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Abstract

In this Part II, the results of Part I are applied, as in a joint paper with Annalisa Baldi,

Bruno Franchi and Nicoletta Tchou, to prove a compensated compactness theorem in

Carnot groups.
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In the sequel, we follow the notations of the first part of this seminar.

1. Function spaces

Let {X1, . . . , Xm} be the fixed basis of the horizontal layer g1 of g. We denote by ∆G

the nonnegative horizontal sublaplacian

∆G := −
m∑
j=1

X2
j .

If 1 < s <∞ and a ∈ C, we define ∆a
G in Ls(G) following [5]. If in addition m ≥ 0, again

as in [5], we denote by Wm,s
G (G) the domain of the realization of ∆

m/2
G in Ls(G) endowed

with the graph norm. In fact, since s ∈ (1,∞) is fixed through all the paper, to avoid

cumbersome notations, we do not stress the explicit dependence on s of the fractional

powers ∆
m/2
G and of its domain.

We remind that

Proposizione 1.1 ([5], Corollary 4.13). If 1 < s < ∞ and m ∈ N, then the space

Wm,s
G (G) coincides with the space of all u ∈ Ls(G) such that

XIu ∈ Ls(G) for all multi-index I with d(I) = m,

endowed with the natural norm.

Proposizione 1.2 ([5], Corollary 4.14). If 1 < s <∞ and m ≥ 0, then the space Wm,s
G (G)

is independent of the choice of X1, . . . , Xm.

Proposizione 1.3. If 1 < s <∞ and m ≥ 0, then S(G) and D(G) are dense subspaces

of Wm,s
G (G).

Definizione 1.1. Let m ≥ 0, 1 < s < ∞ be fixed indices. Let Ω ⊂ G be a given open

set with Ln(∂Ω) = 0 (from now on, even if not explicitly stated, we shall assume this

regularity property whenever an open set is meant to localize a statement). We denote by
◦
W

m,s
G (Ω) the completion in Wm,s

G (G) of D(Ω). More precisely, denote by v → rΩv the

restriction operator to Ω; we say that u belongs to
◦
W

m,s
G (Ω) if there exists a sequence of

test functions (uk)k∈N in D(Ω) and U ∈ Wm,s
G (G), such that uk → U in Wm,s

G (G) and

u = rΩU . On the other hand, since in particular uk → U in Ls(G), necessarily U ≡ 0
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outside of Ω. Therefore, if u = rΩU1 = rΩU2 with U1, U2 both belonging to the completion

in Wm,s
G (G) of D(Ω), then U1 ≡ U2, so that, without loss of generality, we can set

‖u‖ ◦
W

m,s
G (Ω)

:= ‖p0(u)‖Wm,s
G (G),

where p0(u) denotes the continuation of u by zero outside of Ω.

It is well known that W 1,s
G,loc(G) is continuously imbedded in W

1/(κ+1)
loc (G); thus, by

classical Rellich theorem and interpolation arguments, we have:

Lemma 1.1. Let Ω ⊂ G be a bounded open set. If s > 1, and m > 0, then

◦
W

m,s
G (Ω) is compactly embedded in Ls(Ω).

Proposizione 1.4. If m ≥ 0, 1 < s <∞ and Ω ⊂ G is a bounded open set, then

‖u‖ ◦
W

m,s
G (Ω)

≈ ‖∆m/2
G p0(u)‖Ls(G)

when u ∈
◦
W

m,s
G (Ω) and p0(u) denotes its continuation by zero outside of Ω.

To keep the seminar as much self-contained as possible, we remind some basic definitions

and results taken from [3] on pseudodifferential operators on homogeneous groups.

We set

S0 :=
{
u ∈ S :

∫
G
xαu(x) dx = 0

}
for all monomials xα.

If α ∈ R and α /∈ Z+ := N∪{0}, then we denote by Kα the set of the distributions in G

that are smooth away from the origin and homogeneous of degree α, whereas, if α ∈ Z+,

we say that K ∈ D′(G) belongs to Kα if has the form

K = K̃ + p(x) ln |x|,

where K̃ is smooth away from the origin and homogeneous of degree α, and p is a

homogeneous polynomial of degree α.

Kernels of type α according to Folland [5] belong to Kα−Q. In particular, if 0 < α < Q,

and h(t, x) is the heat kernel associated with the sub-Laplacian ∆G, then ([5], Proposition
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3.17) the kernel Rα ∈ L1
loc(G) defined by

Rα(x) :=
1

Γ(α/2)

∫ ∞
0

t(α/2)−1h(x, t) dt

belongs to Kα−Q.

If K ∈ Kα, we denote by O0(K) the operator defined on S0 by O0(K)u := u ∗K.

Proposizione 1.5 ([3], Proposition 2.2). O0(K) : S0 → S0.

Teorema 1.1 (see [7], [8]). If K ∈ K−Q, then O0(K) : L2(G)→ L2(G).

Teorema 1.2 (see [3], Theorem 5.11). If K ∈ K−Q, and let the following Rockland

condition hold: for every nontrivial irreducible unitary representation π of G, the operator

πK is injective on C∞(π), the space of smooth vectors of the representation π. Then the

operator O0(K) : L2(G)→ L2(G) is left invertible.

Obviously, if O0(K) is formally self-adjoint, i.e. if K = vK, then O0(K) is also right

invertible.

Proposizione 1.6 ([3], Proposition 2.3). If Ki ∈ Kαi, i = 1, 2, then there exists at least

one K ∈ Kα1+α2+Q such that

O0(K2) ◦ O0(K1) = O0(K).

It is possible to provide a standard procedure yielding such a K (see [3], p.42). Following

[3], we write K = K2∗K1.

We can give now a (simplified) definition of pseudodifferential operator on G, following

[3], Definition 2.4.

Definizione 1.2. If α ∈ R, we say that K is a pseudodifferential operator of order α on

G with core K if

1) K ∈ D′(G×G).

2) Let β := −Q − α. There exist Km = Km
x ∈ Kβ+m depending smoothly on x ∈ G

such that for each N ∈ N there exists M ∈ Z+ such that, if we set

Kx −
M∑
m=0

Km
x := EM(x, ·),
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then EM ∈ CN(G×G).

3) For some finite R ≥ 0, supp Kx ⊂ B(e, R) for all x ∈ G.

4) If u ∈ D(G) and x ∈ G, then

Ku(x) = (u ∗Kx)(x).

We write K ∼
∑

mK
m, K = O(K), and r(K) = r(K) = inf{R > 0 such that 3) holds}.

We let

OCα(G) := {pseudodifferential operators of order α on G}.

Clearly, if K ∈ OCα(G), then K : D(G) → E(G). Moreover, K can be extended to an

operator K : E ′(G)→ D′(G).

Lemma 1.2. If supp u ⊂ B(e, ρ), then supp Ku ⊂ B(e, ρ+ r(K)).

If γ = (γ1, . . . , γn) ∈ (Z+)n, for any f ∈ D′(G) we set

Mγf = xγf,

and, if X = (X1, . . . , Xn) is our fixed basis of g, we denote by σγ(X) the coefficient of xγ

in the expansion of (γ!/|γ|!)(x ·X)d(γ).

Teorema 1.3 ([3], Theorem 2.5). We have:

(a) If K := O(K) ∈ OCα(G), then there exists a core K∗ such that O(K∗) ∈ OCα(G)

and

〈v,Ku〉L2(G) = 〈O(K∗)v, u〉L2(G)

for all u, v ∈ D(G).

(b) If K ∈ OCα(G), V ⊂ G is an open set, and u ∈ E ′(G) is smooth on V , then Ku is

smooth on V .

(c) If Ki ∈ OCαi (G), Ki ∼
∑

mK
m
i , i = 1, 2, then K := K2 ◦ K1 (that is well defined

by Lemma 1.2) belongs to OCα1+α2(G). Moreover K ∼
∑

mK
m, where

Km
x =

∑
d(γ)+j+`=m

1

γ!
[(−M)γ(K`

2)x] ∗ [σγ(X)(Kj
1)x],

where σγ(X) acts in the x-variable.
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Teorema 1.4 (see [3], p.63 (3)). If K ∈ OC0(G), then O(K) : Lploc(G) → Lploc(G)

is continuous. In particular, by Lemma 1.2, O(K) : Lp(G) ∩ E ′(B(e, ρ)) → Lp(G)

continuously.

We say that a convolution operator u→ u ∗E(x, ·) from E ′ to D′ belongs to OC−∞(G)

if E is smooth on G×G. We notice that, properly speaking, OC−∞(G) is not contained

in OCα(G) for α ∈ R, since E(x, ·) is not assumed to be compactly supported.

If T ,S ∈ OC`(G), we say that S = T modOC−∞ if S − T ∈ OC−∞(G).

A straightforward computation proves the following result

Lemma 1.3. If S ∈ OC−∞(G), ϕ ∈ D(G), and O(K) ∈ OCm(G) for m ∈ R, then both

(ϕS) ◦ O(K) and O(K) ◦ (ϕS) belong to OC−∞(G).

Lemma 1.4. If Ω ⊂ G is a bounded open set, m,m′ ∈ R, 1 < s <∞, and T ∈ OC−∞(G),

then, if ϕ ∈ D(G), the map

ϕT : Wm,s
G (G) ∩ E ′(Ω)→ Wm′,s

G (G)

is compact.

From now on, let ψ ∈ D(G) be a fixed nonnegative function such that

supp ψ ⊂ B(e, 1) and ψ ≡ 1 on B(e,
1

2
).

We set

ψR := ψ ◦ δ1/R.

If K ∈ Km, then KR := ψRK is a core satisfying 1), 2), 3) of Definition 1.2. In addition,

KR ∼ K, since we can write KR = K + (ψR − 1)K, with (ψR − 1)K ∈ E(G). Thus

O(KR) ∈ OC−m−Q(G).

Thus, if K is a Folland kernel of type α ∈ R, then KR is a core of a pseudodifferential

operator O(KR) ∈ OC−α(G). In particular, if 0 < α < Q, then O((Rα)R) belongs to

OC−α(G) (see [5], Proposition 3.17).
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Lemma 1.5. If K ∈ Km, and XI is a left invariant homogeneous differential operator,

then

XIO(KR) ∈ OC−m+d(I)−Q(G).

Moreover, the core KR,I of XIO(KR) satisfies

KR,I ∼ XIK,

and

XIO(KR) = O((XIK)R) modOC−∞.

Lemma 1.6. If u ∈ E ′(G) and supp u ⊂ B(0, ρ) then supp O(KR)u ⊂ B(0, R + ρ)).

Moreover, if ρ = R, then

O(K4R)u ≡ u ∗K on B(0, R).

Proposizione 1.7. Let Ki ∈ Ki be given cores for i = 1, 2, and let R > 0 be fixed. Then

O((K2∗K1)R) = O((K1)R) ◦ O((K2)R) mod OC−∞.

In particular, O((K1)R) ◦ O((K2)R) = O(K) for a suitable core K with K ∼ K2∗K1.

Osservazione 1.1. As in Remark 5 at p. 63 of [3], the previous calculus can be formulated

for matrix-valued operators and hence, once left invariant bases {ξhj } of Eh
0 are chosen,

we obtain pseudodifferential operators acting on h-forms and h-currents, together with the

related calculus.

In particular, let K :=
(
Kij

)
i=1,...,N
j=1,...,M

a M ×N matrix whose entries Kij belong to Kmij .

Then K acts between S0(G)N and S0(G)M as follows: if T = (T1, . . . , TM), then

O0(K)T := T ∗K := (
∑
j

Tj ∗K1j, . . . ,
∑
j

Tj ∗KMj).

When Kij ∈ Km for all i, j, we write shortly that K ∈ Km.

If K :=
(
Kij

)
i=1,...,N

j=1,...,M′
and K ′ :=

(
K ′ij
)

i=1,...,M′
j=1,...,M

, we write

K ′∗K :=
(∑

`

K ′i`∗K`j

)
.

Notice that

(1) O0(K ′) ◦ O0(K) = O0(K ′∗K).
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Finally, we prove that the fractional powers of ∆G, when acting on suitable function

spaces, can be written as suitable convolution operators. This is more or less know (see

for instance [3], Section 6), though not explicitly stated in the form we need. Because of

that, we prefer to provide full proofs.

Teorema 1.5. If m ∈ R and 1 < s < ∞, then S0(G) ⊂ Dom (∆
m/2
G ), and there exists

Pm ∈ K−m−Q such that

∆
m/2
G u = u ∗ Pm for all u ∈ S0(G).

Moreover, if R > 0 then

(2) O((Pm))R ∈ OCm(G).

Coherently, in the sequel we shall write

(3) ∆
m/2
G,R := O((Pm))R.

Lemma 1.7. We have

∆
m/2
G,R ◦∆

−m/2
G,R = Id mod OC−∞,

and

∆
−m/2
G,R ◦∆

m/2
G,R = Id mod OC−∞.

Proposizione 1.8. If Ω ⊂ G is a bounded open set, m,α ∈ R, 1 < s < ∞, and

T ∈ OCα(G), then

T : Wm+α,s
G (G) ∩ E ′(Ω)→ Wm,s

G (G)

continuously.

Lemma 1.8. If m > 0 let Pm ∈ K−m−Q be the kernel defined in Theorem 1.5. If Ω ⊂⊂ G

is an open set, R > R0(s,G,m,Ω) is sufficiently large, and u ∈ D(Ω), then

‖u‖Wm,s
G (G) ≈ ‖O((Pm)R)u‖Ls(G) = ‖∆m/2

G,Ru‖Ls(G),

with equivalence constants depending on s,G,m,Ω.
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Definizione 1.3. Let Ω ⊂ G be an open set. If m ≥ 0 and 1 < s <∞, W−m,s
G (Ω) is the

dual space of
◦
W

k,s′

G (Ω), where 1/s + 1/s′ = 1. It is well known that, if m ∈ N and Ω is

bounded, then

W−m,s
G (Ω) = {

∑
d(I)=k

XIfI , fI ∈ Ls(Ω) for any I such that d(I) = k},

and

‖u‖W−m,s
G (Ω) ≈ inf{

∑
I

‖fI‖Ls(Ω) ; d(I) = k,
∑
d(I)=k

XIfI = u}.

Proposizione 1.9. If 1 < s <∞ and m,m′ ≥ 0, m′ < m, then

Wm,s
G (G) ↪→ Wm′,s

G (G) and W−m′,s
G (G) ↪→ W−m,s

G (G)

algebraically and topologically.

In addition, if Ω is a bounded open set, 1 < s <∞ and m,m′ ≥ 0, m′ < m, then

◦
W

m,s
G (Ω) is compactly embedded in Wm′,s

G (Ω)

and

W−m′,s
G (Ω) is compactly embedded in W−m,s

G (Ω).

We need a few definitions. For all our notations related to Rumin’s complex, we refer

to Part I of this seminar. We set

(4) Ih0 := {p ; Ih0,p 6= ∅} and |Ih0 | = card Ih0 .

Let

m = (mNmin
h
, . . . ,mNmax

h
)

be a |Ih0 |–dimensional vector where the components are indexed by the elements of Ih0
(i.e. by the possible weights) taken in increasing order. We stress that, since weights

p such that Ih0,p = ∅ can exist, then some consecutive indices in m can be missed. In

the sequel we shall say that m is a h–vector weight. We say that m ≥ 0 if mp ≥ 0 for

p ∈ Ih0 , and that m ≥ n if mp ≥ np for all p ∈ Ih0 . We say also that m > n if mp > np

for all p ∈ Ih0 . Finally, if m0 is a real number, we identify m0 with the h–vector weight

m0 = (m0, . . . ,m0). In particular, we set m−m0 := (mNmin
h
−m0, . . . ,mNmax

h
−m0).
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Definizione 1.4. A special h–vector weight that we shall use in the sequel is the h-vector

weight Nh = (mNmin
h
, . . . ,mNmax

h
) with

mp = p for all p ∈ Ih0 .

If all h-forms have pure weight Nh, i.e. if Nmin
h = Nmax

h := Nh, then a h-vector weight

has only one component, i.e. m = (mNh
).

Definizione 1.5. If m ≥ 0 is a h-vector weight, 0 ≤ h ≤ n, and s > 1, we say that

a measurable section α of Eh
0 , α :=

∑
p

∑
j∈Ih

0,p
αjξ

h
j belongs to Wm,s

G (G, Eh
0 ) if, for all

p ∈ Ih0 , i.e. for all p, Nmin
h ≤ p ≤ Nmax

h , such that Ih0,p 6= ∅,

αj ∈ Wmp,s
G (G)

for all j ∈ Ih0,p, endowed with the natural norm.

The spaces Wm,s
G (Ω, Eh

0 ), where Ω is an open set in G, as well as the local spaces

Wm,s
G,loc(Ω, E

h
0 ) are defined in the obvious way.

Since

Wm,s
G (Ω, Eh

0 ) is isometric to
∏
p∈Ih

0

(
W

mp,s
G (G)

)card Ih
0,p ,

then

• Wm,s
G (Ω, Eh

0 ) is a reflexive Banach space (remember s > 1);

• C∞(Ω, Eh
0 ) ∩Wm,s

G (Ω, Eh
0 ) is dense in Wm,s

G (Ω, Eh
0 ).

The spaces
◦
W

m,s
G (Ω, Eh

0 ) are defined in the obvious way.

We can define and characterize the dual spaces of Sobolev spaces of forms.

Proposizione 1.10. If 1 < s < ∞, 1/s + 1/s′ = 1, 0 ≤ h ≤ n, m is a h–vector weight,

and Ω ⊂ G is a bounded open set, then the dual space
( ◦
W

m.s′

G (Ω, Eh
0 )
)∗

coincides with the

set of all currents T ∈ D′(Ω, Eh
0 ) of the form

(5) T =
∑
p

∑
j∈Ih

0,p

T̃j (∗ξhj )
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with Tj ∈ W
−mp,s
G (Ω) for all j ∈ Ih0,p and for p ∈ Ih0 . The action of T on the form

α =
∑

p

∑
j∈Ih

0,p
αjξ

h
j ∈

◦
W

m,s′

G (Ω, Eh
0 ) is given by the identity

(6) T (α) =
∑
p

∑
j∈Ih

0,p

〈Tj|αj〉.

In particular, it is natural to set

W−m,s
G (Ω, Eh

0 ) :=
( ◦
W

m,s′

G (Ω, Eh
0 )
)∗
.

Moreover, if T is as in (5)

‖T‖W−m,s
G (Ω,Eh

0 ) ≈
∑
p

∑
j∈Ih

0,p

‖Tj‖W−mp,s

G (Ω)
.

Definizione 1.6. Let T ∈ E ′(G, Eh
0 ) be a compactly supported h-current on G of the form

T =
∑
p

∑
j∈Ih

0,p

T̃j (∗ξhj ) with Tj ∈ E ′(G) for j = 1, . . . , dim Eh
0 .

Let m be a h–vector weight, and let R > 0 be fixed. We set (with the notation of (3))

∆
m/2
G,RT :=

∑
p

∑
j∈Ih

0,p

˜
(∆

mp/2
G,R Tj) (∗ξhj ).

In particular, if T can be identified with a compactly supported h-form α =
∑

p

∑
j∈Ih

0,p
αjξ

h
j ,

then our previous definition becomes

∆
m/2
G,Rα =

∑
p

∑
j∈Ih

0,p

(αj ∗ (Pmp)R)ξhj .

Osservazione 1.2. If m is a h-vector weight, we define the operator

O0(Pm) : S0(G, Eh
0 )→ S0(G, Eh

0 )

as follows: if α =
∑

p

∑
j∈Ih

0,p
αjξ

h
j with αj ∈ S0(G), then

O0(Pm)α :=
∑
p

∑
j∈Ih

0,p

(αj ∗ Pmp)ξhj .

In other words, Pm can be identified with the matrix
(
(Pm)ij

)
, where

(Pm)ij = 0 if i 6= j and (Pm)jj = mp if j ∈ Ih0,p.
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We can write

∆
m/2
G,R ∼ Pm.

2. Hodge decomposition

In this section we state and we prove our main results, i.e. a Hodge decomposition

theorem for forms in E∗0 and – as a consequence – our compensated compactness theorem

in E∗0 . Through this section, we assume that h, the degree of the forms we are dealing

with, is fixed once and for all, 1 ≤ h ≤ n, even if it is not mentioned explicitly in the

statements.

From now on, we always assume that an ortonormal left invariant basis {ξ`j} of E`
0

has been fixed for all ` = 1, . . . , n, and therefore pseudodifferential operators acting on

intrinsic forms or current and matrix-valued pseudodifferential operators can be identified.

We use this identification without referring explicitly to it.

Teorema 2.1. Let s > 1 and h = 1, . . . , n be fixed, and suppose h-forms have pure weight

Nh. Let Ω ⊂⊂ G a given open set, and let αε ∈ Ls(G, Eh
0 ) ∩ E ′(Ω, Eh

0 ) be compactly

supported differential h-forms such that

αε ⇀ α as ε→ 0 weakly in Lsloc(G, Eh
0 )

and

{dcαε} is pre-compact in W
−(Nh+1−Nh),s

G,loc (G, Eh
0 ).

Then there exist h–forms ωε ∈ Eh
0 and (h− 1)–forms ψε ∈ Eh−1

0 such that

i) ωε → ω strongly in Lsloc(G, Eh
0 ) ;

ii) ψε → ψ strongly in Lsloc(G, E
h−1
0 ) ;

iii) αε = ωε + dcψ
ε.

In addition, we can choose ωε and ψε supported in a fixed suitable neigborhood of Ω, which

are smooth forms if the αε are also smooth.

Osservazione 2.1. We stress that dc : Ls(G, Eh
0 ) → W

−(Nh+1−Nh),s

G (G, Eh
0 ). Indeed,

if α =
∑

j∈Ih
0,Nh

αjξ
h
j ∈ Ls(G, Eh

0 ) and (dcα)i is a component of weight q of dcα, then

(keeping in mind that h-forms have pure weight Nh) (dcα)i =
∑

j L
h
i,jαj, where Lhi,j is a
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homogeneous differential operator in the horizontal vector fields of order q − Nh ≥ 1, so

that (dcα)i ∈ W−(q−Nh),s
G (G). On the other hand (Nh+1−Nh)q = q−Nh, and the assertion

follows.

The proof of Theorem 2.1 entails several preliminary statements.

Definizione 2.1. Let R > 0 be fixed. If 0 ≤ h ≤ n, following Rumin we define the “0-

order differential” acting on compactly supported h-currents belonging to E ′(B(e, R), Eh
0 )

by

d̃c := ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R ,

where Nh is defined in Definition 1.4. By Lemma 1.6, the definition is well posed, and

d̃c : E ′(B(e, R), Eh
0 )→ E ′(B(e, 3R), Eh

0 ).

Analogously, we define the following “0-order codifferential” acting on compactly supported

(h+ 1)-currents belonging to E ′(B(e, R), Eh+1
0 ):

δ̃c := ∆
Nh/2
G,R δc ∆

−Nh+1/2

G,R .

Again the definition is well posed, and

δ̃c : E ′(B(e, R), Eh+1
0 )→ E ′(B(e, 3R), Eh

0 ).

By Theorem 1.3(a),

δ̃c = (d̃c)
∗.

Notice also that

d̃2
c = 0, δ̃2

c = 0 (modOC−∞).

Let now T =
∑

p

∑
j∈Ih

0,p
T̃j (∗ξhj ) ∈ E ′G,h(B(e, R)) be given.

The differential dc acting on h-forms can be identified with a matrix-valued differential

operator Lh :=
(
Lhi,j
)
, where the Lhi,j’s are homogeneous left invariant differential operator

of order q − p if j ∈ Ih0,p and i ∈ Ih+1
0,q . Thus, by Definition 1.6, we have

d̃c T =
∑
q

∑
i∈Ih+1

0,q

∑
p<q

∑
j∈Ih

0,p

˜
(∆
−q/2
G,R Lhi,j ∆

p/2
G,RTj) (∗ξh+1

i ).
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Analogously, if T =
∑

p

∑
j∈Ih+1

0,p
T̃j (∗ξh+1

j ) ∈ E ′(B(e, R), Eh+1
0 ), then

δ̃c T =
∑
q

∑
i∈Ih

0,q

∑
q<p

∑
j∈Ih+1

0,p

˜
(∆

q/2
G,R

tLhj,i ∆
−p/2
G,R Tj) (∗ξhi ).

Proposizione 2.1. Both d̃c and δ̃c are matrix-valued pseudodifferential operators of the

CGGP-calculus, acting respectively on E ′(G, Eh
0 ) and E ′(G, Eh+1

0 ). Moreover d̃c ∼ P h :=(
P h
ij

)
, where

(7) P h
ij = P−q∗(Lhi,jPp) if i ∈ Ih+1

0,q and j ∈ Ih0,p,

and δ̃c ∼ Qh :=
(
Qh
ij

)
, where

(8) Qh
ij = Pq∗(tLhj,iP−p) if i ∈ Ih0,q and j ∈ Ih+1

0,p .

Osservazione 2.2. With Rumin’s notations (see [9]), when acting on S0(G, Eh
0 ),

O0(P h) ≡ d∇c .

An analogous assertion hold for O0(Qh).

We set

∆
(0)
G,R := δ̃cd̃c + d̃cδ̃c.

The following assertion is a straightforward consequence of Theorem 1.3 and Proposition

2.1.

Proposizione 2.2. ∆
(0)
G,R is a matrix-valued 0-order pseudodifferential operator of the

CGGP-calculus acting on E ′(G, Eh
0 ), and

∆
(0)
G,R ∼ ∆

(0)
G :=

(
∆

(0)
G,ij
)
,

where

∆
(0)
G,ij =

∑
`

(
Qh
i`∗P h

`j + P h−1
i` ∗Q

h−1
`j

)
.

Osservazione 2.3. As in Remark 2.2, with the notations of [9], when acting on S0(G, Eh
0 ),

O0(∆
(0)
G ) = O0(Qh) ◦ dcO0(P h) +O0(P h−1) ◦ δcO0(Qh−1)

= δ∇c d
∇
c + d∇c δ

∇
c = �dc .
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Teorema 2.2. For any R > 0 there exists a (matrix-valued) CGGP-pseudodifferential

operator (∆
(0)
G,R)−1 such that

(9) (∆
(0)
G,R)−1∆

(0)
G,R = Id on E ′(G, Eh

0 ) (mod OC−∞),

and

(10) ∆
(0)
G,R(∆

(0)
G,R)−1 = Id on E ′(G, Eh

0 ) (mod OC−∞).

Osservazione 2.4. If α ∈ E ′(B(e, r), Eh
0 ), then, by Lemma 1.6, both

supp (∆
(0)
G,R)−1∆

(0)
G,Rα and supp (∆

(0)
G,R∆

(0)
G,R)−1α

are contained in a fixed ball B depending only on r, R. Thus, we can multiply the identities

(9) and (10) by a suitable test function ϕ that is identically one on B, and then we can

replace the smoothing operators S appearing in (9) and (10) by operators of the form ϕS,

that maps E ′(G, Eh
0 ) in D(G, Eh

0 ).

Proposizione 2.3. For any R > 0

(11) (∆
(0)
G,R)−1d̃c = d̃c(∆

(0)
G,R)−1 on E ′(G, Eh

0 ) (mod OC−∞),

and

(12) (∆
(0)
G,R)−1δ̃c = δ̃c(∆

(0)
G,R)−1 on E ′(G, Eh

0 ) (mod OC−∞).

Proof of Theorem 2.1. In the sequel, S will always denote a smoothing operator belonging

to OC−∞ that may change from formula to formula, and, with the same convention, we

shall denote by S0 an operator of the form ϕS, with S ∈ OC−∞ and ϕ ∈ D(G). Moreover,

without loss of generality, we may assume αε ∈ D(Ω, Eh
0 ). Take now R > 0 such that

Ω ⊂ B(e, R); by Lemma 1.6, ∆
−Nh/2
G,R αε ∈ D(B(e, 2R), Eh

0 ) and therefore, by (10),

(13) ∆
(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε −∆

−Nh/2
G,R αε = S∆

−Nh/2
G,R αε,

with S ∈ OC−∞. Since supp ∆
(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε ⊂ B(e, 4R), we can multiply the

previous identity by a cut-off function ϕ1 ≡ 1 on B(e, 4R) without affecting the left hand

side of the identity. Thus, we can write (13) as

(14) ∆
(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε −∆

−Nh/2
G,R αε = ϕS∆

−Nh/2
G,R αε = S0α

ε,
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by Lemma 1.3. From (14), it follows easily that

(15) ∆
Nh/2
G,R ∆

(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε = ∆

Nh/2
G,R ∆

−Nh/2
G,R αε + ∆

Nh/2
G,R S0α

ε,

so that, arguing as above,

(16) ∆
Nh/2
G,R ∆

(0)
G,R(∆

(0)
G,R)−1∆

−Nh/2
G,R αε = αε + S0α

ε.

If we write explicitly ∆
(0)
G,R in (16), we get

αε = ∆
Nh/2
G,R ∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

+ ∆
Nh/2
G,R ∆

−Nh/2
G,R dc ∆

Nh−1/2

G,R ∆
Nh−1/2

G,R δc ∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

+ S0α
ε := I1 + I2 + S0α

ε.

(17)

In addition

I2 = dc ∆
Nh−1/2

G,R ∆
Nh−1/2

G,R δc ∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε + S0α

ε

:= dcψ
ε + S0α

ε.
(18)

Thus (17) becomes

αε = ∆
Nh/2
G,R ∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

+ S0α
ε + dcψ

ε := ωε + dcψ
ε.

(19)

We want to show that (ψε)ε>0 and (ωε)ε>0 converge strongly in Lsloc(G, E
h−1
0 ) and Lsloc(G, Eh

0 ),

respectively. As for (ψε)ε>0, (∆
−Nh/2
G,R αε)ε>0 converges weakly in W

Nh,s
G (G, Eh

0 ). On

the other hand, by Proposition 1.8, also
(
(∆

(0)
G,R)−1∆

−Nh/2
G,R αε

)
ε>0

converges weakly in

W
Nh,s
G (G, Eh

0 ). Thus, again by Proposition 1.8, also
(
∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

)
ε>0

con-

verges weakly in W
2Nh,s
G (G, Eh

0 ). We remind that all intrinsic h-forms have the same

weight Nh, so that all the components of a form in Eh
0 belonging to W

2Nh,s
G (G, Eh

0 ) belong

to the same Sobolev space W 2Nh,s
G (G, Eh

0 ).

For sake of simplicity, denote now by βεj , j ∈ Ih0,Nh
, a generic component of

∆
−Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

that converges weakly in W 2Nh,s
G (G, Eh−1

0 ). If i ∈ Ih−1
0,q (q < Nh), then the i-th compo-

nent of δcβ
ε
j is given by tLj,iβ

ε
j . Keeping in mind that Lj,i is a homogeneous differential
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operator in the horizontal vector fields of order Nh − q, then
(t
Lj,iβ

ε
j

)
ε>0

converges wea-

kly in WNh+q,s
G (G), so that, eventually, the i-th component of (ψε)ε>0 converges weakly

in WNh−q,s
G (G). Then the assertion follows by Rellich theorem (Proposition 1.9), since

supp ψε is contained is a fixed neighborhood of Ω, and q < Nh.

Let us consider now (ωε)ε>0. By Lemma 1.4, we can forget the smoothing operator S0.

By Proposition 2.3, we can write

∆
Nh
G,R∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

−Nh/2
G,R αε

= ∆
Nh/2
G,R ∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R (∆
(0)
G,R)−1∆

−Nh+1/2

G,R dc α
ε + S0α

ε

= ∆
Nh/2
G,R (∆

(0)
G,R)−1∆

Nh/2
G,R δc ∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε + S0α

ε.

(20)

Moreover

∆
−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε is pre-compact in W

Nh+1+Nh,s

G,loc (G, Eh
0 ).

Arguing as above, denote now by βεj , j ∈ Ih+1
0,p , a generic component of

βε := ∆
−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε.

We know that βεj is pre-compact in W p+Nh,s
G,loc (G, Eh+1

0 ). Moreover notice that δcβε is a

h-form, and therefore, by assumption, has pure weight Nh. If i ∈ Ih0,Nh
(Nh < p), then the

i-th component of δcβ
ε
j is given by tLj,iβ

ε
j . Keeping in mind that Lj,i is a homogeneous dif-

ferential operator in the horizontal vector fields of order j−i = p−Nh, then (δcβ
ε
j )i is pre-

compact in W 2Nh,s
G,loc (G). Thus, δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε is pre-compact in W

2Nh,s
G,loc (G, Eh

0 ).

Again, ∆
Nh/2
G,R δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε is pre-compact in W

Nh,s
G,loc (G, Eh

0 ). As above, we can

rely now on the fact that all components of ∆
Nh/2
G,R δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε have the same

weight and hence belong to the same Sobolev space, to conclude that

(∆
(0)
G,R)−1∆

Nh/2
G,R δc∆

−Nh+1/2

G,R ∆
−Nh+1/2

G,R dc α
ε

is pre-compact in W
Nh,s
G,loc (G, Eh

0 ). Then, the proof of the assertion follows.

Finally, the last statement follows by Lemma 1.6 and Theorem 1.3, (b).

�



Forme differenziali nei gruppi di Carnot 19

3. Compensated compactness

Lemma 3.1. If α ∈ E(G, Eh
0 ) with 2 ≤ h ≤ n and β ∈ E(G, En−h−2

0 ), then

d dcα ∧ (ΠEβ) = 0.

Teorema 3.1. If 1 < si < ∞, 0 ≤ hi ≤ n for i = 1, 2, and 0 < ε < 1, assume that

αεi ∈ L
si
loc(G, E

hi
0 ) for i = 1, 2, where 1

s1
+ 1

s2
= 1 and h1 + h2 = n. Suppose h1-forms have

pure weight Nh1 (by Hodge duality, this implies that also h2-forms have pure weight Nh2).

Assume that, for any open set Ω0 ⊂⊂ G,

(21) αεi → αi weakly in Lsi(Ω0, E
hi
0 ),

and that

(22) {dcαεi} is pre-compact in W
−(Nhi+1−Nhi

),si

G,loc (G, Ehi
0 )

for i = 1, 2.

Then

(23)

∫
G
ϕαε1 ∧ αε2 →

∫
G
ϕα1 ∧ α2

for any ϕ ∈ D(G).

Dimostrazione. By Remark 2.1, without loss of generality we can assume that both αε1

and αε2 are smooth forms. In addition, let us prove that, if Ω is an open neighborhood of

supp ϕ, then

(24) dc(ϕα
ε
1) is pre-compact in W

−(Nhi+1−Nhi
),s1

G,loc (G, Eh
0 ).

An analogous argument can be repeat for ψαε2, where ψ ∈ D(Ω) is identically 1 on supp ϕ.

Thus, without loss of generality, we could restrict ourselves to prove that

(25)

∫
G
αε1 ∧ αε2 →

∫
G
α1 ∧ α2

when (21) and (22) hold and αi ∈ D(Ω, Ehi
0 ) for i = 1, 2.

In order to prove (24), set βε := dc(ϕα
ε
1), with βε =

∑
q

∑
i∈Ih1+1

0,q
βεi ξ

h+1
i .
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If αε1 =
∑

p

∑
j∈Ih1

0,p
(αε1)jξ

h
j , then, when i ∈ Ih1+1

0,q , we have

βi =
∑
p<q

∑
j∈Ih

0,p

(Lhi,j(ϕ(αε1)j)

= ϕ
∑
p<q

∑
j∈Ih

0,p

Lhi,j(α
ε
1)j +

∑
p<q

∑
j∈Ih

0,p

∑
1≤|γ|≤q−p

(Pγϕ)(Qγ(α
ε
1)j)

= ϕ(dc(α
ε
1))i +

∑
p<q

∑
j∈Ih

0,p

∑
1≤|γ|≤q−p

(Pγϕ)(Qγ(α
ε
1)j),

where Pγ and Qγ are homogeneous left invariant differential operators of order |γ| and

q − p − |γ|, respectively, in the horizontal derivatives. By (22), ϕ(dc(α
ε
1))i is compact in

W
−(q−p),s
G (Ω). On the other hand Qγ(α

ε
1)j is bounded in W

−(q−p−|γ|),s
G (Ω), and therefore

compact in W
−(q−p),s
G (Ω) by Proposition 1.9, since |γ| > 0. This proves (24).

We can proceed now to prove (25). By Theorem 2.1 we can write

αεi = dcψ
ε
i + ωεi , i = 1, 2,

with ψεi and ωεi supported in a suitable neighborhood Ω0 of Ω̄ and converging strongly in

Lsi(Ω0, E
hi
0 ). Thus the integral of αε1 ∧ αε2 in (25) splits into the sum of 4 terms. Clearly,

3 of them are easy to deal with, since they are the integral of the wedge product of two

sequences of forms, at least one of them converging strongly. Thus, we are left with the

term

∫
G
dcψ

ε
1 ∧ dcψε2,
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with ψεi ∈ D(Ω0, E
ki
0 ) for i = 1, 2. We have∫

G
dcψ

ε
1 ∧ dcψε2 =

∫
G

(ΠE0 dΠE ψ
ε
1) ∧ (dcψ

ε
2)

=

∫
G

(dΠE ψ
ε
1) ∧ (dcψ

ε
2)

=

∫
G
d
(
(ΠE ψ

ε
1) ∧ (dcψ

ε
2)
)

+ (−1)h1

∫
G

(ΠE ψ
ε
1) ∧ d(dcψ

ε
2)

= (−1)h1

∫
G

(ΠE ψ
ε
1) ∧ d(dcψ

ε
2) (by Stokes theorem)

= (−1)h1

∫
G
ψε1 ∧ (ΠE d(dcψ

ε
2))

= (−1)h1

∫
G
ψε1 ∧ (dΠE(dcψ

ε
2))

= (−1)h1

∫
G
ψε1 ∧ (dc(dcψ

ε
2))

= 0,

since d2
c = 0. This achieves the proof of the theorem. �
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