- 1. Supponiamo che una coltura batterica di *Escherichia coli* si trovi nella fase esponenziale della sua crescita. Si è osservato che la coltura si è quintuplicata in 46 minuti.
 - (a) Se inizialmente erano presenti N_0 batteri, quanti batteri saranno presenti dopo 92 minuti?
 - (b) Sia N(t) il numero dei batteri presenti quando è trascorso il tempo t (in minuti), e sia $N_0 = N(0)$. Determinare la costante μ in modo tale che la crescita della coltura sia descritta mediante la funzione $N(t) = N_0 5^{\mu t}$.
 - (c) Determinare la costante λ in modo tale che $N(t) = N_0 e^{\lambda t}$.
 - (d) Si ricordi che il processo durante il quale si formano due cellule a partire da un singolo individuo è chiamato generazione, e il tempo richiesto per tutto il processo è detto tempo di generazione. Calcolare il tempo di generazione del batterio Escherichia coli.
 - (e) Qual è la percentuale dei batteri che in media si dividono in ogni minuto?
- 2. Nel piano sia fissato un sistema di riferimento cartesiano. Sia P il punto P(3,4), che può essere identificato con il numero complesso z=3+4i, e sia Q il punto ottenuto da P attraverso una rotazione di 30° in senso antiorario attorno l'origine.
 - (a) Per quale numero complesso w bisogna moltiplicare z affinché zw rappresenti il punto Q?
 - (b) Calcolare zw e dire quali sono le coordinate del punto Q.
 - (c) Calcolare la distanza tra i punti $P \in Q$.
- 3. (a) Usando solo le 4 "lettere" A (adenina), C (citosina), G (guanina), T (timina), quante "parole" composte da esattamente 5 lettere si possono formare?
 - (b) Quante parole ottenute in (a) contengono esattamente 2 volte la lettera A?
- 4. Calcolare i seguenti limiti: (a) $\lim_{n \to +\infty} \sum_{k=1}^{n} (-\frac{1}{3})^k$, (b) $\lim_{x \to -\infty} \frac{3 + e^{-5x}}{1 e^{-5x}}$.
- 5. Calcolare le derivate delle seguenti funzioni:

(a)
$$v(t) = t^{-1} + \sqrt{3t}$$
, (b) $f(x) = \log_{10} \frac{1}{x}$,

(c)
$$f(x) = \frac{\sin x}{x^2}$$
, (d) $f(x) = e^x \cdot \ln(x)$.

- 1. Supponiamo che una coltura batterica di *Mycobacterium tubercolosis* si trovi nella fase esponenziale della sua crescita. Si è osservato che la coltura si è quintuplicata in 2 giorni.
 - (a) Se inizialmente erano presenti N_0 batteri, quanti batteri saranno presenti dopo 6 giorni?
 - (b) Sia N(t) il numero dei batteri presenti quando è trascorso il tempo t (in giorni), e sia $N_0 = N(0)$. Determinare la costante μ in modo tale che la crescita della coltura sia descritta mediante la funzione $N(t) = N_0 5^{\mu t}$.
 - (c) Determinare la costante λ in modo tale che $N(t) = N_0 e^{\lambda t}$.
 - (d) Si ricordi che il processo durante il quale si formano due cellule a partire da un singolo individuo è chiamato generazione, e il tempo richiesto per tutto il processo è detto tempo di generazione. Calcolare il tempo di generazione del batterio Mycobacterium tubercolosis.
 - (e) Qual è la percentuale dei batteri che in media si dividono in ogni giorno?
- 2. Nel piano sia fissato un sistema di riferimento cartesiano. Sia P il punto P(3,4), che può essere identificato con il numero complesso z=3+4i, e sia Q il punto ottenuto da P attraverso una rotazione di 60° in senso orario attorno l'origine.
 - (a) Per quale numero complesso w bisogna moltiplicare z affinché zw rappresenti il punto Q?
 - (b) Calcolare zw e dire quali sono le coordinate del punto Q.
 - (c) Calcolare la distanza tra i punti $P \in Q$.
- 3. (a) Usando solo le 4 "lettere" A (adenina), C (citosina), G (guanina), T (timina), quante "parole" composte da esattamente 6 lettere si possono formare?
 - (b) Quante parole ottenute in (a) contengono esattamente 3 volte la lettera A?
- 4. Calcolare i seguenti limiti: (a) $\lim_{n \to +\infty} \sum_{k=2}^{n} (-\frac{1}{2})^k$, (b) $\lim_{x \to -\infty} \frac{1+3e^{-4x}}{1-e^{-4x}}$.
- 5. Calcolare le derivate delle seguenti funzioni:
 - (a) $v(t) = \log_{10} t^2$, (b) $f(x) = x^{-2} + 2^{-x}$,
 - (c) $f(x) = \frac{\cos x}{\sqrt{x}}$, (d) $f(x) = e^x \sin x$.

- 1. Supponiamo che una coltura batterica di *Salmonella typhi* si trovi nella fase esponenziale della sua crescita. Si è osservato che la coltura si è quintuplicata in 45 minuti.
 - (a) Se inizialmente erano presenti N_0 batteri, quanti batteri saranno presenti dopo 90 minuti?
 - (b) Sia N(t) il numero dei batteri presenti quando è trascorso il tempo t (in minuti), e sia $N_0 = N(0)$. Determinare la costante μ in modo tale che la crescita della coltura sia descritta mediante la funzione $N(t) = N_0 5^{\mu t}$.
 - (c) Determinare la costante λ in modo tale che $N(t) = N_0 e^{\lambda t}$.
 - (d) Si ricordi che il processo durante il quale si formano due cellule a partire da un singolo individuo è chiamato generazione, e il tempo richiesto per tutto il processo è detto tempo di generazione. Calcolare il tempo di generazione del batterio Salmonella typhi.
 - (e) Qual è la percentuale dei batteri che in media si dividono in ogni minuto?
- 2. Nel piano sia fissato un sistema di riferimento cartesiano. Sia P il punto P(4, -3), che può essere identificato con il numero complesso z = 4 3i, e sia Q il punto ottenuto da P attraverso una rotazione di 30° in senso orario attorno l'origine.
 - (a) Per quale numero complesso w bisogna moltiplicare z affinché zw rappresenti il punto Q?
 - (b) Calcolare zw e dire quali sono le coordinate del punto Q.
 - (c) Calcolare la distanza tra i punti $P \in Q$.
- 3. (a) Usando solo le 4 "lettere" A (adenina), C (citosina), G (guanina), T (timina), quante "parole" composte da esattamente 8 lettere si possono formare?
 - (b) Quante parole ottenute in (a) contengono esattamente 4 volte la lettera A?
- 4. Calcolare i seguenti limiti: (a) $\lim_{n \to +\infty} \sum_{k=3}^{n} (-\frac{1}{5})^k$, (b) $\lim_{x \to +\infty} \frac{1+4e^{5x}}{1-e^{5x}}$.
- 5. Calcolare le derivate delle seguenti funzioni:
 - (a) $v(t) = t^{-3} + 3^t$, (b) $f(x) = e^{-x} \cos x$,
 - (c) $f(x) = \frac{x+1}{x-1}$, (d) $f(x) = \sqrt{\log_{10} x}$.

- 1. Supponiamo che una coltura batterica di *Salmonella typhi* si trovi nella fase esponenziale della sua crescita. Si è osservato che la coltura si è quintuplicata in 70 minuti.
 - (a) Se inizialmente erano presenti N_0 batteri, quanti batteri saranno presenti dopo 210 minuti?
 - (b) Sia N(t) il numero dei batteri presenti quando è trascorso il tempo t (in minuti), e sia $N_0 = N(0)$. Determinare la costante μ in modo tale che la crescita della coltura sia descritta mediante la funzione $N(t) = N_0 5^{\mu t}$.
 - (c) Determinare la costante λ in modo tale che $N(t) = N_0 e^{\lambda t}$.
 - (d) Si ricordi che il processo durante il quale si formano due cellule a partire da un singolo individuo è chiamato generazione, e il tempo richiesto per tutto il processo è detto tempo di generazione. Calcolare il tempo di generazione del batterio Salmonella typhi.
 - (e) Qual è la percentuale dei batteri che in media si dividono in ogni minuto?
- 2. Nel piano sia fissato un sistema di riferimento cartesiano. Sia P il punto P(3,4), che può essere identificato con il numero complesso z=3+4i, e sia Q il punto ottenuto da P attraverso una rotazione di 30° in senso antiorario attorno l'origine.
 - (a) Per quale numero complesso w bisogna moltiplicare z affinché zw rappresenti il punto Q?
 - (b) Calcolare zw e dire quali sono le coordinate del punto Q.
 - (c) Calcolare la distanza tra i punti $P \in Q$.
- 3. (a) Usando solo le 4 "lettere" A (adenina), C (citosina), G (guanina), T (timina), quante "parole" composte da esattamente 5 lettere si possono formare?
 - (b) Quante parole ottenute in (a) contengono esattamente 2 volte la lettera A?
- 4. Calcolare i seguenti limiti: (a) $\lim_{n \to +\infty} \sum_{k=2}^{n} (-\frac{1}{4})^k$, (b) $\lim_{x \to +\infty} \frac{1 e^{5x}}{1 5e^{5x}}$.
- 5. Calcolare le derivate delle seguenti funzioni:

(a)
$$v(t) = t^{-10} + 10^t$$
, (b) $f(x) = e^{\sqrt{x}}$,

(c)
$$f(x) = \frac{x^2}{\cos x}$$
, (d) $f(x) = x^2 \log_{10} x$.