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Abstract

In this note we present a geometric formulation of Maxwell’s equa-
tions in Carnot groups in the setting of the intrinsic complex of dif-
ferential forms defined by M. Rumin. Restricting ourselves to the first
Heisenberg group H1, we show that these equations are invariant under
the action of suitably defined Lorentz transformations, and we prove
the equivalence of these equations with different equations “in coor-
dinates”. Moreover, we analyze the notion of “vector potential”, and
we show that it satisfies a new class of 4th order evolution differential
equations.
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This is joint work with Bruno Franchi, see [9], [10].

1. Multilinear algebra in Carnot groups

Let (G, ·) be a Carnot group of step κ identified to Rn through expo-
nential coordinates (see [4] for details). By definition, the Lie algebra
g of G admits a step κ stratification, i.e. there exist linear subspaces
V1, ..., Vκ such that

(1) g = V1⊕...⊕Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X, Y ]
with X ∈ V1 and Y ∈ Vi. Choose a basis e1, . . . , en of g adapted to the
stratification, i.e. such that

e1, . . . , em1 is a basis of V1

and, accordling,

emj−1+1, . . . , emj is a basis of Vj for each j = 2, . . . , κ.

Let X = {X1, . . . , Xn} be the family of left invariant vector fields
such that that is also an orthonormal basis of V1 ≡ Rm1 at the origin,
Xi(0) = ei. The Lie algebra g can be endowed with a scalar product
〈·, ·〉, making {X1, . . . , Xn} an orthonormal basis.

We can write the elements of G in exponential coordinates, identifying
p with the n-tuple (p1, . . . , pn) ∈ Rn and we identify G with (Rn, ·),
where the explicit expression of the group operation · is determined
by the Campbell-Hausdorff formula. If p ∈ G and i = 1, . . . , κ, we
put pi = (phi−1+1, . . . , phi) ∈ Rmi , so that we can also identify p with
(p1, . . . , pκ) ∈ Rm1 × · · · × Rmκ = Rn.

Two important families of automorphism of G are given by left trans-
lations p 7→ τqp := q · p group dilations δλ for λ > 0. For any x ∈ G,
the (left) translation τx : G→ G is defined as

z 7→ τxz := x · z.
For any λ > 0, the dilation δλ : G→ G, is defined as

(2) δλ(x1, ..., xn) = (λd1x1, ..., λ
dnxn),

where di ∈ N is called homogeneity of the variable xi in G (see [7]
Chapter 1) and is defined as

(3) dj = i whenever hi−1 + 1 ≤ j ≤ hi,

hence 1 = d1 = ... = dm1 < dm1+1 = 2 ≤ ... ≤ dn = κ.
As customary, we fix a smooth homogeneous norm | · | in G such that

the gauge distance d(x, y) := |y−1x| is a left-invariant true distance,
equivalent to the Carnot-Carathéodory distance in G (see [15], p.638).
We set B(p, r) = {q ∈ G; d(p, q) < r}.

The Haar measure of G = (Rn, ·) is the Lebesgue measure Ln in Rn.
If A ⊂ G is L-measurable, we write also |A| := L(A).
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We denote by Q the homogeneous dimension of G, i.e. we set

Q :=
κ∑
i=1

i dim(Vi).

Since for any x ∈ G |B(x, r)| = |B(e, r)| = rQ|B(e, 1)|, Q is the Haus-
dorff dimension of the metric space (G, d).

By (1), the subset X1, . . . , Xm1 generates by commutations all the
other vector fields. Therefore, the subbundle of the tangent bundle TG
that is spanned by X1, . . . , Xm1 plays a particularly important role in
the theory, and it is called the horizontal bundle HG; the fibers of HG
are

HGx = span {X1(x), . . . , Xm1(x)}, x ∈ G.
From now on, for sake of simplicity, sometimes we set m := m1.

A subriemannian structure is defined on G, endowing each fiber of
HG with a scalar product 〈·, ·〉x making the basis X1(x), . . . , Xm(x) an
orthonormal basis. The sections of HG are called horizontal sections,
and a vector of HGx is an horizontal vector.

The Euclidean space Rn endowed with the usual (commutative) sum
of vectors provides the simplest example of Carnot group. It is a trivial
example, since in this case the stratification of the algebra consists of
only one layer, i.e. the all the Lie algebra reduces to the horizontal
layer.

On the other hand, Heisenberg groups Hn provide the simplest ex-
ample of noncommutative Carnot groups. In this note, we deal mainly
with the first Heisenberg group H1, with variables (x, y, t). Set X :=
∂x + 2y∂t, Y := ∂y − 2x∂t, T := ∂t. The stratification of the algebra g
is given by g = V1 ⊕ V2, where V1 = span {X, Y } and V2 = span {T}.
More generally, if n > 1 in Hn we denote again by (x, y, t) the variables,
where x = (x1, . . . , xn) ∈ Rn, and y = (y1, . . . , yn) ∈ Rn. A basis of the
horizontal layer of the Lie algebra is then provided by the vector fields
Xj := ∂xj + 2yj∂t and Yj := ∂yj − 2xj∂t, j = 1, . . . , n.

Following [7], we also adopt the following multi-index notation for
higher-order derivatives. If I = (i1, . . . , in) is a multi–index, we set
XI = X i1

1 · · ·X in
n . By the Poincaré–Birkhoff–Witt theorem (see, e.g.

[5], I.2.7), the differential operators XI form a basis for the algebra of
left invariant differential operators in G. Furthermore, we set |I| := i1+
· · ·+in the order of the differential operator XI , and d(I) := d1i1+· · ·+
dnin its degree of homogeneity with respect to group dilations. From
the Poincaré–Birkhoff–Witt theorem, it follows, in particular, that any
homogeneous linear differential operator in the horizontal derivatives
can be expressed as a linear combination of the operators XI of the
special form above.

The dual space of g is denoted by
∧1

g. The basis of
∧1

g, dual
of the basis X1, · · · , Xn, is the family of covectors {θ1, · · · , θn}. We
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indicate by 〈·, ·〉 also the inner product in
∧1

g that makes θ1, · · · , θn
an orthonormal basis. We point out that, except for the trivial case of
the commutative group Rn, the forms θ1, · · · , θn may have polynomial
(hence variable) coefficients.

Following Federer (see [6] 1.3), the exterior algebras of g and of
∧1

g

are the graded algebras indicated as
∧
∗
g =

n⊕
h=0

∧
h
g and

∧∗
g =

n⊕
h=0

∧h
g where

∧
0 g =

∧0
g = R and, for 1 ≤ h ≤ n,

∧
h
g := span{Xi1 ∧ · · · ∧Xih : 1 ≤ i1 < · · · < ih ≤ n},∧h
g := span{θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}.

The elements of
∧
h g and

∧h
g are called h-vectors and h-covectors.

We denote by Θh the basis {θi1 ∧ · · · ∧ θih : 1 ≤ i1 < · · · < ih ≤ n}
of
∧h

g. We remind that

dim
∧h

g = dim
∧

h
g =

(
h

n

)
.

The dual space
∧1(

∧
h g) of

∧
h g can be naturally identified with∧h

g. The action of a h-covector ϕ on a h-vector v is denoted as 〈ϕ|v〉.
The inner product 〈·, ·〉 extends canonically to

∧
h g and to

∧h
g

making the bases Xi1 ∧ · · · ∧Xih and θi1 ∧ · · · ∧ θih orthonormal.

Definition 1.1. We define linear isomorphisms (Hodge duality: see [6]
1.7.8)

∗ :
∧

h
g←→

∧
n−h

g and ∗ :
∧h

g←→
∧n−h

g,

for 1 ≤ h ≤ n, putting, for v =
∑

I vIXI and ϕ =
∑

I ϕIθI ,

∗v :=
∑

I
vI(∗XI) and ∗ ϕ :=

∑
I
ϕI(∗θI)

where

∗XI := (−1)σ(I)XI∗ and ∗ θI := (−1)σ(I)θI∗

with I = {i1, · · · , ih}, 1 ≤ i1 < · · · < ih ≤ n, XI = Xi1 ∧ · · · ∧ Xih ,
θI = θi1 ∧ · · · ∧ θih , I∗ = {i∗1 < · · · < i∗n−h} = {1, · · · , n} \ I and σ(I) is
the number of couples (ih, i

∗
`) with ih > i∗` .

The following properties of the ∗ operator follow readily from the
definition: ∀v, w ∈

∧
h g and ∀ϕ, ψ ∈

∧h
g

∗ ∗v = (−1)h(n−h)v = v, ∗ ∗ ϕ = (−1)h(n−h)ϕ = ϕ,

v ∧ ∗w = 〈v, w〉X{1,··· ,n}, ϕ ∧ ∗ψ = 〈ϕ, ψ〉θ{1,··· ,n},
〈∗ϕ|∗v〉 = 〈ϕ|v〉.

(4)
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Notice that, if v = v1∧ · · ·∧ vh is a simple h-vector, then ∗v is a simple
(n− h)-vector.

If v ∈
∧
h g we define v\ ∈

∧h
g by the identity 〈v\|w〉 := 〈v, w〉, and

analogously we define ϕ\ ∈
∧
h g for ϕ ∈

∧h
g.

To fix our notations, we remind the following definition (see e.g. [11],
Section 2.1).

Definition 1.2. If V,W are finite dimensional linear vector spaces and
L : V → W is a linear map, we define

ΛhL :
∧

h
V →

∧
h
W

as the linear map defined by

(ΛhL)(v1 ∧ · · · ∧ vh) = L(v1) ∧ · · · ∧ L(vh)

for any simple h-vector v1 ∧ · · · ∧ vh ∈
∧
h V By duality, we define

ΛhL :
∧h

W →
∧h

V

as the linear map defined by

〈(ΛhL)(α)|v1 ∧ · · · ∧ vh〉 = 〈α|(ΛhL)(v1 ∧ · · · ∧ vh)〉
for any α ∈

∧hW and any simple h-vector v1 ∧ · · · ∧ vh ∈
∧
h V .

Proposition 1.3. If V,W are finite dimensional linear vector spaces
endowed with a scalar product and L : V → W is a linear map, then

i) if v ∈
∧

1 V and α ∈
∧1W , then Λ1v = Lv and ((Λ1L)α)\ =t

L(α\);

ii) if α ∈
∧kW and β ∈

∧hW , then (Λk+hL)(α ∧ β) = (ΛkL)α ∧
(ΛkL)β;

iii) if v ∈
∧
k V and w ∈

∧
h V , then (Λk+hL)(v ∧ w = (ΛkL)v ∧

(ΛkL)w;
iv) tΛhL = Λh(

tL) and tΛhL = Λh( tL);
v) if H is another finite dimensional linear vector spaces and G :

H → V is a linear map, then Λh(L ◦ G) = (ΛhL) ◦ (ΛhG) and
Λh(L ◦G) = (ΛhL) ◦ (ΛhG);

vi) if L : V → V is a unitary linear operator, then ΛhL and ΛhL
are linear isometries.

We can define now two families of vector bundles (still denoted by∧
∗ g and

∧∗
g over G), by putting∧

h,p
h := (Λhdτp)(

∧
h,e

g
)

and, respectively, ∧h

p
h := (Λhdτp−1)(

∧h

e
g
)

for any p ∈ G and h = 1, . . . , n, where we have chosen∧
h,e

g ≡
∧

h
g and

∧h

e
g ≡

∧h
g.
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The inner products 〈·, ·〉 on
∧
h g and

∧h
g induce inner products on

each fiber
∧
h,p g and

∧h
p g by the identity

〈Λhdτp(v),Λhdτp(w)〉p := 〈v, w〉

and

〈Λhdτp−1(α),Λhdτp−1(β)〉p := 〈α, β〉.

Lemma 1.4. If p, q ∈ G, then

Λhdτq :
∧

h,p
g→

∧
h,qp

g

and

Λhdτq−1 :
∧h

p
g→

∧h

qp
g

are isometries onto.

In general, a subbuondle N of
∧
h g is said to be left-invariant if

Np = (Λhdτp)(Ne
)

for all p ∈ G. Analogously, a subbundle N of
∧h

g is said to be left-
invariant if

Np := (Λhdτp−1)(Ne
)

for all p ∈ G.
From now on, if U ⊂ G is an open set and h = 0, 1, . . . , n we denote

by Ωh(U) and Ωh(U) the sets of all (smooth) sections of
∧
h g and

∧h
g,

respectively. If U = G we write only Ωh and Ωh. We refer to elements
of Ωh as to fields of h-vectors and to elements of Ωh as to h-forms.

A h-form α on G is said left-invariant if τ#
p α = α for any p ∈ G.

Notice that h-covectors can be identified with left-invariant h-forms.
If X is a vector field and α is a h-form, we denote by iXα the contrac-

tion of α with X given by (iXα)(v1∧· · ·∧vh−1) := α(X∧v1∧· · ·∧vh−1).
If d is the usual De Rham’s exterior differential, we denote by δ = d∗

its formal adjoint in L2(G,Ω∗).
As customary, if f : G → G is a continuously differentiable map,

then the pull-back f#ω of a form ω ∈ Ωh is defined by

f#ω(x) :=
(
Λh(dfx)

)
ω(f(x)).

Let G and M be two Carnot groups, and let g = ⊕κ1
i=1gi and m =

⊕κ2
i=1mi be their Lie algebras (respectively n-dimensional andN -dimensional).

We denote by ê1, . . . , êN an adapted basis of m, and by X̂1, . . . , X̂N

the corresponding family of vector fields.

Definition 1.5. A map L : G → M is said to H-linear (and we write
L ∈ HL(G,M)) if

i) is a group homeomorphism;
ii) is homogeneous, i.e. δr(Lx) = L(δrx) for all r > 0.
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A H-linear map induces an algebra homomorphism (that we still denote
by L) between g and m by taking ln ◦L◦exp. In particular the induced
map L is linear.

Since we are using exponential coordinates in G and M, the map L
itself from G to M can be written as N × n real matrix, and we still
denote by HL(G,M) the set of associated matrices.

Example 1.6. In H1, H-linear are associated with 3× 3 real matrices
of the form (see [13], [12]) a11 a12 0

a21 a22 0
0 0 a44,

 , with a44 = det

(
a11 a12

a21 a22

)
.

with

a44 = det

(
a11 a12

a21 a22

)
.

Example 1.7. Later on, we have to deal with a space-time group like
H1 × R. In this case case, a H-linear map L : H1 × R → H1 × R has
the two following possible structures:

i) either the associated matrix L has the form

L =


0

LΣ 0
0

0 0 0 0

 ,

where LΣ is a 3× 3 real matrix with the first two row linearly
dependent,

ii) or the associated matrix L has the form

L =


a11 a12 0 0
a21 a22 0 0
a31 a32 a33 0
0 0 0 a11a22 − a12a21

 .

Theorem 1.8. Let L : G→M be a H-linear map. Then L enjoys the
contact property

(5) L(gi) ⊂ mi i = 1, . . . , κ1.

2. Space-time Carnot groups

From now on, we denote by x a “space” point in the Carnot group
G, and by s ∈ R the “time”, and we choose in R × G the canonical
volume form ds ∧ dV , where dV is the canonical volume form in G.
Moreover, we denote by (E∗0,G, dc,G) and (E∗0,R×G, dc,R×G) the intrinsic
forms on G and on R × G, respectively. For sake of brevity, we shall
write

dc := dc,G and d̂c := dc,R×G.
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Denote by S the vector field ∂
∂s

. The Lie group R × G is a Carnot
group; its Lie algebra ĝ admits the stratification

(6) ĝ = V̂1 ⊕ V2 ⊕ · · · ⊕ Vκ,

where V̂1 = span {S, V1}. Since the adapted basis {X1, . . . , Xn} has
been already fixed once and for all, the associated fixed basis for ĝ will
be

{S,X1, . . . , Xm1 , . . . , Xn} := {X0, . . . , Xn},

where we have set X0 := S. Coherently, we write also θ0 := ds. Con-
sider the Lie derivative LS along S. If fθi1 ∧ · · · θih is a h-form in G,
1 ≤ i1 < · · · < ih ≤ n, we have LS(fθi1 ∧ · · ·∧ θih) = (Sf)θi1 ∧ · · ·∧ θih .
Indeed

• if f is a scalar function, by definition LSf = iSdf =
∑n

j=0(Xjf)θj(X0) =
Sf ;
• if fθi1 ∧ · · · θih is a h-form in G, then LS(fθi1 ∧ · · · ∧ θih) =

(Sf)θi1 ∧ · · · ∧ θih + fLS(θi1 ∧ · · · ∧ θih). But LS(θi1 ∧ · · · ∧ θih)
is a sum of terms of the form θi1 ∧ · · · ∧ LSθi` ∧ · · · ∧ θih = 0,
since LSθi` = 0.

Thus, when acting on h-forms α in G, without risk of misunderstand-
ings, we write Sα for LSα.

We point out that S commutes with d, the exterior differential in G.
Indeed, if α =

∑n
j=1 αjθ

h
j , then

Sdα =
n∑
j=1

n∑
`=1

(SX`αj)θ` ∧ θhj =
n∑
j=1

n∑
`=1

(X`Sαj)θ` ∧ θhj = d(Sα).

Let us state preliminarily a structure lemma for intrinsic forms in
R×G (see [3]).

Lemma 2.1. If 1 ≤ h ≤ n, then a h-form α belongs to Eh
0,R×G if and

only if it can be written as

(7) α = ds ∧ β + γ,

where β ∈ Eh−1
0,G and γ ∈ Eh

0,G are respectively intrinsic (h − 1)-forms
and h-forms in G with coefficients depending on x and s.

Proposition 2.2 ([9]). If 1 ≤ h ≤ n, and α = ds ∧ β + γ ∈ Eh
0,R×G,

then

(8) d̂cα = ds ∧ (Sγ − dcβ) + dcγ.

Definition 2.3. We denote by HOG the group of all (n+ 1)× (n+ 1)
matrices L such that tLGL = G, where G = (gij)i,j=0,...,n with gij = 0
if i 6= j, gii = 1 if i > 0, i 6= j, g00 = −1.
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G =



−1 0 0 0
0 1 0 0

. . . 0 0
0 0 1 0
0 0 0 1

1 0

0
. . . 0

0 1

0 0
. . .


We refer to HOG as to the contact Lorentzian group of G. If L ∈

HOG, then detL = ±1.

Example 2.4. As in Example 1.7, consider the first Heisenberg group.
A matrix as in i) does not belong to HOG, since it has zero determinant.
Thus, a matrix L belongs to HOG if and only if it has the form

L =


±1 0 0 0
0 a11 a12 0
0 a21 a22 0
0 0 0 a11a22 − a12a21

 ,

with

a11a22 − a12a21 = ±1.

If 1 ≤ ` ≤ n, by Lemma 2.1, keeping in mind again that forms in
E`

0,R×G are orthogonal to forms of the form ds ∧ σ with σ ∈ E`−1
0, G, we

can define a new (Minkowskian) scalar product 〈·, ·〉M in Eh
0,R×G as

〈ds ∧ β + γ, ds ∧ β′ + γ′〉M := 〈γ, γ′〉 − 〈β, β′〉.
Notice that

〈α, α′〉M = 〈(ΛhG)α, α′〉.
In particular, the bilinear form 〈·, ·〉M is nondegenerate.

Definition 2.5. We denote by ∗M the associated Hodge operator such
that α∧∗Mβ = 〈α, β〉Mds∧dV . If α = ds∧β+γ ∈ Eh

0,R×G, 1 ≤ h ≤ n,
we have ([3])

∗Mα = (−1)hds ∧ ∗γ + ∗β.

Lemma 2.6. If L ∈ HOG and α ∈ Eh
0,R×G, then

∗M(L#α) = L#(∗Mα) if detL = 1

and

∗M(L#α) = −L#(∗Mα) if detL = −1.
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Let now J be a fixed closed intrinsic n-form in R × G (a source
form). By Lemma 2.1, J = ∗J ∧ ds − ρ, where ρ(·, s) = ρ0(·, s) dV is
a volume form on G for any fixed s ∈ R.

If F ∈ E2
0,R×G, we call Maxwell equations in G the system in E∗0,R×G

(9) d̂cF = 0 and d̂c(∗MF ) = J
(for sake of simplicity, we assume all “physical” constants to be 1).
This this system corresponds to a particular choice of the so-called
“constitutive relations”.

Theorem 2.7 ([9]). Equations (9) are invariant under the action of
HOG, i.e., if L ∈ HOG and F satisfies (9), then

(10) d̂c(L
#F ) = 0 and d̂c(∗ML#F ) = L#J .

This is a consequence of the following result.

Theorem 2.8 ([9]). If L ∈ HOG and 0 ≤ h ≤ n+ 1, then

i) L# : Eh
0,R×G → Eh

0,R×G;

ii) d̂cL
# = L#d̂c;

iii) ∗ML# = (detL) · L#(∗M).

3. Maxwell equations in H1

Let us consider now the specific case G = H1 ≡ R3, the first Heisen-
berg group, with variables x, y, t. For sake of simplicity, in some
parts of this Section, we use the following customary notation: we
set X1 : X = ∂x+2y∂t, X2 : Y = ∂y−2x∂t, X3 := T = ∂t. The stratifi-
cation of the algebra g is given by g = V1⊕V2, where V1 = span {X, Y }
and V2 = span {T}. We have X\ = dx, Y \ = dy, T \ = θ (the contact
form of H1). In this case

E1
0,H1 = span {dx, dy};

E2
0,H1 = span {dx ∧ θ, dy ∧ θ};

E3
0,H1 = span {dx ∧ dy ∧ θ}.

The action of dc on E∗0,H1 is given by the following indentities ([14], [8],

[2]).

Proposition 3.1. If α = α1dx+ α2dy ∈ E1
0,H1, then

dcα = −1

4
(X2α2 − 2XY α1 + Y Xα1)dx ∧ θ

− 1

4
(2Y Xα2 − Y 2α1 −XY α2)dy ∧ θ

:= P1(α1, α2)dx ∧ θ + P2(α1, α2)dy ∧ θ.

(11)

On the other hand, the action of dc on α = α13dx∧θ+α23dy∧θ ∈ E2
0,H1 ,

is given by

(12) dc(α13dx ∧ θ + α23dy ∧ θ) = (Xα23 − Y α13) dx ∧ dy ∧ θ.
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Moreover,

(13) δc(α1dx+ α2dy) = −Xα1 − Y α2,

and

(14) δc(α13dx ∧ θ + α23dy ∧ θ) = P2(α23,−α13)dx− P1(α23,−α13)dy.

Coherently, if ~V = (V1, V2) is a horizontal vector field, following [8],
[2], [1], we set

curlH ~V = (∗dc(~V \))\,

or, in explicit form

curlH ~V = (P2(V1, V2),−P1(V1, V2)).

As usual, we put also

divH ~V = XV1 + Y V2.

The following identity follows from Proposition 2.2

Lemma 3.2. If α = α1dx+ α2dy + α3ds ∈ E1
0,R×H1, then

d̂cα = (Sα1 −Xα3)ds ∧ dx+ (Sα2 − Y α3)ds ∧ dy
+ P1(α1, α2)dx ∧ θ + P2(α1, α2)dy ∧ θ.

If

α = α13dx ∧ ds+ α23dy ∧ ds+ α14dx ∧ θ + α24dy ∧ θ ∈ E2
0,R×H1 ,

then

d̂cα = (Xα24 − Y α14) dx ∧ dy ∧ θ
+ (Sα14 − P1(α13, α23)) ds ∧ dx ∧ θ
+ (Sα24 − P2(α13, α23)) ds ∧ dy ∧ θ.

(15)

By Proposition 4.2 in [3], Maxwell system (9) in H1 can be written
as follows.

Theorem 3.3. Suppose G = H1. If F = E ∧ ds+B ∈ E0,R×H1, let us
set

E = E1dx+ E2dy and B = B1dy ∧ θ −B2dx ∧ θ
(in classical electrodynamics we refer to F as to Faraday’s form). In
addition, let

J = J1dy ∧ θ ∧ ds− J2 dx ∧ θ ∧ ds− ρ dx ∧ dy ∧ θ (∈ E3
0,R×H1)

be a closed form. Put now ~E = E\ = (E1, E2), ~B = (∗B)\ = (B1, B2),

and ~J = (J1, J2), Then the system (9) is equivalent to

∂ ~B

∂s
+ curlH ~E = 0, divH ~B = 0,(16)

∂ ~E

∂s
− curlH ~B = − ~J, divH ~E = ρ,(17)
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If, in particular, ρ ≡ 0 and ~J ≡ 0, i.e. in absence of charges and
currents, equations (16) and (17) become

∂ ~B

∂s
+ curlH ~E = 0, divH ~B = 0,(18)

∂ ~E

∂s
− curlH ~B = 0, divH ~E = 0.(19)

Replacing (19) in (18) and then (18) in (19), we get

∂2 ~B

∂s2
= −curlH (curlH ~B)(20)

∂2 ~E

∂s2
= −curlH (curlH ~E).(21)

Keeping in mind that 0 = −divH ~B = δc( ~B)\, we have(
curlH (curlH ~B)

)\
= ∗dc(∗dc( ~B)\) = δcdc( ~B)\

=
(
δcdc +

1

16
(dcδc)

2
)
( ~B)\ = ∆H,1( ~B)\,

(22)

where ∆H,1 is the (4th order) Rumin’s Laplacian on intrinsic 1-forms
(see Theorem ?? below). Accordingly, we can define ∆H,1 acting on

horizontal vector fields as ∆H,1 ~B :=
(
∆H,1( ~B)\

)\
. We stress that this is

a positive operator and that, unlike the usual Laplacian on forms, it is
not diagonal. Notice the factor 1

16
in (22) comes from the commutation

rule [X, Y ] = −4T we adopt in this paper, unlike the commutation rule
[X, Y ] = T adopted in [14]. Thus, equations (18) in (19) yield

∂2 ~B

∂s2
= −∆H,1 ~B(23)

∂2 ~E

∂s2
= −∆H,1 ~E.(24)

We want now to write our system (9) in terms of the “vector poten-
tial” A. By Lemma 2.1, we can write A = AΣ + φds, with AΣ ∈ E1

0,H1

and φ is a (say smooth) scalar function.

Theorem 3.4 ([9]). Suppose F ∈ E2
0,R×H1 satisfies (9). Then F = d̂cA

with A = A1dx+ A2dy + φ ds := AΣ + φ ds ∈ E1
0,R×H1, where

∂2AΣ

∂s2
= −∆H,1AΣ + J(25)

∂2φ

∂s2
= − 1

16
∆2

Hφ+
1

16
∆Hρ0,(26)

where ∆H := X2 + Y 2(= −∆H,0) is the usual subelliptic Laplacian in
H1, provided the following gauge condition holds:

(27)
1

16
d∗cdcd

∗
cAΣ +

∂φ

∂s
= 0.
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In addition, (27) is always satisfied if we replace A by A+ d̂cf , with f
satisfying

∂2f

∂s2
= − 1

16
∆2

Hf −
( 1

16
d∗cdcd

∗
cAΣ +

∂φ

∂s

)
.

Theorem 3.5 ([9]). Let AΣ ∈ E1
0,H1 and φ satisfy (27), (25) and

(26) and assume all their horizontal second derivatives are bounded
(remember S is a horizontal derivative). Suppose also ρ0 is bounded.
Then there exist g1, g2 ∈ R such that, if we set G = G(z, s) :=
s(g1xdx+ g2ydy), then

F := d̂cA := d̂c(AΣ +G+ φ ds)

satisfies (9).
In addition, if

(28)
(
Sd∗cAΣ + ∆Hφ+ ρ0

)
(x̄, s̄) = 0

for some point (x̄, s̄) ∈ G× R, then we can choose G = 0.
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