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Abstract. For a smooth surfac& C IPE there are well known classical formulas giving
the numbemp(S) of secants ofS passing through a generic point Bf. In this paper, for
possibly singular surfaceB, a computer assisted computationggf) from the defining
ideal I (T) C Kxo,...,Xs] is proposed. It is based on the Stiickrad-Vogel self-inttice
cycle of T and requires the computation of the normal cone of the ruledjdi, T) along the
diagonal. It is shown that in the case whErT P° arises as the linear projection with center
L of a surfaceSC IP’Q (N > 5) (which satisfies some mild assumptions), the computational
complexity can be reduced considerably by using the norma cbiBeS alongL N SecS
instead of the former normal cone. Many examples and the relatide for the computer
algebra systems#bucE, CoCoA, Macaulay2 and Singular are given.

1. Introduction

For a smooth surfac8cC P2, whereK is an algebraically closed field of charac-
teristic zero, there are well known classical formulasrgiMihe numbep(S) of secants
of Spassing through a generic point®? (see, for example, the double point formula
of Severi [16], p. 259 or [22], Example 4.1.3, or the secantida of Peters-Simonis
[26]). This number is called thgecant ordeor thenumber of apparent double points
of S, since it is the number of double points of the projectionSahto P* from a
generic point of?>. These formulas are not suited if one wants to compute théoaum
p starting from the equations of the surface. In this paper mgige a computational
approach based on the coefficients of a certain Hilbert mohial which comes from
the Stlckrad-Vogel intersection cycle and can be computed the equations of the
surface.

In [5] (see Theorem 4.3) it was shown that for a singular nefective surface
T C P} the Stuickrad-Vogel self-intersection cycleTotan be used to obtain a formula
for p(T). From a computational point of view, this result permits tmputep(T)
using computer algebra systems, but it requires the cortipataf the normal cone of
the ruled joind(T,T) along the diagonal, the computational complexity of whieh c
be very high.

In this paper we propose a second method for the computatipGTa when
the singular surfacg& C P° arises as the projection of a surfe®e P} (N > 5) along a
linear subspack. Under some mild assumption &this method reduces the compu-
tational complexity of the previous one, since it reliestemtomputation of the normal
cone of SeSalongL N SecS(see Theorem 3).

For some special surfaces the computational complexitypednrther reduced
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by applying an observation of A. Verra. He observed that éstain possibly singular
surfacesS (which C. Ciliberto and F. Russo calladrra surfacessee Definition 2)
the numbep(S) can be obtained computing the number of apparent doubléspafia
space curve by using its self-intersection cycle (see [@p&sition 3.7). In the case of
such surfaces the computationmtan be done i3, that is in a ring with only four
variables.

We illustrate the methods through a collection of examplégre the computa-
tions have been done withE®UCE (see [1]), but they could have been done with other
systems as CoCoA, Macaulay2, Singular as well.

In the last section of the paper we give the code of the praesdor the cal-
culations in the different computer algebra systems andhew she efficiency of the
new method given by Theorem 3.

2. Computational aspects of the Stlickrad-Vogel interseatin cycle

Let X,Y be closed (irreducible and reduced) subvarieties of thegtige space
PN = P}, whereK is an algebraically closed field of characteristic zero. citiid
and Vogel [30] (see also [16], Section 2.2) introduced aeytX,Y) calledv-cycle,
which is the formal sum of (algorithmically produced) suligdesC of XNY (possibly
defined over a pure transcendental field extensidf)péach taken with an algorithmi-
cally produced positive integer coefficiejat= j(X,Y;C), theintersection multiplicity
of X andY alongC. In order to describe the dimension range of the vari€ietenote
by XY or embJX,Y) theembedded joinf X andY, that is, the closure of the union of
all linesxy, x € X,y € Y. Then thev-cycle can be written as

V(XvY) = Zj(X7Y;C)[C] = ka(X7Y)7

wherek runs from maxdimX + dimY — dimXY, 0) to dimX NY, andv(X,Y)(£ 0) is
thek-dimensional part o¥(X,Y).

The part of the cycle, = w(X,Y) which is defined over the base fi{d the so-
calledK-rational part, will be denoted by rdtx) and the remaining part, the so-called
irrational or movable partwill be denoted by mofw), that is,

Vi = rat(vi) + mov(vg).

To prove a theorem of Bezout, Stiickrad and Vogel had to tdakeaircount also
the so-called empty subvarietyC X NY (which by definition has dimensionrl and
degree 1) and its intersection numhéx. Y, 0).

We want to describg(X,Y,0) following van Gastel [19]. To this end, let
A = K[xo,....Xn], Ay == Klyo,...,¥n], A= Ac®k Ay and denote byt (X) C Ay,
I(Y) C Ay the largest homogeneous ideals definihgndY, respectively. TheiR :=
A/(I(X)A+1(Y)A) is the homogeneous coordinate ring of thked join J=J(X,Y) C
PN+ — Proj(A). The “diagonal” subspaca of PN is defined by the ideaxo —
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Yo,..-,Xn — YN)A =: [ (A). Denoting by de@(X,Y)/XY) the mapping degree of the
linear projection)(X,Y) --» XY with centerANJ(X,Y), van Gastel proved that

j(X,Y;0) = degJ/XY)degXY.

Then, using the above notation, thefined Bezout theoreifsee [16], Theo-
rem 2.2.5) can be formulated as follows.

THEOREM 1 (Stiickrad-Vogel [30], van Gastel [19]).et X,Y be closed (irre-
ducible and reduced) subvarieties®jf. Then

degXdegy = deQJ/XY)degXYJrZj(X,Y;C)dem

degJ/XY)degXY +degv(X,Y)
dedgJ/XY)degXY + zdegvk(X,Y)‘

The degrees of the’s and degJ/XY)degXY can be calculated by the Hilbert
coefficients of the bigraded ideal which defines the normalecof J(X,Y) along
J(X,Y)NA. More precisely, let

A=K[Xo,..., XN, Y0, .-, IN],  R=A/I(I(X,Y)),
[ =1(A) = (X0—Yo0,---, XN — YN)A,
to,...,tn indeterminates, and
0: Alto,....,tn] = G (R) := EP1¥/1¥L
keN

be the natural surjection which is induced by the natural évorphismA — R/l and
substitutingj by the class ok —y; in1/1%,i =0,...,N. Define a bigrading by setting
degxi) = dedyi) = (1,0) and degt;) = (0,1). Then ke is a bigraded ideal in the
bigraded ringAlto, . .., tn], and

(1) R = R(X,Y):=Gi(R) = Alto,..., tn]/ kerd

is bigraded R = @ ker K k- If we setd := Krull-dim R= Krull-dim & and write the
Hilbert polynomial ofy¥_o 5}, dimk () in the form

d i _
p(j,k) = z C (J +|> (k+d I) + lower degree terms,
% I d—I
then the non-negative integags=: ¢| (R ) =: ¢ (X,Y) are thegeneralized Samuel mul-
tiplicities of | in the sense of [3].

PrROPOSITIONL ([3], Theorem 4.1 and Proposition 1.2)Vith the previous no-
tation,

co(R) = co(X,Y) = j(X,Y;0) = deq I/XY)degXY
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and fork=1,...,d,
G(R)=G(X,Y)= T  length®p) (R /P) = degu(X,Y).

PcemInASSR.

According to (1) the minimal prime ideal® of ® contract to prime ideals
PN A which contain the ideals(A) andl(J(X,Y)), hence the contraction idealdn
K[Xo, .- Xn] (which need not all be distinct) define subvarietieXafY c PN, the so
calleddistinguished varietiesf the intersection oK andY in the sense of Fulton [17].
These subvarieties are the support ofkheational part ofv(X,Y). The lengths of the
Rp’s are the geometric multiplicities of the irreducible camnents of the normal cone
of J(X,Y) alongJ(X,Y)NA.

DEFINITION 1 (Intersection vector) With the above notation, s&t= dim(X N
Y) + 1. Then thentersection vectoc(X,Y) of X and Y is defined to be the vector of
non-negative integers

¢(X,Y) = (co(X,Y),...,c5(X,Y)) = (Co(R),.--,C5(R)) =1 ¢(R),
and by the refined Bezout theorem
degX degY = co(X,Y) + -+ C5(X,Y).
By Proposition 1 we have

2) CXY)= 3 lengthRe) o(R/P).

PemInASSR.

In particular, theself-intersection vectoof an n-dimensional variety X is de-
fined to be
c(X) = ¢(X,X) = (co(X, X)), ., Cns1(X, X)),

and it holds
(degX)? = co(X, X) + -+ C5(X, X).

The integersk(X,Y) = c(R) can be computed by using various computer
algebra systems (e.g.HRUCE, using the packageesRE[1]), in which the calculation
of the Hilbert series of a multigraded ring has been implaedrsee Section 5.

For the computation of the number of apparent double poirdssarietyX, the
coefficient

co(X,X) = j(X, X;0) = degI(X, X)/embd X, X)) - degembJX, X))

is particularly important. Note that emb{ X) is thesecant varietywhich we denote
by SecX. It is well-known that Se¥ has theexpected dimensio2dimX + 1 (and
is said to benondeficientif and only if for generic pointsc € X andy € X one has
Tx xNTxy = 0 (see, for example, [16], Cor. 4.3.3). The non-negativegiete dimX +
1—dimSecX is called thedeficiencyof SecX. Concerning de@ (X, X)/ SecX), there
is the following result, which is essentially [16], Propimh 8.2.12, see also [24],
Proposition 6.3.5.
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PROPOSITION2 ([5], Proposition 2.7).Let X ¢ PN be a non-degenerate irre-
ducible subvariety such th&dimX + 1 < N. Suppose that one of the following two
conditions is satisfied:

1. Xisacurve;

2. X is reduced and the generic tangent hyperplar®dadX is tangent to X at only
finitely many points (that is, X is nétweakly defective in the sense of [9], 2.1).

ThendegJ(X,X)/SecX) = 2 and, in particular,dimSecX = 2dimX + 1.

REMARK 1. If x,y € X, then over the secant lingy of X there are two lines
J(x,y), I(y,x) of I(X,X), so that the rational map

T J(X, X) --+ SecX,
has even degree, that is,
degJ(X,X)/SecX)=2p > 0.

Here p is the number of secants to X passing through a general poirbexX, if
dimSecX = 2dimX + 1, andp = 0 otherwise. In [9] one can find a complete classifi-
cation of surfaceX c PN, N > 6, for whichp > 1.

3. Computing p by the Stiickrad-Vogel intersection cycle

Let Sc PN (N > 5) be a non-degenerate surface of degraéth singular locus
SingS. For any point? € Sm(S) we denote bylsp the embedded projective tangent
plane toSatP. We denote by TaBthe tangent variety d§, that is the closure of the
union of all embedded projective tangent planeS & regular points.

It is known (see, for example, [5]) that the Stiickrad-Vog#f-stersection cy-
cle of Sis

B) v(S9=[9+ Z iz[Z] +Pu(S) + Z jp[P] +mowvo(S)|sms+ Movvo(S)|sings,

whereZ runs through the one-dimensional irreducible componehSirgS, Pi(9)
denotes the first polar locus 8f P runs through the singular points 8bf embedding
dimension greater or equal to 4, and me{S)|sms is the ramification locus of the
linear projectiony : S— P2 with center a generi(N — 4)-dimensional linear subspace
A C PN (see [15], Theorem 4.6).

Moreover,

degvl(S) = Z jz degZ+degP1(S) = Cz(S, S),

degvo(S) = Z jp +degmowo(S)|sms + degmowo(S)|sings = 1(S,9),
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and, if Sis non defective,
deg mowp(S)|sms = degTanS)
(see [5], Lemma 4.1).

In [5], Theorem 4.3, the following has been proved.

THEOREM2. Let Sc PN (N > 5) be an irreducible and reduced possibly sin-
gular non defective surface of degree d. With the precedutgtion the following
formula holds:

2p-degSeS (degS)? — degv(S,S)

(degS)? —c3(S'9) —c2(S ) — (S )
= d’°-d-— Z jzdegZ — degP1(9)

— Z jp — deg TarS— deg mowpg(S)|sings

= ©(S9),

where Z runs through the one-dimensional irreducible conemés ofSingS and P runs
through the singular points of S of embedding dimensiontgrea equal to4.

For N =5o0ne has

p(S) = 50(SS)

REMARK 2. The self-intersection vectm(S, S) of a surfaceSc PN N > 5,
encodes geometric information & If Sc PN (N > 5) is smooth and non defective,
then the self-intersection vector 8fs

c(SS = (2pdegsSecs),degTanS),degPi(S)),deqS)) =
(2pdeg Secs),0,0,0) + (0,deg TanS),deg Pi(S)),ded S)),

where the last line is the decomposition according to Pritiposl. In fact, forS
smooth and non defective the ring of coordinates of the nbcoree®_has two minimal
primes®; and?, such thatPy NK[xo, ..., xn] = (Xo,...,Xn) and P NK(xg, ..., Xn] =

1(S).

If the surfacesc PN,N > 5, has isolated singular poins, ... ., P; of embedding
dimension greater or equal to 4 and singular cugsgs. . , Zs, then the normal cone of
J(S'S) alongJ(S S)NA has at least one component for each pBint <i <r and for
each curveZj, 1 < j < s. The self-intersection vector &decomposes in the following
way
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c(S9 = <2p degSecs), degTanS) + deg mowo(S)|sings+ Z ip,

degPi(S)) + Z jz deqZ), deg(S))

= (2pdegSecS), 0, 0, 0) +

+ (O, length Rp) - c1(R /P), O, 0) +
Pe{R} \ {Z|2nA=I(P)}
+ 3 S lengthRy) - (0, ca(R/®), Co(R /). 0) +

ZETZ)} {P|PrA=1(2)}
+ (0, degTanS), degPi(9)), deq9)),

where we recall thaty := K[Xo, ..., Xn], and we remark that for the movable poifis
on the curve¥; the coefficients lengiRy) are equal to the intersection numbjey
and

length(Re) - c2(R/P) = jz degZ)

{?|PnA=1(2)}
(see [6], Main Theorem). We also observe that

; length Ry ) - c1(R./P) = deg mowp(S)|sings,
ZETZ)} {P|PrA=1(2)}

and ¥ (pienac—i(z)} C1(R/P) is the number of the movable points @n

In order to compute the intersection numierof an isolated singular point
of Swe must compute the generalized Samuel multiplicities efdtagonal ideal in
the localization of the rin@R localized at the prime ided(P)R+1(A)R (see [3]). In
this case we obtain three coefficients:= jp,C1,C2, Wherecy = 0 if and only if the
embedding dimension @atP is smaller or equal to 3 ang} is the multiplicity of S
atP.

PrRoPOSITION3. (C.Ciliberto) A surface S P° with one apparent double
point ((S) = 1) cannot have isolated singular points of embedding dinmengieater
or equal to4.

Proof. In fact, assume tha& € Sis a point of embedding dimension greater or equal
to 4 andr is the Zariski tangent space &atP. If r is a generic secant line &and

a = (r,P) = P2, thena NI contains at least a linethroughP. The line? C M is a limit

of secants, hence it is a secant, bat¢ is not empty, which contradicts the genericity
ofr. O

This says that we cannot have surface®trwith one apparent double point
and singular points which contributes to the self-intetisaccycle. We can have such
examples only ip > 2.
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By using Theorem 2, we want to compute the self-intersectemtor and the
numberp(S), for singular surfaces i C P® which are linear projections of rational
normal scrolls. We also want to point out the contributiortted components of the
singular locus of5to its self-intersection vector.

In the following with S(a,b) c P21 we denote the rational normal scroll
defined by the parametric equations

(X0 i Xa Yo 1Y) = (Qu:sltu: .. 1tfu: v L v i tPy).

We recall tha§(a, b) is a smooth surface of degrae- b, whose defining equations are
given by the 2x 2 minors of the matrix

(XO Xt ... Xa1 Yo .- Ybl>
X1 X2 ... Xa Y1 ... Wb

(for more details see, for example, [21]). The defining idedIS(a,b) can be conve-

niently computed by various computer algebra systems, se@o8 5.
By [5], the self-intersection vector &a,b) is

c(SS = (2dedSecS), degTanS), degPi(9)), deq9))
4) = ((a+b—-2)(a+b-3), 2(a+b—-2), 2(a+b—1), a+h).

Now we are ready to present some examples, where the setémtion vectors
have been computed following procedures and codes as egglai Section 5.

ExAMPLE 1. Surfaces irfP® with one or two isolated singular points which do
not contribute to the self intersection cycle and one appadeuble point
Let us now consider the smooth del Pezzo surfacg @fP® given by the parametric
equations

Xo = UVW X3 = VPW, X2 = VWP, X3 = UWP, X4 = UPW, X5 = UPV, Xg = UVP

(see [28], p. 155). The secant variety 8fis the hypersurface df® defined by the
equation
X0 — X0X1X4 — X0XX5 — XoXaXe + X1X3X5 + XaXaXe = O,
whose singular locus iS.
We projectS to IP° from a pointP € S. If

Pe{[0:1:0:0:0:0:0,/0:0:1:0:0:0:0,/0:0:0:1:0:0:0,
[0:0:0:0:1:0:0,/0:0:0:0:0:1:0,(0:0:0:0:0:0:3}

the image ofS under the projection is a surfadec P° of degree 5 with two singu-
lar points which do not contribute to the self-intersectaytle of the surface. The
decomposition of the self-intersection vector of the stefhis

¢(T,T) =(2,8,10,5) = 2(1,0,0,0)+(0,8,10,5),
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in particularp = 1.

If we project the surfacé from the point[0:1:1:0:0:0:0, we obtain a
surfaceT’ ¢ P° of degree 5 with one singular point which does not contrillatthe
self-intersection cycle of the surface. The intersectiomhbers of the surfacé’ are
again

c(T',T") = (2,8,10,5) = 2(1,0,0,0) + (0,8,10,5),

in particularp = 1.

ExAMPLE 2. Surfaces ifP® with an isolated singular point which contributes
to the self intersection cycle and two apparent double [goint
Let S= S(3,2) C P%, whose self intersection vectordS(3,2)) = (6,6,8,5)) and

SingSed(3,2) = SingTar§(3,2) = §(3,2) N {[Xo:...: Xe] € P® | g =--- =x3 = 0}.

Let T; and T, be the surfaces dP® obtained by projecting from the pointsP; =
[1:0:0:1:0:0:0€ Secs(3,2)\ Tans(3,2) andP>, =[0:1:0:0:0:0:0¢
TanS(3,2) \ Sing TarS(3, 2) respectively.

The surfaced; andT, have one double point which contributes to the intersec-
tion cycle with intersection multiplicityj; = 2 andj, = 3 respectively. The decompo-
sitions of the intersection vectors are:

¢(T1, 1) = (4,8,8,5) = (0,6,8,5) +2(0,1,0,0) +(4,0,0,0),
c(T,, T) = (4,8,8,5) = (0,5,8,5) + 3(0,1,0,0) +4(1,0,0,0),
see formula (2) and Section 5.

ExAaMPLE 3. Surface inP® with two isolated singular points which contribute
to the self intersection cycle and four apparent double oin
Let us consider the rational normal scr8(B, 3) c P’ and we project it from the line
s passing through the poinB=[0:1:...:0  andQ=1[0:...:0:1:0 (which are
smooth points of Se¥(3, 3)) on the linear spacfixo: ... : x7] € P’ | x; = Xg = 0} = P°.

One obtains a surface c P° with two isolated singular pointR; =[0:0:0:
0:0:1 andR,=[1:0:0:0:0:0, which are double points. A computer calculation
as in [1, file segre4.txt] gives the self-intersection nurstug T

(T, T;R) =j(T,T;R) =3
and the intersection vector
c(T,T)=(8,12,10,6) = 8(1,0,0,0) + 3(0,1,0,0) + 3(0,1,0,0) + (0,6,10,6),

whereas the intersection vector${f, 3) is ¢(S(3,3),5(3,3)) = (12,8,10,6), see (4).

We recall the definition of Verra surfaces from [11], Secti®nin a slightly
modified version.
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DEFINITION 2 (Verra surfaces)Let Y C P° be a degenerate curve, which spans
alinear space V of dimensi® Take a line W P® such that VAW = 0. Let Gy (Y) be
the cone over Y with vertex W. LetXCw(Y) be an irreducible, non-degenerate, not
secant defective surface, which intersects the generalgil = P? of Gy (Y) along a
line L. This implies that:

(A1) the projection pP° --» V with center W restricts to X to a dominant map
plx: X --+Y;

(A2) ifL,1<i <2, are the closures of two general fibers dk pthen Ly N Ly = 0.

Indeed, (Al) is clear, and (A2) follows, via Terracini’s L, from the fact that X
is not secant defective. The variety X is calledara surfaceconstructed from the
curveY.

We point out that, differently from [11], in our definitionis not required to be
a curve with one apparent double point.

PrROPOSITION4 (A. Verra). With the previous notation we have

Proof. Let X be a Verra surface. Letc P° be a general point, so thgt= p(x) is
a general point of/. A secant line toX throughx is a general secant line % and
projects to a general secant lineM@assing throughy. Let p(Y) = m, then there are
msecant lineds, ..., ¢y throughy, and letP1, P> (i = 1,..., m) the intersection points
of ¢, with Y. For each secant ling of Y throughy there is exactly one secant line f
throughx which by p is mapped orj. Such a line must be in the 3-dimensional linear
spacezZ; = (¢; UW), which intersects X along the two linés; C (B;,W),1<j <2,
the union of which spang;. The assertion follows, since there is only one secant line
to Lj; ULj2 passing through € Z;.

O

The following two examples regard two families of Verra swds with a mul-
tiple line the preimage of which in the normalization are tioraal normal curve anil
lines, respectively.

EXAMPLE 4. Verra surfaces ifP® with a multiple line and one apparent double
point

Let us consider a rational normal scr@d — 3,3) ¢ P41, with d > 5, and let us
projectS(d — 3, 3) from the linear subspace

L={[Xo:...:Xd-3:Yo:...:y3] €eP | xg=xg 3=yo=---=y3 =0}
of dimensiond — 5 contained in

MN={[Xo:...:X4—3:Yo:...:ya] € P41 |yp=--. =y3 =0} = P93
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and such that it does not intersect the rational normal addfde- 3) = S(d — 3,3) N .

The image ofS(d — 3,3) under the linear projectiom_ is a rational surface
T :=T(d - 3,3) C P® with a multiple line/ of multiplicity d — 3 such thaig ~1(¢) =
C(d-3).

Clearly the restriction of the projectian to

N ={[X:...:Xd-3:Yo:...:y3] e P |xg=-- =xg_3=0} =P3

gives an isomorphism between the rational normal c@& = S(d —3,3) NN’ and its
image inP°, and the surfac® is obtained as in Verra’s construction (see Definition 2,
[10], Example 5.18 and [11], Section 3).

SinceT is obtained from Verra’s construction, we know tpgl ) = p(C(3)) =
1, hence de@(T,T)/SedT)) = 2.
We can observe that far= 5,

SingSe&(2,3) = S(2,3) U{[X0:...: X2 Yo:...:y3] €P®|yo=---=y3=0}
andL is a point in SingSe§(2,3) \ §(2,3). The surfacel (2,3) has degree 5 and its
singular locus is a line of double points whose preimage &t the smooth conic

S(2,3)N{[X0:...:X2:Yo:...:y3] €P®|yo=--- =y3=0}.
This example was studied in detail in [5], Section 4, andét&intersection vector is
c(T(2,3),T(2,3)) = (2,6,10,5) = 2(1,0,0,0) + 2(0,2,1,0) + (0,4,8,5).

The self-intersection vector df(2, 3) is equal to the the self-intersection vectors of the
surfacesT andT’ of Example 1, but their decompositions are different.

EXAMPLE 5. A Verra surface ifP® with a double line and one apparent double
point
Let us now consider the rational normal scr8ilL,4) c P® and the 3-dimensional
irreducible and reduced variety (remember that embJ derlegeembedded join)

X:=embJ$(1),51,4)) = embdS(1),5(4)) = Sing Se§(1,4) = Sing Tar5(1,4)
of defining ideal
(—XoXa -+ Xa2, —XoX5 + XaXa, —X2X6 + XaX5, —XoX6 + XaZ, —XaXg + XaXs, —XaXe + X52).

Let P € X\ S(1,4) and letrp: S(1,4) — P5 be the linear projection fror® into PS.
The surfac& :=Z(1,4) := 1p(S(1,4)) has a singular liné = (S(1)), the preimage
of which is composed of two intersecting lines, precis&ly) and a line of the ruling.
To show this we prove the following stronger claim.

CLAIM. Leta = (S(1),P) = (¢,P) be the plane spanned 18¢1), or by ¢, and
the pointP. Then the intersection cyclg€a, S(1,4)) is composed by the union &1)
and a line, say, of the ruling ofS(1,4) and three movable points &(1). In particular,

10 =ans(1,4) = 1) ur.
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Proof. To prove the claim, leH € P° be a generic hyperplane containing The
hyperplaneH intersects(1,4) in a curve which is a union of lines and havis(l) as
a component. In factd intersectsS(4) in four distinct pointsQs, ..., Qs and through
each of them there is a line of the ruling lying ¢h and intersectings(1) in a point.
Denote these distinct lines by, ... ,r4 and letR = r; N S(1).

We observe that exactly one of the lines...,r4 is contained ina. In fact,
being P € X, there exists a liné C X passing througR. Such a line is contained i,
but it cannot be a line 08(1,4) sinceP ¢ S(1,4). LetQ € (S(1,4)\ S(1)) nl. Such a
pointQ is the only point in which the plane intersectsS(4), since a plane can contain
only one line of the ruling. Let =r; be the unique line 0§(1,4) passing through
Q= Q. This liner is contained irx since the poin and the point N (1) are ina,
henceS(1,4)Nna = S(1)Ur.

The intersection cycle(a,S(1,4)) is composed by US(1) and the three em-
bedded point$R;, Rs, R4, which are movable 08(1) whenH (D a) varies. O

LetP=[0:1:1:0:0:0:0e X\ §1,4) and letrr be the linear projection from
P into P® = Proj(C[xo, X1 — X2, X3, X4, X5, Xe]). The surfac& := Z(1,4) := mp((1,4))
is defined by the ideal

(—XaXs5 + Xa%, —XaXg + XaXs5, —XaXg + X5,
—XoXs5 + (X2 — X1)Xq + X%, —X0X6 + (X2 — X1)X5 + XaXa).

It has degree 5 and it is singular along the line of equatians x4 = Xs = Xg = 0,
which is a line of double points, whose preimage is compogetthd two intersecting
lines of equationgy; = --- = x5 = 0 andx; = X3 = --- = Xg = 0 respectively.

The surface is a Verra variety since if we project the surface frénits image
is a rational normal cubic curve, henges given by Verra’s construction.

One can observe that the surfacdias the same intersection humbers of the
surfaceT (2,3):

c(Z,Z) = (2,8,10,5) = 2(1,0,0,0) + 2(0,2,1,0) + (0,4,8,5).

In Examples 1, 4 and 5 we considered surfaces with one appdoehle point.
Recently Ciliberto and Russo [11] gave a complete classificaf (possibly singular)
surfacesS C P° with one apparent double point, proving tHais either a smooth
rational normal scroll or a (weak) del Pezzo surface of dedrer a Verra surface
constructed from a rational normal cubic.

EXAMPLE 6. Surface inP° with a line of double points, an isolated singular
point which contributes to the self intersection cycle amd apparent double points
Let us consider the rational normal scroll

S47 2) C ]P)7 = PrOJ(C[X()? M 7X47y07yl7y2]) N
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The ideal of its tangent variety is
(XoXq — 4x1x3 + 33,  AXoXaxXs — 3X0X5 — 3XEX4 + 2X1X0X3,
—4x3X3 + 14XoX1X3X4 — IXoXaX3 — IXaXoXg + BXEX3,
—3XoXoY2 + 3XoXay1 — XoXaYo + 3X5Y2 — 3X1XaY1 + X1XaYo,
—3XoX3Y2 + 4XoXaY1 + 3X1X2Y2 — AXaXgy1 — 3X1XaYo + 3X2X3Y0,
—XoXaY2 + X1XaY2 + 3x1Xay1 — 3XoXay1 — 3XaXayo + 3X5Yo,
Xoy3 — 4X1y1y2 + 2X2Yoy2 + 4XaY2 — AXaYoy1 -+ Xay3,
XoX1XaY2 — OXoXoXaY2 + 1 2XoXoXay1 — 3XoXaXaYo + 8XEXaY2 — 12XEXay1 + 3X1XoXaYo,
3xGXay2 — MoX1XaY2 — XoX1Xay1 + IXoXoXay1 — 3XoXaXayo + 6XEXaY2 — BXEXaY1 + 3XEXayo)-

We observe that the poi@=1[0:...:0:1:0 € TanS(4,2) has multiplicity
two for TanS(4,2).

Let us projectS(4, 2) from the line passing through the points
P=[1:0:0:0:1:0:0:0¢€ SecS(4,2) \ TanS(4,2)
and
Q=[0:0:0:0:0:0:1:0€e Tang(4,2),
that is, from the line

L={[X0: . :X4:Y0:V1:Y2] €EP" |Xo—Xsa=X1 =% = X3 =Yo=Yy2 =0},

not contained in Se&4,2) and intersecting Ta®(4,2) only in the pointQ. The pro-
jectionS=11(S(4,2)) CP = {[Xo:...:X4:Yo:Y1:Y2] EP’ | Xo—X4 =y1 =0} is
a singular surface with a line of double points and an isdlaleuble point. After a
change of coordinates (in which we eliminate— x4 andy,), in the new coordinates
we have

SiNgS={[X1:...:X4:Y0:Y2] €P° | X1 =Xp =X3=X3=0}U{[1:0:0:0:0:0} =¢UR
and
TanS= {(Xe:-.. i % Yo Y2 €P°|
— XEXEXG + BxpXaXaxg — AX1XBX3 — BX1XoXaX + AX1XEXE — XXy
+ 3633 — 86X + 42855 — A8XXaxa — X3 4 1666 + 3xx = 0.

The surfaceSis a Verra variety since if we project the surface frénits image
is a quartic curve&€ with self-intersection vector

c(C,C) = (4,8,4) = 4(1,0,0)+2(0,1,0) +(0,6,4),
hencep(S) = p(C) = 2. This can also be confirmed by the computatior(& S) =
(4,14,12 6).

The singular poinR € S contributes to the cycle with multiplicity = 2, since
in the affine chark; = 1 the self-intersection vector &is (2,0,2).
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EXAMPLE 7. Surface inP® with two lines of double points and two apparent
double points
Let us consider the rational normal scrs{#,2) ¢ P’ and project it from the line
S={[X:...:X7] €P" | Xo=X2 = X3 = Xq = X5 = X7 = O}

on the linear spac€(xo : ... : x7] € P’ | x; = X = 0} = P°. The lines is contained in
TanS(4,2) and intersects Si{@anS(4,2)) in a point.
We obtain a surfac& c P> with two lines of double points

ri:{[Xo:%2:X3:Xa:X5:X7] 6P5|x2:x3:x4:x7:0},

ro:{[Xo:X2:X3:X4:X5:%X7] €P° | Xo=X2 = X3 = X4 = O},
intersecting in the poinP=r;Nr;=1[0:...:0:1:0:( and such that the preimage
of r1 in the projection is the line

{[Xo:...:X7] €P7 | X1 = Xp = X3 = X4 = Xg = X7 = O}
on the scroll and the preimage fin the projection is the conic
{Xo:...:x7] €PT | xo= X1 = Xo = X3 = Xg = X& — XsX7 = O}.
The intersection vector of is
c(T,T)=(4,1214,6) = 4(1,0,0,0) + {3(0,1,1,0) +2(0,2,1,0)} + (0,5,9,6),

where the contribution inside the curly braces refers tmtiedimensional part of the
singular locus. Preciseljf, = 3 and there is a movable point of multiplicity 3 og
ir, = 2 and there are two movable points of multiplicity 2ien
The surfaceT is a Verra variety since if we project it fromp, its image is a
quartic curveC with self-intersection vectar(C,C) = (4,8,4), hencep(T) =p(C) = 2.
We observe that(S(4,2),54,2)) = (12,8,10,6), and this shows that

degP1(S(4,2)) > degPy(T).

4. Computing p of a projection

In this section we propose a second method for the compatefip(T) when
the singular surfac& C P° arises as the projection of a surfé@e P{ (N > 5) along
a linear subspack. This method reduces considerably the computational chenw
calculating concrete examples (see Section 5).

THEOREM3. Let X C PN be a non-degenerate reduced and irreducible variety
such tha2dimX + 1 < N and the generic tangent hyperplaneSecX is tangent to
X at only finitely many points (that is, X is nbiweakly defective in the sense of [9],
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2.1). Let Lc PN be a linear subspace such thaidimL > dimX 4 1 and such that the
linear projectionty : X — 14 (X) =:Y is generically one to one.
Then
p(Y)-degSed = cy(L, SecX),
and, if L is a point and €SecX,L) denotes the multiplicity oBecX at L (which is
defined to be zero if £ SecX), it holds
p(Y)-degSet = degSeX — e(SecX,L).

Proof. Itis known that
p(Y) = 5 degJ(Y,Y)/ Secy)

and degJ(X,X)/SecX) = 2 (see Proposition 2 and Remark 1). Let us consider the
following diagram of rational maps

T[AN
IKX) —2N L seex
lmm im
YY) L Seer

whereJ(1y, 1) is the map induced by, v andmn-«-1 are the projections along
the diagonal spaces PN, PN) andJ(PN-k-1 PN-k-1) respectively. By assumption
degl(1y, T ) = 1, hence by the commutativity of the diagram it turns out that

degJ(Y,Y)/SecY) = 2ded SecX/ SecY),
hence
(5) p(Y) = dedg SecX/Secy).
On the other hand, by van Gastel [19]
co(L,SecX) =dedJ(L,SecX)/embdL,SecX)) - degembJdL, SecX)).

Since one of the two intersecting varieties is a linear sptéecyclev(L,SecX) can
be computed without passing to the ruled join (see [16], Bsiijpn 2.2.11), therefore

co(L,SecX) = degSecX/ty (SecX))-degr (SecX)
= degSecX/SecY) degSev,

which, together with (5), finishes the proof of the first folmu

If L is a point, by the refined Theorem of Bezout and taking int@mantthat
j(SecX,L;L) =e(SecX,L) (see e.g. [16], Lemma 5.4.7) one has

Co(L,SecX) = degSeX — e(SecX, L),

which finishes the proof in this case. O
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COROLLARY 1. Let Sc PN N > 5 be a non-degenerate reduced and irre-
ducible surface such that the generic tangent hyperplan8ecs is tangent to S at
only finitely many points (that is, S is nbiweakly defective in the sense of [9], 2.1).
Let L c PN be a linear subspace of codimensi6rsuch that the linear projection
T : S— 1.(S) =: T C P°is generically one to one.

Thenp(T) = cp(L, SecS).

Using this result we can compute the numpdor some surfaces (of low de-
gree) in a class of Verra surfaceskf with a multiple line and one apparent double
point, which contains the surface of Example 5.

ExAMPLE 8. Let us consider the rational normal scr8(L,d — 1) of degreed
in P91 withd > 5. Let A ¢ P41 be a linear subspace of dimensidr-5 such that

ANS(1,d—1)=0, AnembS(1),Sd—1))={Py,....,A},1<k<d-—4.

We remark that Seg(1,d — 1) (resp. Tar§(1,d — 1)) is a cone of vertex§(1) over
SecS(d —1) (resp. Tars(d — 1)) and that SingSe®(1,d — 1) (resp. Sing Ta&(1,d —
1)) is a cone of verte$(1) over Sing Se§(d—1) = S(d—1) (resp. SingTag(d—1) =
S(d—-1)), hence

embJS(1),51,d—-1)) = embiS(1),S(d-1))=
= SingSe&(1,d—1) = SingTar{S(1,d —1)).

Moreover,d — 4 is the maximum number of points éfNembdS(1),S(d —1)). In
fact if A would intersect emi$(1),S(d — 1)) in m> d — 4 points, through each of
them there would be a lingconnectingS(1) with S(d —1). LetQ; =linS(d—1) and
let r; be the line of the ruling througky;. We observe that the point

Q ea=(AS1)=P43

hence the ling; is contained ino. SinceS(d — 1) is not contained im, starting from
a pointQm;1 € S(d— 1) we can find a linem,.1 of the ruling which is not contained in
a. The linear space

(O, Fme1) 2 P92

containsm+ 1 > d — 3 lines of the ruling and repeating this reasoning we couldl din
hyperplangd =2 P9 containingd lines of the ruling and the ling(1) and this contradicts
the theorem of Bezout, since the scig(ll,d — 1) is a non degenerate surface.

The intersection cycle(S(1,d — 1), a) is composed by the lineX1),rq,...,rk
andd — 1 —k movable points o1$(1).

Now letZ(1,d — 1) = Tn(S(1,d — 1)) C IP%. Such surface has a singular line,
say/, of multiplicity k4 1 whose preimage are the lin86L),r1, .. .,r¢. We can project
the surfacez from ¢ into P2 and we obtain an irreducible cur@of degreed —k — 1
andZ turns out to be a Verra surface constructed ftbamdC, hencep(Z) = p(C).

If k=d—4thenp(Z) =p(C) =1, if k < d— 4 we can compute(C) by com-
puting the self-intersection cycle 6f(see [4]) or using Corollary 1.
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Now we show the application of Corollary 1 to projectionstf, 5) andS(1, 6)
into IPS.

EXAMPLE 9. Let us project the rational normal scr8ilL, 5) c P’ into P° from
the line

St ={[X0:...:%7] EPT | Xo = X1 — X = X3 — X4 = X5 = Xg = X7 = 0},
which intersects Se&1,5) in the point
P=1[0:1:1:0:...:0] € Sing(Secx1,5))

of multiplicity 3 for SecS(1,5), that isk = 1. The image is the surfag c P° defined
by the kernel of the map

12 Kz, 28] = K[¥o,.....x7]/1(S(1,5)),
20— X0, 2y > X1 — X2, 2+ X3 — X4, Z3+=> X5, Z4 > Xg, Z5 > X7.
The singular locus af; is the double line
t={zo:...:z5) €P° | =23 =24 =25 =0}.

We have
c(Secy(1,5),s1) = (2,4) = (2,0) +2(0,1) + (0,2),

in particularp(Z;) = 2. Here 20,1) + (0,2) is the contribution ofP, which comes
from two components of the normal conegpn SecS(1,5) in Secy(1,5), therefore
j(Secs(1,5),51;P) = 4.

If we project nowS(1,5) into P° from the line
S={[X0:...: %] €PT | X0 = X1 — X = X3 = X4 = X5 = Xg — X7 = O},
which intersects Se&1,5) in the same point
P=1[0:1:1:0:...:0] € Sing(Secx1,5))

as before and in the smooth poi@t=[0:...:0:1: ] (that isk = 1), we obtain a
surfaceZ, c P° defined by the kernel of the map

®: Klz,...,25] = K[Xo,...,x7]/1(S(1,5)),

20— X0, Z1 > X1 — X2, 22+ X3, Z3 > X4, 24— X5, Z5 > X — X7.

The singular locus af, is composed of the double line
lo={lz0:...:275) €P° | n=23 =24 =25 = O}
and the isolated poif0 : ... : 0: 1]. We have
c(Secs(1,5),s) = (2,4) = 2(1,0) + (0,3) + (0, 1),
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in particularp(Z;) = 2, j(SecY(1,5),5; P) = 3 andj(Sec(1,5),5;Q) = 1.

Both Z; andZ, are Verra surfaces constructed frdm(i = 1,2) and the irre-
ducible quartic curv€; C P3 which is the projection of; from ¢;. The curveC; has a
double point and the self-intersection vectoiGpfis ¢(C;,Ci) = (4,8,4), in particular
p(Ci) =2.

EXAMPLE 10. Let us project the rational normal scr&{|1,6) c P8 into P5
from the plane

Tu={[%:.. %] €EP®| X=X —X2 = X3 — X4 = X5 = Xg = X7 — Xg = O},
which intersects Se¥1,6) in the point
P=[0:1:1:0:...:0] € Sing(Secx1,6))

of multiplicity 4 on Se&(1,6) and in the smooth poif=[0:...:0:1: 1], hence
k= 1. The image is the surfad C P° defined by the kernel of the map

03: K[z,..., 5] = K[, ..., xa]/1(S(1,6)),
20> X0, Z1 V> X1 — X2, Z2 —> X3 — X4, Z3 > X5, Z4 —> Xg, Z5 > X7 — Xg.
The singular locus af3 is the double line
la={lz0:...:z5) €P° | n=23 =24 =25 =0}
and the poinf0:...:0: 1]. We have
c(Secy(1,6),m) = (4,6) = 4(1,0)+2(0,1) + (0,3) +(0,1),

in particularp(Zs) = 4. Here 20,1) + (0,3) is the contribution of and (0, 1) is the
contribution ofQ, that is, j (SecS(1,6),™;P) = 5 andj(Sec3(1,6),m; Q) = 1.

Now let us projec§(1,6) into P° from the plane
To={[X:...:Xg] EP®| Xo—Xg = X1 — X2 = X3 — X4 = X5 = Xg = X7 = O},
which intersects Se¥1,6) in the line
(={x0:... 1] €P®|X0—Xg = X1 — X2 = X3 = Xa = X5 = X6 = X7 = O}
and SingSecS(1,6)) inthe two point$?; =[0:1:1:0:...:0]andP,=[1:0:...:0:1]]

of multiplicity 4 on Se(1,6), hencek = 2. The image is the surfady C P° defined
by the kernel of the map

0 Klzo,...,25) = K[Xo,...,Xs8]/1(S(1,6)),

20— X0 —Xg, Z1 > X1 — X2, Zp > X3 — X4, Z3+> X5, Z4 > X6, Z5 > X7.
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The singular locus o4 is the triple line
la={lo: ... % € P | =25 =2 =2%5=0}.
We have
c(SecS(1,6), 1) = (2,7,1) = 2(1,0,0)+2(0,1,0) + (0,2,0) +(0,3,0) + (0,0, 1),

in particularp(Z4) = 2. Here 20,1,0) + (0,2,0) is the contribution ofP;, (0,3,0)
is that of P>, and (0,0,1) is the contribution of/, that is, j(SecS(1,6),Ty;P1) = 4,
j(Secs(1,6), m;P2) = 3 andj(SecS(1,6),m; ¢) = 1.

Both Z3 and Z, are Verra surfaces constructed frain(i = 3,4) and the ir-
reducible curveC; C P® which is the projection o from ¢. The curveCs has
degree 5 and two double points wifh= 3, moreover its self-intersection vector is
c(Cs,C3) = (8,12,5), in particularp(Cs) = 4. The curveC, has degree 4 and a dou-
ble point, sayR, such thatj(Cs4,Cs;R) = 3. The self-intersection vector @, is
c(C4,C4q) = (4,8,4), in particularp(Cy) = 2.

5. Code of procedures for computing the examples

Code for computing the bidegrees (R ) of a bigraded ring .

While ReEDUCE (using the package E&RE [1]) and Macaulay2 provide the
functionsdegs or multideg andmultidegree respectively, in CoCoA and Singu-
lar the bidegreesy(®R) must be computed from the numerator of the non-simplified
Hilbert series ofR according to [25], p. 167. Furthermore, in CoCoA 4.7.4 itdd n
possible to assign bidegrees beginning with zeros aigleg(0,1). The trick is to
pass to &3-graded ring with deg;) = dedlyi) = (1,1,0) and degti) = (1,0,1). For
the convenience of the reader we provide the details:

CoDE 1. CoCoA, version 4.7:4

Define BiDegree(I,A,B)

F :

Flatten([[1 | X In 1..A]1,[0 | X In 1..B11);

S := Flatten([[0 | X In 1..A],[1 | X In 1..Bl1);

G:= Mat([[1 | X In 1..(A+B)], F, SI1);

This creates the matrix

Acolumns B columns
the columns of which are the degrees of e B ring variables for the subsequent Hilbert series
computation. Note that since CoCoA-4 does not allow zero-entries in ghedw of the matrix
which defines the degrees, we have added a first row of ones.
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H := HilbertSeriesMultiDeg(CurrentRing()/I, G);

Now we extract the numerator of the non-simplified Hilbert series:

Num := Sum([X[1]*LogToTerm(X[2]) | X In @H[1]1);

According to [25], p. 167, the normalized leading coefficients of the Hilpelynomial are
obtained from the numeratdinm by substituting each variabteby 1—t and then collecting the
coefficients of the terms having total degree codurrentRingl), i.e., the coefficients of the
lowest degree terms. To get rid of the artificially introduced first varialblieh is due to the first
row of G, this variable must be substituted by one. Doing this, we obtain from thenaton¢he
polynomialN, which we write as a polynomial in the first two variables of the current ring

N := Eval(Num, [1, 1-Indet(1), 1-Indet(2)]);

M := Min([Deg(X) | X In Monomials(N)1);

P :

Sum([X In Monomials(N) | Deg(X) = M]);
The polynomialP, written in the first two variables of the current ring, is the bidegree in the
sense of [25], p. 167. For better readability, the coefficient afe printed, buP is returned:
PrintLn [CoeffOfTerm(X,P) | X In Support((Indet(1)+Indet(2))"M)];
Return P;

EndDefine;

Singular, version 3.1.6:

We give the code of a procedure which computes the bidegrees ofa.ide
LIB "multigrading.lib";
proc bidegree(ideal I, int a, int b)
{
ideal SI = std(I);
def currentring = basering;

int n = nvars(basering);
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intmat m[2] [a+b] = 1:a,0:b,0:a,1:b;

This creates the matrix

acolumns b columns
the columns of which are the degrees of ¢heb ring variables.

setBaseMultigrading(m) ;

def h = hilbertSeries(SI);

setring h;

poly f = substitute(numeratoril,t_(1),1-t_(1),t_(2),1-t_(2));
Herenumerator1 is the numerator of the non-simplified Hilbert series, which is calleditse
Hilbert seriesin the Singular Manual.

poly g = jet(f,mindeg(£f));

The polynomialg, that is, the homogeneous part of lowest degreé, & by [25] the bidegree
of I. It will be returned as a polynomial of the base ring written in the first twialdes of the

base ring.
setring currentring;

return(fetch(h,g));

};

Code for computing the defining ideals of rational normal scolls S(a, b)

The defining ideals 08(a,b) can be conveniently computed by various com-
puter algebra systems, e.g. using the following functions:

CoDE 2. Macaulay?2, version 1.4:
scroll = (a,b,K) ->
(

R := K[x_0 .. x_a, y_0 .. y_bl;
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M := map(R~2, a, (i,j)->x_(i+j));
N := map(R~2, b, (i,7)->y_(i+j));
I := minors(2, MIN)

)

CoCoA, version 4.7.4:

Define Scroll(A,B)

ScrollRing ::= Q[x[0..Al,y[0..B]];

R. Achilles, M. Manaresi

Using ScrollRing Do M := Mat([Concat(x[0]..x[A-1],y[0]..y[B-1]),

Concat(x[1]..x[A],y[1]..y[B1)1);
Return Ideal (Minors(2,M));
EndUsing;

EndDefine;

Singular, version 3.1.6:

proc scroll(int a, int b, int ch)
{

ring scrollring = ch, (x(0..a),y(0..b)),dp;

matrix M[2] [a+b] = x(0..a-1),y(0..b-1),x(1.

ideal scrollideal = minor(M,2);

export (scrollring,scrollideal);

}

Code for computing the intersection vector

aided calculations in our examples.

CoDE 3. REDUCE

.a),y(1..b);

We refer to Example 3 in order to explain the code we used f®rctimputer
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Reduce (Free PSL version), 30-Nov-11 ...

1: load_package segre;

SEGRE 1999/2012-07-11 with package CALI, for help type: help(help);
2: setideal(s33, scroll{3,3})$

3: t := eliminate(s33, {x1,x6})$

4: setring({x0,x2,x3,x4,x5,x7},{},1lex)$

5: setideal(nc, int_ncone{t,t})$

6: degs(nc, {6,6});

{8,12,10,6,0,0,0}

7: on time;

Time: 17284 ms plus GC time: 579 ms

Macaulay?2, version 1:4

il : load "scroll.m2"
i2 : t1 = cpuTime();
i3 : 833 = scroll(3,3,QQ);

03 : Ideal of QQ[x , x , X , X , ¥, ¥, ¥ , ¥
0 1 2 3 0 1 2 3

i4 : ringP7 = ring(S33);

i5 : ringP5 = QQ[z_0 .. z_5]1;

i6 : center = {x_0, x_2, x_3, y_0, y_1, y_3}

o6={x,x,x,y,y5,751}
0o 2 3 0 1 3

o6 : List
i7 : T = trim kernel map(ringP7/S33, ringP5, center);

o7 : Ideal of ringP5
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i8 : idealNormalCone = intNcone(T,T);

08 : Ideal of QQ[z , z , 2 , 2,2 , 2 , W , W, W, W, W, W]
0 1 2 3 4 5 0 1 2 3 4 5

i9 : multidegree idealNormalCone

6 5 4 2 33
09 =8T + 12T T + 10T T + 6T T
0 01 01 01

09 : ZZ[T , T 1]
0 1

i10 : cpuTime() - t1 --time in ms, CPU Intel(R) Core(TM) i5-2410M
010 = 395.618

010 : RR (of precision 53)

CoCoA, version 4.7.4:

Source "scroll.coc";
Set Timer;
Null

S$33:=Scroll(3,3);

Cpu time = 0.31, User time = 0

Use ScrollRing;

Cpu time = 0.00, User time = 0

T:=Elim([x[1],y[2]],833);

Cpu time = 0.62, User time = 0

Use RingP5::=Q[z[0..5]];

Cpu time = 0.00, User time = 0

F:=RMap(z[0],0,z[1],z[2],z[3]1,2[4]1,0,z[5]);

Cpu time = 0.00, User time = 0

T:=Ideal(Image (Gens(T),F));
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Cpu time = 0.47, User time = 0

J:=RuledJoin(T,T);

Cpu time = 0.31, User time = 0

Use JoinRing;

Cpu time = 0.00, User time = 0

B:=BlowUp(J[1],J[21);

Cpu time = 31.52, User time = 3

N:=NumIndets (BlowUpRing)/3;

Cpu time = 0.00, User time = 0

Use CoeffRing[x[1..N],t[1..N]];

Cpu time = 0.00, User time = 0

G:=RMap(Concat (x[1]..x[N],x[1]..x[N],t[1]..t[N]1));

Cpu time = 0.00, User time = 0

NormalCone:=Image (B[2],G);

Cpu time = 1.09, User time = 0

BiDegree(NormalCone,6,6) ;
[g, 12, 10, 6, 0, 0, 0]
8x[1]-6 + 12x[1]1-5x[2] + 10x[1]-4x[2]~2 + 6x[1]1~3x[2]"3

Cpu time = 1.25, User time = 0

Singular, version 3.1.6nput file:

< "scroll.s";
timer = 0;
system("--ticks-per-sec",1000);

int t1 = timer;
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scroll(3,3,0);

ideal s33 = scrollideal;

ideal t = eliminate(s33,x(1)*y(2));

ring ringP5 = 0, (x(0),x(2),x(3),y(0),y(1),y(3)), dp;
ideal t = imap(scrollring, t);

rjoin(t,t);

setring joinring;

formring(joinideal, diagonalideal);

int n = nvars(form_r)/3;

ring R = char(form_r),(x(1..n),t(1..n)),dp;
setring R;

map f = form_r, x(1..n),x(1..n),t(1..n);
bidegree(f (form_i),6,6);

"time in ms = ", timer-ti;

quit;

Output file (running Singular in quite mode):

Singular -q < inputfile > outputfile

This proc returns a ring with polynomials called ’numeratorl/2’
and ’denominatori/2’!

They represent the first and the second Hilbert Series.

The s_(i)-variables are defined to be the inverse of the
t_(i)-variables.

8%x (1) ~6+12%x (1) ~5%x (2)+10%x (1) ~4*x (2) ~2+6%x (1) ~3%x(2) "3

time in ms = 10300
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Code for computing the secant variety

If T =14 (S) is alinear projection o§from L, then Theorem 3 and Corollary 1
can be applied to compuET) by computingco(SecS,L). Hence the defining ideal
of the secant variety S&has to be computed. Nevertheless this method reduces the
computation time off = 11_(S) considerably.

For example, the times required for the computation of EXar8f{see the pre-
vious subsection) reduces from ca. 18 seconds to less theeohd (REDUCE), from
4 seconds to less than 1 second (CoCoA), from more than 6 esirtat2 seconds
(Macaulay?), and from ca. 11 seconds to less than 1 secondul&r). The compu-
tations have been performed using a Cygwin installatioreaiicrosoft Windows 7
with CPU Intel(R) Core(TM) i5-2410M.

ReDUCE (with the package SGRE) has the built-in facilitiesej(I,J) and
ejoin({I,J}) which permit the calculation of the ideal of the embedded jbie
projective varieties defined by the homogeneous ideatslJ. If | = J, then this is the
ideal of the secant variety of the projective variety defibgd.

Here we propose analogue procedures for CoCoA, Macaulag?Siengular.
CobDE 4. Macaulay2, version 1.4:

embJoin = (I,J) ->

(

R := ring(I);

K := coefficientRing(R);

n := numgens(R);

T := tensor(R/I,R/J);

G := gens(T);

x := take(G,{0,n-11});

y := take(G,{n,2*n-13});

F :

map(T,R,x-y);
ker F

)

Singular, version 3.1.6:

// Author: Peter Schenzel, schenzel@informatik.uni-halle.de
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proc join(ideal I, ideal J)
{
def rj = basering;
int n = nvars(rj);
def sj = extendring(m,"v(","c,dp",1,rj);
setring sj;

ideal I1

imap(rj,I);

ideal J1 = imap(rj,J);
int j;
for(j = 1; j <= n; j++)

{

I1 = subst(I1l,var(j),v(j));

J1 = subst(J1,var(j),var(j)-v(j));

ideal K = I1+J1;

ideal join = elim(K,n+1..2%n);

setring rj;

ideal join = imap(sj,join);

return(join);

};
Further procedures needed include those for associatel@dyrings of quo-

tient rings, which can be obtained by standard eliminati@oty. They are built-in
functions in £GRE and Macaulay2 but not in CoCoA and Singular. We shall not

reproduce here our code (which is certainly not optimal), fhake it available at
http://www.dm.unibo.it“achilles/code.
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