- 1. Si determinino le coordinate del vettore $\mathbf{v} = 3\mathbf{i} 4\mathbf{j} \in \mathbb{R}^2$ rispetto alla base $\mathcal{B} = (-2\mathbf{i} + \mathbf{j}, \ \mathbf{i} \mathbf{j})$ geometricamente attraverso un disegno e algebricamente.
- 2. Trovare l'angolo tra i vettori $\vec{p} = (3, 0, -4), \vec{q} = (-2, 2, 1).$
- 3. Dato il vettore $\vec{a} = (1,3)$, determinare la sua proiezione secondo la direzione del vettore $\vec{b} = (1,1)$.
- 4. Dati i tre punti A = (-1,0,2), B = (-2,1,3) e C = (0,1,0), calcolare

 (a) i vettori $\overrightarrow{AB} \in \overrightarrow{AC}$:

 (b) la distanza tra i punti $A \in B$:
 - (a) i vettori \overrightarrow{AB} e \overrightarrow{AC} ; (b) la distanza tra i punti A e B; (c) il prodotto scalare di \overrightarrow{AB} e \overrightarrow{AC} ; (d) l'angolo BAC in gradi e in radianti.
- 5. (Bramanti-Pagani-Salsa, p. 55, Esercizio 5) Tra i seguenti vettori, individuare eventuali coppie di vettori paralleli o perpendicolari:

$$(2,-1,1), \qquad (1,2,-1), \qquad (1,4,2), \qquad (2,4-2).$$

6. (Bramanti-Pagani-Salsa, p. 55, Esercizio 6) Dati i vettori

$$\mathbf{v} = (1, 2, 3)$$
 e $\mathbf{w} = (-2, 0, 1),$

calcolare i vettori $\mathbf{v} + \mathbf{w}$ e $2\mathbf{v} - 3\mathbf{w}$, il modulo del vettore $\mathbf{v} + \mathbf{w}$ e il versore del vettore $2\mathbf{v} - 3\mathbf{w}$.

7. (Bramanti-Pagani-Salsa, pp. 70–71, Esercizio 22) Verificare che e il seguente "prodotto scalare" in \mathbb{R}^2 soddisfa effettivamente gli assiomi del prodotto scalare:

$$\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + x_1 y_2 + y_1 x_2 + 4y_1 y_2.$$

Rispetto a questa struttura di spazio vettoriale con prodotto interno, rispondere alle seguenti domande:

- (a) I vettori (1,0) e (0,1) sono ortogonali?
- (b) Quanto vale ||(1,1)||?
- (c) Qual è la distanza tra (1,0) e (0,1)?
- (d) Determinare una base ortonormale in \mathbb{R}^2 .
- 8. Dati i vettori $\mathbf{v} = (2 i, 4 + 2i)$ e $\mathbf{w} = (-i, 2 2i)$ dello spazio vettoriale \mathbb{C}^2 su \mathbb{C} con il prodotto interno standard, calcolate le loro norme (indotte dal prodotto interno) e il prodotto interno $\langle \mathbf{v}, \mathbf{w} \rangle$.
- 9. Dati i vettori $\vec{a} = (1, 1, 1), \vec{b} = (-1, 1, -1)$ in \mathbb{R}^3 , trovare una base ortonormale di Span (\vec{a}, \vec{b}) .
- 10. Sia $\vec{v} = (v_1, v_2, \dots, v_n)$ un vettore arbitrario in \mathbb{R}^n . Usando la disuguaglianza di Cauchy-Schwarz, provare che

$$(v_1 + v_2 + \dots + v_n)^2 \le n(v_1^2 + v_2^2 + \dots + v_n^2).$$

Trovare un vettore \vec{v} tale che nella precedente disuguaglianza valga il segno di uguale.