situations. The aim
of this presentation is prepare a Part II where these results will be applied, as in a joint
paper with Annalisa Baldi, Nicoletta Tchou and Maria Carla Tesi, to prove a compensated
compactness theorem in Carnot groups, with applications to homogenization of elliptic

equations.
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In this seminar we introduce the theory of differential forms in Carnot groups that is
basically due to M. Rumin, providing several examples in particular situations. The aim of
this presentation is prepare a Part II where these results will be applied, as in a joint paper
with Annalisa Baldi, Nicoletta Tchou and Maria Carla Tesi ([1]), to prove a compensated
compactness theorem in Carnot groups, with applications to homogenization of elliptic
equations.

To fix our notations, let us remind some definition. For more exhaustive presentations,
we refer to [2], [6], [7]. A Carnot group G of step k is a connected, simply connected Lie
group whose Lie algebra g admits a step k stratification, i.e. there exist linear subspaces

Vi, ..., V.. such that
(1) g=Vie..oV, [WV]=Vy, V.#{0}, V,={0}ifi> &,

where [V, V;] is the subspace of g generated by the commutators [X, Y] with X € V; and
Y € V;. Let m; = dim(V;), fori = 1,...,k and h; = my + --- + m; with hy = 0 and,
clearly, h, = n. Choose a basis ey, ..., e, of g adapted to the stratification, that is such
that

€h; 1415 -+, €n; 15 @ base of V; for each j =1,... k.

Let W = Wy, ..., W, be the family of left invariant vector fields such that W;(0) = e;.
Given (1), the subset Wy, ..., W,,, generates by commutations all the other vector fields;
we will refer to Wy, ..., W,,, as generating vector fields of the group. The exponential
map is a one to one map from g onto G, i.e. any p € G can be written in a unique way
as p = exp(pW1 + -+ + p,W,,). Using these exponential coordinates, we identify p with
the n-tuple (p1,...,p,) € R™ and we identify G with (R",-) where the explicit expression
of the group operation - is determined by the Campbell-Hausdorff formula. If p € G and
i=1,...,k, we put p' = (pn,_,+1,---,Pn,) € R™ so that we can also identify p with
[pl, ..., pfl ER™ x ... x R™ = R™.

The subbundle of the tangent bundle T'G that is spanned by the vector fields Wy, ..., W,
plays a particularly important role in the theory, it is called the horizontal bundle HG;
the fibers of HG are

HG, = span {W;(x),..., Wy, ()}, zeG.
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From now on, for sake of simplicity, sometimes we set m := m;.

A subriemannian structure is defined on G, endowing each fiber of HG with a scalar
product (-, -), and with a norm |- |, that make the basis Wi (x), ..., W,,(z) an orthonormal
basis. That is if v = ", v;Wi(x) = (v1,...,v,) and w =Y " w;Wi(z) = (wy, ..., wy,)
are in HG,, then (v, w), := > vw; and |v]3 1= (v, v),.

The sections of HG are called horizontal sections, and a vector of HG, is an horizontal
vector.

Two important families of automorphism of G are the group translations and the group

dilations of G. For any x € G, the (left) translation 7, : G — G is defined as
2o Tz =X 2.

For any A > 0, the dilation 6 : G — G, is defined as

(2) Ox(21, oy ) = (A2, . A2y,

where d; € N is called homogeneity of the variable x; in G (see [4] Chapter 1) and is
defined as

(3) d; =i whenever h;_; +1 < j < h,,

hence l =dy = ... =dp,, <dp,y1=2< ... <d, =K.

The dual space of g is denoted by /\1 g. The basis of /\]L g, dual to the basis Wy, --- | W,
is the family of covectors {6s, - - - ,6,, }. We indicate as (-, -) also the inner product in \' g
that makes 64, - - - , 6, an orthonormal basis. We point out that, except for the trivial case
of the commutative group R"™, the forms 6, - - ,6,, may have polynomial (hence variable)
coefficients.

Following Federer (see [3] 1.3), the exterior algebras of g and of A\'g are the graded

algebras indicated as /\*g = @/\kg and /\*g = @/\kg where A\ g = Ng=R
k=0 k=0

and, for 1 < k <n,
/\kg::span{ml/\-~AWik:1§i1<'--<ik§n},
k
/\ g :=span{f;, N---N0;, 1 <i3 <--- <ip<n}.

The elements of A, g and /\k g are called k-vectors and k-covectors.
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We remind that
: h _ h
dlm/\ g= dlm/\hg = (n) = dp,.
The dual space \'(A, g) of A, g can be naturally identified with A*g. The action of
a k-covector ¢ on a k-vector v is denoted as {(p|v).

The inner product (-,-) extends canonically to A, g and to A" g making the bases
Wi A AW,

i, and 0;, A--- A0;, orthonormal.

Definition 0.1. We define linear isomorphisms (see [3] 1.7.8)

e /\kg - /\2n+1fkg and /\kg — /\Q"H_kg’

for 1 <k <mn, putting, forv=">,v/W; and ¢ =), p10,

¥V 1= ZI vr(xWr) and * = ZI or(+6r)

where

*Wrp = (—1)"(1)W1* and * 0 := (—1)"(1)01*

with I = {’il,"' ,ik}, 1 <4 <o < <, WI:I/VZ-l/\---/\W,-k, 01:0i1A---A0ik,
Ir={i<--<is, 1} ={1,--- ,n}\ I and (1) is the number of couples (in,i;) with

in > i,
The following properties of the x operator follow readily from the definition: Vv, w €
A, g and Vo, € A g
i (—1)k("_k)v =, * % Q= (—1)k(”_k)g0 =,
(4) v A xw = (v, W)W .. 2nt1y, © N*p = (o, V)11, 2041}
(xplxv) = (plv).
Notice that, if v = vy A--- Awg is a simple k-vector, then v is a simple (n — k)-vector. If

v € A, ¢ we define v € A*g by the identity (v*|w) := (v, w), and analogously we define
ote N\ogforpe Ng.

Definition 0.2. For any q,q' € G and for any linear map L : TG, — TG,

AL : /\k TG, — /\k TGy
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is the linear map defined by
(AgL)(vy A+ Awvg) = L(vy) A+ A L(vg).

Analogously, we can define

W\, = (Ndr ) (/)

for any p € G, where for any linear map f: TGy, — TGy
Nf N TGy — N TG,
is the linear map defined by
(A ) (@)lor A Ave) = {al (Aef) (v A+ Av))

for any o € /\k TGy and any simple k-vector vi A -+~ ANvg € N\, TGy.
As customary, if f : G — G is an isomorphism, then the pull-back f*w of a form
w € QF is defined by
fro() = (A*(dfa))w(f ().
It is easy to see that (f~H)#(f7w) = w.

If o€ /\19, we say that a has pure weight k and we write w(a) = k if of € V.

Obviously,
h

w(a) =k ifand only if a = Z a;6;,
Jj=hr_1+1

with ap, 41, ..,a,, € R. More generally, if o € /\h g, we say that o has pure weight &

if o is a linear combination of covectors 0;, A -+ A 6;, with w(0;,) + -+ +w(6;,) = k.

Remark 0.1. If o, 5 € A" g and w(a) # w(B), then (o, 8) = 0. Indeed, it is enough
to notice that, if w(f, N--- N8;,) # wl;, N---Nb,;,), with iy < iy < -+ < i and
J1 < Jo < +++ < jn, then for at least one of the indices £ = 1,... h, iy # j¢, and hence

(Oiy Ao+ Ny, 05 N---NBj,) = 0.

ips

We have
Nmax

(5) Ne= D AN7s

p= len
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where /\h’p g is the linear space of the h—covectors of weight p. We set NV}, := dim /\h g
and N, := dim A" g.

From now on, if 1 < h < n, we assume that the multi-indices I = (iy,...,7) are
ordered once for all in increasing way with respect to the weight of the corresponding

element of the basis that we call ©".

N}l;l"lax
(6) o= ] o,
p:N;Lnin
where ©"7 = " N A" g is an orthonormal basis of A" g.
Thus, we can write the canonical coordinates of a h—covector in /\h g with respect to

the orthonormal basis

(7) o= {01} of N'g

as the union of a finite number of blocks (possibly empty) of size N, ymin, N ymin iy, ...
corresponding to the element of the basis in O"Vi™ @RV ONI™  of weight
Nppin  Nmin ] NmaX ] respectively, with Npq + Npo + -+ - + N2 = d;, . We keep the
notiation 6; for 6;.

Correspondingly, the set of indices {1,2,...,d,} can be written as the union of finite

sets of indices
N;:‘Aax

h
{1.2,....ay= |J 1.

p:Nll;nm

where
h h, . . . h
Qj € ©"P if and only if j Glp.

As pointed out in Remark 0.1, the decomposition in (5) is orthogonal. We denote by
I1"7 the orthogonal projection of A" g on A" g.

Starting from /\h g, we can define by left translation a fiber bundle over G that we can
still denote by /\h g. To do this, we identify /\h g with the fiber /\Z g over the origin,
and we define the fiber over x € G pushing forward /\g g by the left translation 7., i.e.
defining the fiber over x as /\Z g:= Ak(de—1)/\Z g.
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The identification of /\h g and /\Z g yields a corresponding identification of the basis
0" of A" g and ©" of \"g. Then ©" := (7,)40" is a basis of A" g. Notice that, because
of the left invariance of the h-covectors in A" g, the elements of ©" can be identified with
the elements of ©" evaluated at the point .

Keeping in mind the decomposition (5), we can define in the same way several fiber
bundles over G (that we still denote with the same symbol /\h’p g), by setting /\Z’p g =
NP g and A** g := A*(dr,-1) A" g. Clearly, all previous arguments related to the basis
©" can be repeated for the basis ©"7. Finally, we say that a section of /\h’p g is a h-form

of (pure) weight p.

Lemma 0.1. The fiber /\Zg (and hence the fiber /\Z’p g) can be endowed with a natural
scalar product (-,-), by the identity

(o, B)y = (A7, (), Adro(B))e.
If v,y € G, then

Athyfl : /\zg — /\ng

15 an isometry onto.

If we denote by Q" the vector space of all smooth h-forms in G, and by Q™ the vector

space of all smooth h—forms in G of pure weight p, then again

max
Nh

(8) o= P o

p:N;Lnln

Lemma 0.2. If a € /\hg is left invariant of weight k, then w(da) = w(a).

Proof. See [5]. O

Let now a € Q" be a (say) smooth form of pure weight p. We can write
a= Z o 0, with o; € £(G).
6leohr
Then

oheohr j 6heehp
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Hence we can write
d=do+dy++dy

where dyav = )" pncgnp 0;d0! does not increase the weight,
K3

leé = Z i(VV]aZ)@j N th

oheohr j=1

increases the weight of 1, and, more generally,
dea= > > (Wja)b; A6 k=1, &k
ohcohr w(0;)=k
In particular, dy is an algebraic operator, in the sense that its action can be identified at
any point with the action of an operator on A" g (that we denote again by dy) through
the formula
(doc)() = D ax)dd).
oheohy

Using the canonical orthonormal system ©", we have a canonical isomorphism 4 from

/\h g onto RM The map M), : RV — RNr+1 makes the following diagram commutative

My,

RNn RNnh+1

/\hg — /\h+1 .
Because of our choice of the order of the elements of ©", the matrix associated with M},
(that we still denote by M) is a block matrix, as well as its transposed. More precisely,
the entries of M), are all 0 except for those that belong to groups of rows and columns “of
the same weight”.

This construction has a counterpart when we look at /\h g as a fiber boundle. In this
case, if z € G is fixed, using the canonical orthonormal system ©” we have a canonical
isomorphism ¢, from /\Z g onto R associating with £ € /\Z g its canonical coordinates.
Because of the identification of /\h g and /\g g, we can analogously identify iy and z’(i)

Hence, for any = € G, we have

9) (doe) () = (igh+1) ™ Myigra(z).
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Analogously, dy, the L?-adjoint of dy in Q* defined by

/(dooz,@ av = /(a,%@ av

for all compactly supported smooth forms a € Q" and 3 € Q"*!, is again an algebraic

operator preserving the weight. Indeed, it can be written as
(10) (508) () = (ion) (" My )i B(2).
Again, its matrix *Mj, is a block matrix.
Definition 0.3. If 0 < h < n we set
E(’} := ker dy N ker dg,
or, in coordinates,
Ef ={a € Q"; igna(z) € ker M), Nker' M,y for all x € G}.

Proposition 0.1. If0 < h <n and * denotes the Hodge duality, then

«By = By
If we set Ey? := B N Q"7 then
N’l;flax
Ey= P E”.
p:N;Lnin

Indeed, if « € E, by (8), we can write

Npmax
o= Z ayp,
p=Njnin
with a;, € QPP for all p. By definition,
Npmax
0 =dyax = Z docry,
p=Nin

But w(dypay,) # w(dpay) for p # ¢, and hence the dpa,’s are linear independent and
therefore they are all 0. Analogously, dya;, = 0 for all p, and the assertion follows.

We denote by H’gé’ the orthogonal projection of Q" on Ep*.



Forme differenziali nei gruppi di Carnot 11

We notice that the space of forms EJ” (as well as the “full” space E[') can be seen as
the space of smooth sections of a suitable fiber bundle generated by left translations, that
we still denote by Eg P (by E!, respectively).

Since both E"" and E! are left invariant as A" g, they are subbundles of \" g and
inherit the scalar product on the fibers.

In particular, we can obtain a left invariant orthonormal basis = = {¢;} of EJ} such

that
—=h _ —=h.p
(11) =0 — U =0 >
p:M;Lnin
—h _ hp _ - . . . A,
where 27 := =" N A\"F g is a left invariant orthonormal basis of Ey*. As above, the

indices j of Ef = {¢;} are ordered once for all in increasing way with respect to the
weight of the corresponding element of the basis.
Correspondingly, the set of indices {1,2,...,dim E} can be written as the union of

finite sets (possibly empty) of indices

M;’:I&X
{1.2,....dmE}} = | 1§,
p:M}rlnin
where
fjh € =" ifand only if j € ]&p.
Proposition 0.2. The equation
chMhOé = chB

has one and only one solution o € (ker M)t for any 3 € RNr+1,

Proof. Uniqueness: if ‘M, Mpa = 0, then 0 = (Mya, Mpa) = || Mpal|?, and hence o €
ker My, N (ker My)+ = {0}, achieving the proof of the uniqueness.

Existence: Since

RNw+1 = R(My,) @ R(My) " = R(My,) @ ker ' My,
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we can write 3 = Mya + (31, with ‘M3, = 0. Without loss of generality, we can always
assume o € (ker M)t because a = o/ + o, with o € (ker M), o’ € ker M, and
Mo = Mya.

Thus we have ‘M, 3 =t My, My + M, 31 =' My, Mo, achieving the proof of the propo-

sition. 0
Corollary 0.1. If 3 € Q"L then there exists a unique o € Q" N (ker dy)* such that
Ododoax = 0p3. We set «a := dalﬁ.

In particular

a=dy'B if and only if doc — 3 € ker &p.

Lemma 0.3. The map dgld induces an 1somorphism from R(dal) to itself. In addition,

there exist a differential operator P such that
Pdy'd = dy'dP = Tdg .
We set also Q := Pdy".
Proof. Clearly, dy'd maps R(dy') into itself. Moreover, we can write
dy'd = dy'dy + dy'(d — dy) :== Id + D,

where D is a differential operator that increases the weight of the forms and hence is

nilpotent, i.e. there exists N € N such that DV¥*! = 0. Thus
N
P:=> (-1)*D*
k=0
is the inverse of dj'd. U

Remark 0.2. If a for a has pure weight k, then Pa is a sum of forms of pure weight

greater or equal to k.

Theorem 0.1. The de Rham complex splits into the direct sum of two subcomplezes

E:=kerd,' Nker(dy'd) and F :=R(dy")+ R(dy'd).
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The projection Ilg on E along F' is a homotopical equivalence of the form llg = Id —
Qd — dQ, where Q is the differential operator defined in Lemma 0.3. If we denote by Ilg,

the orthogonal projection on Ey, we have
(12) g pllg, =g, pllglly = Ilg.

Remark 0.3. We stress explicitly that the exterior differential d maps E" into E". In
fact, if a € E", then dy* (o)) = 0 and dy*(da)) = 0. Hence dy*(da) = 0 and dy*(d*a) = 0,
so that da € EML.

The fiber bundle E§ generate another complex (FEy, d..) of differential forms by putting
(13) de = Mg, dll .

From [5] we reproduce the following diagram:

i 11, iy
AT ¢ " SR S
o | I ||'. r.'. : .._'
A .:.I.:....J .
1 L e P

Proposition 0.3. The complexes E and Ey are exact.

Proof. The assertion for E follows trivially by homotopical equivalence. Keep in mind
the identities (12). Let now a € Ej be such that d.a = 0. By (13), IIg,dllga = 0. By
Remark 0.3, dllga € E, and hence, by (12),

0= HEHEOdHEOé = HEHEOHEdHEOé = HEdHEOé = dHECK

Thus I ga (that belongs to F) is closed, and hence there exists v € E such that dy = lga.
Set now 7y := g,y € Ey. We have (by (12), keeping in mind that v = I1g7y)

dc’}/() = HEOdHEHEO’Y = HEOdHEHEOHE/V = HEOdHE’Y = HEOCZ’}/ = HEOHEOZ.

Since a = Il g, «, by (12), we have [1g IIga = «. Therefore d.yp = o and we are done. [
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The equation g Ilgllg, = Ilg, says that Il restricted to Ey is Id + a EOL part. In

other words, E is a particular space of liftings (extensions) of Fj.

Proposition 0.4 ([5], formula (7)). For any o € E*, if we denote by (Ilga); the
component of llga of weight j (that is necessarily greater or equal than p, by Remark

0.2), then

(Hpa), = a

(Mpa)pirr = —dy* ( Z de(T )y kr1—c)-

0<k+1

(14)

Remark 0.4. In fact, we can notice that, if a € Eg’p, then d.a has no components of

weight 7 = p. Indeed,
[Ipa = o + terms of weight greater than p.

Thus

dllpa = doa + terms of weight greater than p.

But dya = 0 by the very definition of Eg’p, and the assertion follows.

Proposition 0.5. The map d,. : El — Eg“ can be written in the form

O‘:Z Z api&i —

P i€k},

(15) M max

h+1

— Z Z Z Z Z (P;?,q,i,éap,i) ?H,

D ieE&P q:maX{erl,M;Lnfrri} gelgzl ielh

where the P"

, . . ‘ :
i S are homogeneous polynomials of degree ¢ — p in the horizontal deriva-

tives.

Example 0.1. Let G := H' x R, and denote by (z,¥,t) the variables in H' and by s the
variable in R. Set X := 0, + 2y0,, Y := 0, — 220,, T := 0,, S := 0,. We have X% = duz,
Y% =dy, S* = ds, T® = 6 (the contact form of H'. The stratification of the algebra g is
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given by g = Vi @V, where V] = span {X,Y, S} and V5 = span {T'}. In this case
E} = span {dz, dy, ds};
E3 = span {dx A ds,dy A ds,dx A0, dy A 6};
E3 =span {dx Ady AN0,dv Ads A0, dy Ads A G}
Moreover
d.(a1dz + asdy + asds)
= HEOd(OéldSL’ + aady — i(Xaz — Yal)ﬁ) + dasg N ds
= D(andzx + asdy) + (Xasg — Say)dx Ads + (Yaz — Sag)dy A ds,
where D is the second order differential of horizontal 1-forms in H' that has the form

D(cidx + asedy) = Pi(aq, a)dx A0 + Paaq, ag)dy A 6.
On the other hand, if

a = aqzdr N ds + aggdy Ads + aygdx N O + ag4dy ANb e Eg,

then

dea = (Xagy — Yag,)de ANdy N6
1
+ (Ta13 — SOé14 + Z(XQOQ?, — XYOélg))d.fC ANds N0
1
-+ (TOégg — Sagy + Z(YXOQ?, — Y2C‘613))dy AdsNG.

Example 0.2. Let now G := H? x R, and denote by (zy,%s,y1,¥s,t) the variables in
H? and by s the variable in R. Set X; := 0,, + 2y;0;, Y; = 0y, — 2x;0;, i = 1,2,
T := 0, and S := 9,. We have X" = da;, Y} = dy;, i = 1,2, S* = ds, T% = 6 (the
contact form of H2. The stratification of the algebra g is given by g = V; @ Vs, where
Vi = span { X1, X5,Y],Ys, S} and V, = span {T'}.

Let us restrict ourselves to show the structure of the intrinsic differential on E}, i.e on

horizontal 1-forms. Using the notations of (5), (6) and (7), we can chose an orthonormal

basis of /\hg, h =1,2,3 as follows:
h=1: 04 = (0,...,0}) = (dzy,dxs, dyy, dys, ds), and OV = (6}) = ().
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h=2: @2’2 = (0%, ce ,0%0) = (dl’l A\ d.fl?g, dyl A dyg, dl’l A dyl, dﬂfl A dyg, dCCQ A dyl, dl‘g VAN
dya, dxy A ds,dxg A ds,dy; A ds,dys A ds), ©%*3 = (02,,...,0%) = (dzy A 0,dxy A
0,dy; N6,dys N0,ds \0).
h=3: 0% = (0},...,0},) = (dov1 A dzy A dyy,dxy Adxg A dys, dzy A dzg A ds,dxy A dyy A
dys, dxy Ndyy Nds, dxg ANdyy Adys, dyy Ndys Nds, dxy Adys Nds, dxe Adys Ads, dy; A
dys AN ds). ©31 = (03,,...,03) = (dvy Adxg A0, dyy Adys A0, dzy Adyy A6, dxy A
dys N0, dxo Ndy; NO, dxo Ndys NO, dxy Nds NG, dza Nds N0, dyy ANds N0, dys ANds N\ D).
We have:
dof] =0 wheni=1,...,5, dobs = 4(05 + 63);
dof? =0 wheni=1,...,10 dof}, =403, dobi, = —467
d00%3 - —492, d09%4 — 462, doei-) - 4(9? —|— 8?0)
Thus

O o o o o o o
o o o o o o o
o A~ O O bk~ o o

=
[
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0 0j0 =4 0 0 O
0 0j4 0 0 00
0 0o(f0 0 0 00
0 0(0 0 0 4 0
0 0(0 0 0 0 4
0 0j0 0 -4 0 O
My=10 0ofo 0 0 00
0 0ofo 0 0 00
0 0(0 0 0 0 4
0 0of0 0 0 00
0O ... 0{0 0O O OO

As usual, E} is the space of left invariant horizontal 1-forms, i.e. an orthonormal basis
of E} is given by {dx1,dzs,dy;, dys,ds}. Keeping into account that E3 can be identified
with ker My Nker’ My, then the left invariant form a = > ; ajﬁjz- belongs to EZ if and only
if
Qg — —Q3
and
ajp = a2 = 13 = agy = ag; = 0.

Hence an orthonormal basis of E is given by {61, &, (6} — €)1, 62,62, 64,6, €4} =
{dx1 Ndzy, dy; N dys, \/Li (dxy Ndyy — dxg ANdys), dey Adys, dxe Adyy, dzy ANds, dzy ANds, dyy A

ds,dys A ds}. In particular, the orthogonal projection I1g a of & on Ey has the form

10
a3 — Qg
(16) Hpa =) a6+ ——— (&~ &).
s
We want now to write explicitly d. acting on forms a = a(z) = Z?zl aj(z)&;. To this
end, let us write first [1z1a. Because of the structure of /\1 g, by Proposition 0.4,

pia=a+~0,



18 B. Franchi

for a smooth function v, with 40 = —d; ' (d,a), i.e.
(17) do(")/e) + leé € ker (50,

by Corollary 0.1. We can write (17) in the form

4y (dxy A dyy + dxs A dys)
+ (Xyag — Xoa)dzy A dxg + (Yiay — Yoas)dyy A dys
+ (Xya3 — Yion)dzy A dyy + (Xyoy — Yooy )dxy A dys
+ (Xoag — Yian)dzy A dyy + (Xooy — Yoaw)dxg A dys
+ (Xya5 — Saq)dzy A ds + (Xeas — Sasg)dzs A ds,

+ (Yias — Sag)dy; A ds + (Yaas — Say)dys A ds € ker dy.
Because of the form of ‘M, above, this gives
8’}/ + X1043 — YiOél + X2044 — }/2062 = 0,
i.e.
1
v = —g(X1Oé3 — Yiar + Xoay — Yoan).

However, the explicit form of v does not matter in the final expression of d.a. Indeed,
keeping in mind that doaw = 0, and that g, (di(70)) = g, (dy A 0) = 0, and g, (da(a +

76)) = 0, since Ilg, vanishes on forms of weight 3, by our previous computation (18), we
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have
deaw = gy (d(o +70))
= Ilp, (do(cv +70) + di (o + 70)) + I g, (da(a +8))
= I, (do(~0) + dycv)
= Ilg, ((XlOéQ — Xoo)dxy A dxg + (Yiay — Yoag)dy; A dys
+ (Xjas — Yiag + 4v)dxy Adyy + (Xqyay — Yoaq)dxy A dys
+ (Xoag — Yiaw)dxs A dyy + (Xooy — Yaas + 47y)dxs A dys
+ (Xja5 — Saq)dzy A ds + (Xeas — Sag)dxs A ds,
+ (Yias — Sag)dys Ads + (Yaos — Say)dys A ds)
= (Xja9 — Xooq)dxy Adzgy + (Yiay — Yoasz)dy; A dys
+ (Xjay — Yoo)dxy A dys + (Xoag — Yias)dxs A dyy
+ (Xia5 — Saq)dzy A ds + (Xaas — Sag)dxs A ds,
+ (Yias — Saz)dy; A ds + (Yaas — Say)dys A ds

X —Y, - X Y, 1
1003 1001 20¥y + Yo0uo —(dl'l A dyl — dl'Q AN dyz),

V2 V2

by (16).
Example 0.3. Let G = R® be the Carnot group associated with the vector fields
X, = O
Xo = 0Oy+ x104
X3 = 034 2205 + 1405
and
Xy = 04
X5 = 054 1106

Xﬁ - 66-
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Only non-trivial commutation rules are
[Xl,XQ] :X4, [XQ,Xg] :X5, [X17X5] :X67 [X4,X3] :XG-

The X;’s are left invariant and coincide with the elements of the canonical basis of RS at

the origin. The Lie algebra g of G admits the stratification

g=91Dg2Dgs,

where g, = span { X1, Xo, X3}, g2 = span { X4, X5}, and g3 = span {Xs}. We set also

05 = drs— xodxs
94 = d$4 — .Tldxg
96 = dﬂf@ — [Eldxg) + (1'1232 — [L’4)d333

and

91 = dl’l, 92 = dCEQ, 93 = dl’g.
Proposition 0.6. We have
0; = X' fori,j=1,..,6.

Moreover

dfy = —0, N0y, dOs = —03N05, dbs=05N0s— 0, NO0s.

As in Example 0.2, let us restrict ourselves to show the structure of the intrinsic dif-
ferential on E}, i.e on horizontal 1-forms. Using the notations of (5), (6) and (7), we can

chose an orthonormal basis of /\h g, h =1,2 3 as follows:

h=1: O = (0),0,,04), 02 = (04,05), and O3 = (6).

h = 2: @22 = (62,02,02) = (6, A0y, 0, \05, 05705), O3 = (62,...,62) = (0, A04, 01 A5, B A
Ou, 02 A 05,05 A Oy, 03 A Os), O = (02,,...,62) = (61 A, 05 A g, 05 A O, 04 A Os),
025 = (62,,0%) = (04 A 05, 05 A 0)
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h=3: 0% = (03)= (01 A0y705). ©3' = (03,...,03) = (01 ANOy Ay, 0, NOy NOs, 0, N O3 A
04,01 N\ O3 N Os,05 N\ O3 A Oy, 00 N\ O3 A Os), O35 = (63,...,0%) = (61 Ay A bg, 00 A
03 A g, 05 N O3 A Og, 01 A Oy A Os,05 N Oy AOs, 05 N0y ABs), ©36 = (03,,...,0%) =
(O AN Oy A B, 00 A Os A Og, 00 N0y AbOg, 0o A Os A Og, 05 AOy A O, 05 A Os ABg), O3 =
(030) = (02 A 05 A ).

We notice that an orthonormal basis of /\h g, h = 4,5,6 can be obtained by Hodge duality.
By Proposition 0.6

00 0|-1 01]O0
0000 O0/O0
000[{0 —-1/0
000[{0 01O
0000 01
0000 01O
M, — 000[{0 O0/O
000[{0 O0]|-1
0000 O01]O0
000[{0 OO
000[{0 01O
0000 O01]O0
0000 01O
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0o00/0 -100 ~-10/00O0 00 0
0000 00O O O0OO0O0O0O OO0 0
0000 0O0OOO0O 0O0O0O0-=10 0
0000 OOO O OLTOO OO0 0
o000 0 OO 0O O0O(0OOCT1T OO0 O
0000 0O0OOO0OO0O01O0 =10 0
0000 00O O O0OO0OO0CO0O OO0 0
M, — 0000 0O0OO O O0O0O0O0O O0|-1 0
0000 00O O O0OO0O0O0O OO0 0
0000 00O O0O 0O/(0OOCO OO0 -1
0000 0O0OO0OO0OO0O0OO0OCO0O O1 0
0000 0 OO 0 O0[0OOCO0 OO0 O
0000 0 OO 0O O0(jOOCO0 OO0 1
o000 0 0OO0O 0O O0O(0OOCO0 OO0 O
0000 00O O O0OO0OO0OO0O OO0 0

As usual, F} is the space of left invariant horizontal 1-forms, i.e. an orthonormal basis of
E} is given by {61, 605,05}. Keeping into account that E? can be identified with ker My N
ker’ My, then the left invariant form a = > i ajej? belongs to E? if and only if

a5 = —Qg, Qo= Q] = Q13 = Q13 = Qg = 15 = 0

and
a5 = Qg, Oé3:Cl/1:0.

Therefore, an orthonormal basis {¢2,... &2} of E2 = Eo” @ E7° is given by
{61 N O3} U{0; A0y, 05 N0y, 00 N 05,05 N 05}
In particular, the orthogonal projection Ilg,a of o € /\2 g on E? has the form

(19) HEOOé:04291/\(93+Oé4(91/\64—|—C¥692/\94+Oé792/\95+049(93/\95.
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We want now to write explicitly d. acting on forms a = a(z) = 32°_, a;(x)6;. To this

j=1
end, let us write first IIzia. We have
IIpa= (HEloc)l + (HEloz)Q + (HEla)g

=+ (HEIOé)Q + (HE104>3

= a + (7404 + 7505) + 7606,
with

V404 + 505 = _dal(dl(alel + a9y + asbs))
(20) = _dal((XloZQ — X2a1)91 A\ 92 + (XlOég — X3a1)91 A\ 493
—I— (XQO&3 — X30[2)92 A 03),

and
(21) Y605 = —dg ' (d1 (7401 + 7505) + dacr)

Now (20) is equivalent to

do(y404 + 7505) + (X1ao — Xoay )01 A Oy + (Xiasz — Xzaq)01 A O

(22)
+ (XgOég — X3062)92 A 93 € kertMl,
i.e.
( ) (—’}/4 + X1a2 — XQOél)Hl A 92 + (X1a3 — X30(1)91 A 93
23

+ (=75 + Xoaz — Xz00)02 A O3 € ker "My,

that gives eventually

va = Xjag — Xoap and 5 = Xoasz — Xz
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Consider now (21), that is equivalent to

do(’}/ﬁe(;) + d1<<X1a2 — X20é1>94 + (XQOég — X3a2)95 + ngé)

=03 N0y — 01 A\ Os) + X1 ( Xy — Xoaq )01 A Oy + Xo(Xyag — Xoay )02 A 0y

+ X3(Xian — Xoan)l3 A Oy + X1 (Xoas — X3za2)0) A 05 + Xo(Xoag — Xzan)0s A O3

+ X3(Xoaz — X30)05 A 05 — Xya101 N 0y — Xyaabs A Oy — Xyaz03 N 0y — X501 A O3
— X5y N 05 — Xs0305 N 05

= X1 (Xjag — Xo01)01 A Oy + Xo(Xjas — Xoag )0 A Oy

+ (X3(X1ag — Xoan) +76)03 A 04 + (X1 (Xoas — Xzan) — 76)01 A 05 + Xo(Xoaz — Xzan)0z A b
+ X3(Xoasz — X3a9)03 A 05 — Xgo101 A 0y — Xyanly A Oy — Xyaz0s3 A Oy — X501 A O
— X5y N 05 — Xs50305 N O5

= (X1 (X0 — Xoay) — Xga1)03 + (X1 (Xoaz — Xzan) — 76 — Xs01)02

+ (Xo(X10n — Xoay) — X400)0% + (Xo(Xoas — Xzan) — Xsan)03

+ (X3( Xy — Xpan) + 76 — Xyas)03 + (X3(Xoas — Xzan) — Xsas)6;

€ ker ' M;,

1.e. to

X1(Xoas — Xzag) — 96 — Xsap — (X3(Xy1az — Xoar) + 76 — Xya3) =0

This yields

Yo = (Xl(XQOég — XgOéQ) — X50él — X3<X10(2 - XQOCl) + X4043).

| —

Thus

HEloé = 04101 + OZQQQ + a303

+ (Xjae — Xoay)0y + (Xoaz — X302)05

+ (Xl(XQOég — XgOéQ) — X50él — X3<X10(2 — XQOC1> + X4043)06.

1
2
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Then, by (19)

1]

dea = (X3 — Xza1)0; A 03 + (X1 (X — Xoay) — Xyaq)0y A Oy
+ (Xo(Xjag — Xoa) — Xya9)ls A Oy + (Xo(Xoag — Xzan) — Xsa0)0a A G5
+ (X3(Xoa3 — Xzan) — Xsa3)03 A 5.
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