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Abstract. For a smooth surfaceS⊂ P5
K there are well known classical formulas giving

the numberρ(S) of secants ofS passing through a generic point ofP5. In this paper, for
possibly singular surfacesT, a computer assisted computation ofρ(T) from the defining
ideal I(T) ⊂ K[x0, . . . ,x5] is proposed. It is based on the Stückrad-Vogel self-intersection
cycle ofT and requires the computation of the normal cone of the ruled join J(T,T) along the
diagonal. It is shown that in the case whenT ⊂ P5 arises as the linear projection with center
L of a surfaceS⊂ PN

K (N > 5) (which satisfies some mild assumptions), the computational
complexity can be reduced considerably by using the normal cone of SecS alongL∩SecS
instead of the former normal cone. Many examples and the relative code for the computer
algebra systems REDUCE, CoCoA, Macaulay2 and Singular are given.

1. Introduction

For a smooth surfaceS⊂ P5
K , whereK is an algebraically closed field of charac-

teristic zero, there are well known classical formulas giving the numberρ(S) of secants
of Spassing through a generic point ofP5 (see, for example, the double point formula
of Severi [16], p. 259 or [22], Example 4.1.3, or the secant formula of Peters-Simonis
[26]). This number is called thesecant orderor thenumber of apparent double points
of S, since it is the number of double points of the projection ofS into P4 from a
generic point ofP5. These formulas are not suited if one wants to compute the number
ρ starting from the equations of the surface. In this paper we provide a computational
approach based on the coefficients of a certain Hilbert polynomial which comes from
the Stückrad-Vogel intersection cycle and can be computed from the equations of the
surface.

In [5] (see Theorem 4.3) it was shown that for a singular non-defective surface
T ⊂ P5

K the Stückrad-Vogel self-intersection cycle ofT can be used to obtain a formula
for ρ(T). From a computational point of view, this result permits to computeρ(T)
using computer algebra systems, but it requires the computation of the normal cone of
the ruled joinJ(T,T) along the diagonal, the computational complexity of which can
be very high.

In this paper we propose a second method for the computation of ρ(T) when
the singular surfaceT ⊂ P5 arises as the projection of a surfaceS⊂ PN

K (N > 5) along a
linear subspaceL. Under some mild assumption onS, this method reduces the compu-
tational complexity of the previous one, since it relies on the computation of the normal
cone of SecSalongL∩SecS(see Theorem 3).

For some special surfaces the computational complexity canbe further reduced
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by applying an observation of A. Verra. He observed that for certain possibly singular
surfacesS (which C. Ciliberto and F. Russo calledVerra surfaces, see Definition 2)
the numberρ(S) can be obtained computing the number of apparent double points of a
space curve by using its self-intersection cycle (see [4], Proposition 3.7). In the case of
such surfaces the computation ofρ can be done inP3, that is in a ring with only four
variables.

We illustrate the methods through a collection of examples,where the computa-
tions have been done with REDUCE (see [1]), but they could have been done with other
systems as CoCoA, Macaulay2, Singular as well.

In the last section of the paper we give the code of the procedures for the cal-
culations in the different computer algebra systems and we show the efficiency of the
new method given by Theorem 3.

2. Computational aspects of the Stückrad-Vogel intersection cycle

Let X,Y be closed (irreducible and reduced) subvarieties of the projective space
PN = PN

K , whereK is an algebraically closed field of characteristic zero. Stückrad
and Vogel [30] (see also [16], Section 2.2) introduced a cycle v(X,Y) calledv-cycle,
which is the formal sum of (algorithmically produced) subvarietiesC of X∩Y (possibly
defined over a pure transcendental field extension ofK), each taken with an algorithmi-
cally produced positive integer coefficientjC = j(X,Y;C), theintersection multiplicity
of X andY alongC. In order to describe the dimension range of the varietiesC, denote
by XY or embJ(X,Y) theembedded joinof X andY, that is, the closure of the union of
all linesxy, x∈ X, y∈Y. Then thev-cycle can be written as

v(X,Y) = ∑
C

j(X,Y;C)[C] = ∑
k

vk(X,Y),

wherek runs from max(dimX+dimY−dimXY,0) to dimX∩Y, andvk(X,Y)( 6= 0) is
thek-dimensional part ofv(X,Y).

The part of the cyclevk = vk(X,Y) which is defined over the base fieldK, the so-
calledK-rational part, will be denoted by rat(vk) and the remaining part, the so-called
irrational or movable part, will be denoted by mov(vk), that is,

vk = rat(vk)+mov(vk).

To prove a theorem of Bezout, Stückrad and Vogel had to take into account also
the so-called empty subvariety/0 ⊆ X∩Y (which by definition has dimension−1 and
degree 1) and its intersection numberj(X,Y, /0).

We want to describej(X,Y, /0) following van Gastel [19]. To this end, let
Ax := K[x0, . . . ,xN], Ay := K[y0, . . . ,yN], A := Ax⊗K Ay and denote byI(X) ⊆ Ax,
I(Y) ⊆ Ay the largest homogeneous ideals definingX andY, respectively. ThenR :=
A/(I(X)A+ I(Y)A) is the homogeneous coordinate ring of theruled join J= J(X,Y)⊆
P2N+1

K = Proj(A). The “diagonal” subspace∆ of P2N+1
K is defined by the ideal(x0−
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y0, . . . ,xN− yN)A =: I(∆). Denoting by deg(J(X,Y)/XY) the mapping degree of the
linear projectionJ(X,Y) 99K XY with center∆∩J(X,Y), van Gastel proved that

j(X,Y; /0) = deg(J/XY)degXY.

Then, using the above notation, therefined Bezout theorem(see [16], Theo-
rem 2.2.5) can be formulated as follows.

THEOREM 1 (Stückrad-Vogel [30], van Gastel [19]).Let X,Y be closed (irre-
ducible and reduced) subvarieties ofPN

K . Then

degX degY = deg(J/XY)degXY+∑
C

j(X,Y;C)degC

= deg(J/XY)degXY+degv(X,Y)

= deg(J/XY)degXY+∑
k

degvk(X,Y).

The degrees of thevk’s and deg(J/XY)degXY can be calculated by the Hilbert
coefficients of the bigraded ideal which defines the normal cone of J(X,Y) along
J(X,Y)∩∆. More precisely, let

A= K[x0, . . . ,xN,y0, . . . ,yN], R= A/I(J(X,Y)),

I = I(∆) = (x0−y0, . . . ,xN−yN)A,

t0, . . . , tN indeterminates, and

ϕ : A[t0, . . . , tN]→GI (R) :=
⊕

k∈N
Ik/Ik+1

be the natural surjection which is induced by the natural homomorphismA→ R/I and
substitutingti by the class ofxi−yi in I/I2, i = 0, . . . ,N. Define a bigrading by setting
deg(xi) = deg(yi) = (1,0) and deg(ti) = (0,1). Then kerϕ is a bigraded ideal in the
bigraded ringA[t0, . . . , tN], and

(1) R := R (X,Y) := GI (R)∼= A[t0, . . . , tN]/kerϕ

is bigraded,R =
⊕

j,k∈NR j,k. If we setd := Krull-dim R= Krull-dimR and write the

Hilbert polynomial of∑k
v=0 ∑ j

u=0dimK(Ru,v) in the form

p( j,k) =
d

∑
l=0

cl

(
j + l

l

)(
k+d− l

d− l

)
+ lower degree terms,

then the non-negative integerscl =: cl (R ) =: cl (X,Y) are thegeneralized Samuel mul-
tiplicities of I in the sense of [3].

PROPOSITION1 ([3], Theorem 4.1 and Proposition 1.2).With the previous no-
tation,

c0(R ) = c0(X,Y) = j(X,Y; /0) = deg(J/XY)degXY
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and for k= 1, . . . ,d,

ck(R ) = ck(X,Y) = ∑
P∈minAssR

length(RP ) ·ck(R /P ) = degvk(X,Y).

According to (1) the minimal prime idealsP of R contract to prime ideals
P ∩A which contain the idealsI(∆) andI(J(X,Y)), hence the contraction idealsP ∩
K[x0, . . .xN] (which need not all be distinct) define subvarieties ofX∩Y ⊂ PN, the so
calleddistinguished varietiesof the intersection ofX andY in the sense of Fulton [17].
These subvarieties are the support of theK-rational part ofv(X,Y). The lengths of the
RP ’s are the geometric multiplicities of the irreducible components of the normal cone
of J(X,Y) alongJ(X,Y)∩∆.

DEFINITION 1 (Intersection vector).With the above notation, setδ := dim(X∩
Y)+1. Then theintersection vectorc(X,Y) of X and Y is defined to be the vector of
non-negative integers

c(X,Y) = (c0(X,Y), . . . ,cδ(X,Y)) = (c0(R ), . . . ,cδ(R )) =: c(R ),

and by the refined Bezout theorem

degX degY = c0(X,Y)+ · · ·+cδ(X,Y).

By Proposition 1 we have

(2) c(X,Y) = ∑
P∈minAssR

length(RP ) ·c(R /P ).

In particular, theself-intersection vectorof an n-dimensional variety X is de-
fined to be

c(X) = c(X,X) = (c0(X,X)), . . . ,cn+1(X,X)),

and it holds
(degX)2 = c0(X,X)+ · · ·+cδ(X,X).

The integersck(X,Y) = ck(R ) can be computed by using various computer
algebra systems (e.g. REDUCE, using the package SEGRE[1]), in which the calculation
of the Hilbert series of a multigraded ring has been implemented, see Section 5.

For the computation of the number of apparent double points of a varietyX, the
coefficient

c0(X,X) = j(X,X; /0) = deg(J(X,X)/embJ(X,X)) ·deg(embJ(X,X))

is particularly important. Note that embJ(X,X) is thesecant variety, which we denote
by SecX. It is well-known that SecX has theexpected dimension2dimX + 1 (and
is said to benondeficient) if and only if for generic pointsx ∈ X andy ∈ X one has
TX,x∩TX,y = /0 (see, for example, [16], Cor. 4.3.3). The non-negative integer 2dimX+
1−dimSecX is called thedeficiencyof SecX. Concerning deg(J(X,X)/SecX), there
is the following result, which is essentially [16], Proposition 8.2.12, see also [24],
Proposition 6.3.5.
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PROPOSITION2 ([5], Proposition 2.7).Let X⊂ PN be a non-degenerate irre-
ducible subvariety such that2dimX +1 < N. Suppose that one of the following two
conditions is satisfied:

1. X is a curve;

2. X is reduced and the generic tangent hyperplane toSecX is tangent to X at only
finitely many points (that is, X is not1-weakly defective in the sense of [9], 2.1).

Thendeg(J(X,X)/SecX) = 2 and, in particular,dimSecX = 2dimX+1.

REMARK 1. If x,y ∈ X, then over the secant linexy of X there are two lines
J(x,y), J(y,x) of J(X,X), so that the rational map

π : J(X,X) 99K SecX,

has even degree, that is,

deg(J(X,X)/SecX) = 2ρ≥ 0.

Here ρ is the number of secants to X passing through a general point ofSecX, if
dimSecX = 2dimX+1, andρ = 0 otherwise. In [9] one can find a complete classifi-
cation of surfacesX ⊂ PN, N≥ 6, for whichρ > 1.

3. Computing ρ by the Stückrad-Vogel intersection cycle

Let S⊂ PN (N≥ 5) be a non-degenerate surface of degreed with singular locus
SingS. For any pointP∈ Sm(S) we denote byTS,P the embedded projective tangent
plane toSat P. We denote by TanS the tangent variety ofS, that is the closure of the
union of all embedded projective tangent planes toSat regular points.

It is known (see, for example, [5]) that the Stückrad-Vogel self-intersection cy-
cle ofS is

(3) v(S,S) = [S]+∑
Z

jZ[Z]+P1(S)+∑
P

jP[P]+movv0(S)|SmS+movv0(S)|SingS,

whereZ runs through the one-dimensional irreducible components of SingS, P1(S)
denotes the first polar locus ofS, P runs through the singular points ofSof embedding
dimension greater or equal to 4, and movv0(S)|SmS is the ramification locus of the
linear projectionπΛ : S→P3 with center a generic(N−4)-dimensional linear subspace
Λ⊂ PN (see [15], Theorem 4.6).

Moreover,

degv1(S) = ∑
Z

jZ degZ+degP1(S) = c2(S,S),

degv0(S) = ∑
P

jP+degmovv0(S)|SmS+degmovv0(S)|SingS= c1(S,S),
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and, ifS is non defective,

degmovv0(S)|SmS= deg(TanS)

(see [5], Lemma 4.1).

In [5], Theorem 4.3, the following has been proved.

THEOREM 2. Let S⊂ PN (N ≥ 5) be an irreducible and reduced possibly sin-
gular non defective surface of degree d. With the preceding notation the following
formula holds:

2ρ ·degSecS = (degS)2−degv(S,S)

= (degS)2−c3(S,S)−c2(S,S)−c1(S,S)

= d2−d−∑
Z

jZ degZ−degP1(S)

−∑
P

jP−degTanS−degmovv0(S)|SingS

= c0(S,S),

where Z runs through the one-dimensional irreducible components ofSingS and P runs
through the singular points of S of embedding dimension greater or equal to4.

For N = 5 one has

ρ(S) =
1
2

c0(S,S).

REMARK 2. The self-intersection vectorv(S,S) of a surfaceS⊂ PN,N ≥ 5,
encodes geometric information onS. If S⊂ PN (N ≥ 5) is smooth and non defective,
then the self-intersection vector ofS is

c(S,S) = (2ρdeg(SecS),deg(TanS),deg(P1(S)),deg(S)) =

= (2ρdeg(SecS),0,0,0)+(0,deg(TanS),deg(P1(S)),deg(S)),

where the last line is the decomposition according to Proposition 1. In fact, for S
smooth and non defective the ring of coordinates of the normal coneR has two minimal
primesP1 andP2 such thatP1∩K[x0, . . . ,xN] = (x0, . . . ,xN) andP2∩K[x0, . . . ,xN] =
I(S).

If the surfaceS⊂PN,N≥ 5, has isolated singular pointsP1, . . . ,Pr of embedding
dimension greater or equal to 4 and singular curvesZ1, . . . ,Zs, then the normal cone of
J(S,S) alongJ(S,S)∩∆ has at least one component for each pointPi , 1≤ i ≤ r and for
each curveZ j , 1≤ j ≤ s. The self-intersection vector ofSdecomposes in the following
way
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c(S,S) =

(
2ρdeg(SecS), deg(TanS)+deg movv0(S)|SingS+∑

P
jP,

deg(P1(S))+∑
Z

jZ deg(Z), deg(S)

)

= (2ρdeg(SecS), 0, 0, 0)+

+ ∑
P∈{Pi}

(
0, ∑
{P |P∩Ax=I(P)}

length(RP ) ·c1(R /P ), 0, 0

)
+

+ ∑
Z∈{Z j}

∑
{P |P∩Ax=I(Z)}

length(RP ) · (0, c1(R /P ), c2(R /P ), 0)+

+(0, deg(TanS), deg(P1(S)), deg(S)) ,

where we recall thatAx := K[x0, . . . ,xN], and we remark that for the movable pointsQ
on the curvesZ j the coefficients length(RP ) are equal to the intersection numberjQ
and

∑
{P |P∩Ax=I(Z)}

length(RP ) ·c2(R /P ) = jZ deg(Z)

(see [6], Main Theorem). We also observe that

∑
Z∈{Z j}

∑
{P |P∩Ax=I(Z)}

length(RP ) ·c1(R /P ) = deg movv0(S)|SingS,

and ∑{P |P∩Ax=I(Z)} c1(R /P ) is the number of the movable points onZ.

In order to compute the intersection numberjP of an isolated singular point
of S we must compute the generalized Samuel multiplicities of the diagonal ideal in
the localization of the ringR localized at the prime idealI(P)R+ I(∆)R (see [3]). In
this case we obtain three coefficients:c0 = jP,c1,c2, wherec0 = 0 if and only if the
embedding dimension ofSat P is smaller or equal to 3 andc2 is the multiplicity ofS
atP.

PROPOSITION 3. (C.Ciliberto) A surface S⊂ P5 with one apparent double
point (ρ(S) = 1) cannot have isolated singular points of embedding dimension greater
or equal to4.

Proof. In fact, assume thatP∈ S is a point of embedding dimension greater or equal
to 4 andΠ is the Zariski tangent space toSat P. If r is a generic secant line ofSand
α = 〈r,P〉 ∼= P2, thenα∩Π contains at least a lineℓ throughP. The lineℓ⊂Π is a limit
of secants, hence it is a secant, butr ∩ ℓ is not empty, which contradicts the genericity
of r.

This says that we cannot have surfaces inP5 with one apparent double point
and singular points which contributes to the self-intersection cycle. We can have such
examples only ifρ≥ 2.
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By using Theorem 2, we want to compute the self-intersectionvector and the
numberρ(S), for singular surfaces inS⊂ P5 which are linear projections of rational
normal scrolls. We also want to point out the contribution ofthe components of the
singular locus ofS to its self-intersection vector.

In the following with S(a,b) ⊂ Pa+b+1 we denote the rational normal scroll
defined by the parametric equations

(x0 : . . . : xa : y0 : . . . : yb) = (sau : sa−1tu : . . . : tau : sbv : sb−1tv : . . . : tbv).

We recall thatS(a,b) is a smooth surface of degreea+b, whose defining equations are
given by the 2×2 minors of the matrix

(
x0 x1 . . . xa−1 y0 . . . yb−1

x1 x2 . . . xa y1 . . . yb

)

(for more details see, for example, [21]). The defining ideals of S(a,b) can be conve-
niently computed by various computer algebra systems, see Section 5.

By [5], the self-intersection vector ofS(a,b) is

c(S,S) = (2deg(SecS), deg(TanS), deg(P1(S)), deg(S))

= ((a+b−2)(a+b−3), 2(a+b−2), 2(a+b−1), a+b).(4)

Now we are ready to present some examples, where the self-intersection vectors
have been computed following procedures and codes as explained in Section 5.

EXAMPLE 1. Surfaces inP5 with one or two isolated singular points which do
not contribute to the self intersection cycle and one apparent double point
Let us now consider the smooth del Pezzo surface ofS⊂ P6 given by the parametric
equations

x0 = uvw,x1 = v2w,x2 = vw2,x3 = uw2,x4 = u2w,x5 = u2v,x6 = uv2

(see [28], p. 155). The secant variety ofS is the hypersurface ofP6 defined by the
equation

x3
0−x0x1x4−x0x2x5−x0x3x6+x1x3x5+x2x4x6 = 0,

whose singular locus isS.

We projectS to P5 from a pointP∈ S. If

P∈ {[0 : 1 : 0 : 0 : 0 : 0 : 0], [0 : 0 : 1 : 0 : 0 : 0 : 0], [0 : 0 : 0 : 1 : 0 : 0 : 0],

[0 : 0 : 0 : 0 : 1 : 0 : 0], [0 : 0 : 0 : 0 : 0 : 1 : 0], [0 : 0 : 0 : 0 : 0 : 0 : 1]}

the image ofS under the projection is a surfaceT ⊂ P5 of degree 5 with two singu-
lar points which do not contribute to the self-intersectioncycle of the surface. The
decomposition of the self-intersection vector of the surfaceT is

c(T,T) = (2,8,10,5) = 2(1,0,0,0)+(0,8,10,5),
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in particularρ = 1.

If we project the surfaceS from the point[0 : 1 : 1 : 0 : 0 : 0 : 0] , we obtain a
surfaceT ′ ⊂ P5 of degree 5 with one singular point which does not contributeto the
self-intersection cycle of the surface. The intersection numbers of the surfaceT ′ are
again

c(T ′,T ′) = (2,8,10,5) = 2(1,0,0,0)+(0,8,10,5),

in particularρ = 1.

EXAMPLE 2. Surfaces inP5 with an isolated singular point which contributes
to the self intersection cycle and two apparent double points
Let S= S(3,2)⊂ P6, whose self intersection vector isc(S(3,2)) = (6,6,8,5)) and

SingSecS(3,2) = SingTanS(3,2) = S(3,2)∩{[x0 : . . . : x6] ∈ P6 | x0 = · · ·= x3 = 0}.

Let T1 and T2 be the surfaces ofP5 obtained by projectingS from the pointsP1 =
[1 : 0 : 0 : 1 : 0 : 0 : 0] ∈ SecS(3,2) \ TanS(3,2) and P2 = [0 : 1 : 0 : 0 : 0 : 0 : 0] ∈
TanS(3,2)\SingTanS(3,2) respectively.

The surfacesT1 andT2 have one double point which contributes to the intersec-
tion cycle with intersection multiplicityj1 = 2 and j2 = 3 respectively. The decompo-
sitions of the intersection vectors are:

c(T1,T1) = (4,8,8,5) = (0,6,8,5)+2(0,1,0,0)+(4,0,0,0),

c(T2,T2) = (4,8,8,5) = (0,5,8,5)+3(0,1,0,0)+4(1,0,0,0),

see formula (2) and Section 5.

EXAMPLE 3. Surface inP5 with two isolated singular points which contribute
to the self intersection cycle and four apparent double points
Let us consider the rational normal scrollS(3,3) ⊂ P7 and we project it from the line
s passing through the pointsP= [0 : 1 : . . . : 0] and Q= [0 : . . . : 0 : 1 : 0] (which are
smooth points of SecS(3,3)) on the linear space{[x0 : . . . : x7]∈ P7 | x1 = x6 = 0}∼= P5.

One obtains a surfaceT ⊂ P5 with two isolated singular pointsR1 = [0 : 0 : 0 :
0 : 0 : 1] andR2 = [1 : 0 : 0 : 0 : 0 : 0] , which are double points. A computer calculation
as in [1, file segre4.txt] gives the self-intersection numbers ofT

j(T,T;R1) = j(T,T;R2) = 3

and the intersection vector

c(T,T) = (8,12,10,6) = 8(1,0,0,0)+3(0,1,0,0)+3(0,1,0,0)+(0,6,10,6),

whereas the intersection vector ofS(3,3) is c(S(3,3),S(3,3)) = (12,8,10,6), see (4).

We recall the definition of Verra surfaces from [11], Section3, in a slightly
modified version.
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DEFINITION 2 (Verra surfaces).Let Y⊂ P5 be a degenerate curve, which spans
a linear space V of dimension3. Take a line W⊂P5 such that V∩W= /0. Let CW(Y) be
the cone over Y with vertex W. Let X⊂CW(Y) be an irreducible, non-degenerate, not
secant defective surface, which intersects the general ruling Π∼= P2 of CW(Y) along a
line L. This implies that:

(A1) the projection p: P5 99K V with center W restricts to X to a dominant map
p|X : X 99KY;

(A2) if Li ,1≤ i ≤ 2, are the closures of two general fibers of p|X, then L1∩L2 = /0.

Indeed, (A1) is clear, and (A2) follows, via Terracini’s Lemma, from the fact that X
is not secant defective. The variety X is called aVerra surfaceconstructed from the
curve Y.

We point out that, differently from [11], in our definitionY is not required to be
a curve with one apparent double point.

PROPOSITION4 (A. Verra). With the previous notation we have

ρ(X) = ρ(Y).

Proof. Let X be a Verra surface. Letx ∈ P5 be a general point, so thaty = p(x) is
a general point ofV. A secant line toX throughx is a general secant line toX and
projects to a general secant line toY passing throughy. Let ρ(Y) = m, then there are
m secant linesℓ1, . . . , ℓm throughy, and letPi1,Pi2 (i = 1, . . . ,m) the intersection points
of ℓi with Y. For each secant lineℓi of Y throughy there is exactly one secant line ofX
throughx which by p is mapped onℓi . Such a line must be in the 3-dimensional linear
spaceZi = 〈ℓi ∪W〉, which intersects X along the two linesLi j ⊂ 〈Pi j ,W〉,1≤ j ≤ 2,
the union of which spansZi . The assertion follows, since there is only one secant line
to Li1∪Li2 passing throughx∈ Zi .

The following two examples regard two families of Verra surfaces with a mul-
tiple line the preimage of which in the normalization are a rational normal curve andk
lines, respectively.

EXAMPLE 4. Verra surfaces inP5 with a multiple line and one apparent double
point
Let us consider a rational normal scrollS(d− 3,3) ⊂ Pd+1, with d ≥ 5, and let us
projectS(d−3,3) from the linear subspace

L = {[x0 : . . . : xd−3 : y0 : . . . : y3] ∈ Pd+1 | x0 = xd−3 = y0 = · · ·= y3 = 0}

of dimensiond−5 contained in

Π = {[x0 : . . . : xd−3 : y0 : . . . : y3] ∈ Pd+1 | y0 = · · ·= y3 = 0} ∼= Pd−3
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and such that it does not intersect the rational normal curveC(d−3) = S(d−3,3)∩Π.

The image ofS(d− 3,3) under the linear projectionπL is a rational surface
T := T(d−3,3)⊂ P5 with a multiple lineℓ of multiplicity d−3 such thatπL

−1(ℓ) =
C(d−3).

Clearly the restriction of the projectionπL to

Π′ = {[x0 : . . . : xd−3 : y0 : . . . : y3] ∈ Pd+1 | x0 = · · ·= xd−3 = 0} ∼= P3

gives an isomorphism between the rational normal curveC(3) =S(d−3,3)∩Π′ and its
image inP5, and the surfaceT is obtained as in Verra’s construction (see Definition 2,
[10], Example 5.18 and [11], Section 3).

SinceT is obtained from Verra’s construction, we know thatρ(T) = ρ(C(3)) =
1, hence deg(J(T,T)/Sec(T)) = 2.

We can observe that ford = 5,

SingSecS(2,3) = S(2,3)∪{[x0 : . . . : x2 : y0 : . . . : y3] ∈ P6 | y0 = · · ·= y3 = 0}

andL is a point in SingSecS(2,3) \S(2,3). The surfaceT(2,3) has degree 5 and its
singular locus is a line of double points whose preimage is exactly the smooth conic

S(2,3)∩{[x0 : . . . : x2 : y0 : . . . : y3] ∈ P6 | y0 = · · ·= y3 = 0}.

This example was studied in detail in [5], Section 4, and its self-intersection vector is

c(T(2,3),T(2,3)) = (2,6,10,5) = 2(1,0,0,0)+2(0,2,1,0)+(0,4,8,5).

The self-intersection vector ofT(2,3) is equal to the the self-intersection vectors of the
surfacesT andT ′ of Example 1, but their decompositions are different.

EXAMPLE 5. A Verra surface inP5 with a double line and one apparent double
point
Let us now consider the rational normal scrollS(1,4) ⊂ P6 and the 3-dimensional
irreducible and reduced variety (remember that embJ denotes the embedded join)

X := embJ(S(1),S(1,4)) = embJ(S(1),S(4)) = SingSecS(1,4) = SingTanS(1,4)

of defining ideal

(−x2x4+x3
2,−x2x5+x3x4,−x2x6+x3x5,−x2x6+x4

2,−x3x6+x4x5,−x4x6+x5
2).

Let P ∈ X \S(1,4) and letπP : S(1,4)→ P5 be the linear projection fromP into P5.
The surfaceZ := Z(1,4) := πP(S(1,4)) has a singular lineℓ= πP(S(1)), the preimage
of which is composed of two intersecting lines, preciselyS(1) and a line of the ruling.
To show this we prove the following stronger claim.

CLAIM . Let α = 〈S(1),P〉 = 〈ℓ,P〉 be the plane spanned byS(1), or by ℓ, and
the pointP. Then the intersection cyclev(α,S(1,4)) is composed by the union ofS(1)
and a line, sayr, of the ruling ofS(1,4) and three movable points onS(1). In particular,
π−1

P (ℓ) = α∩S(1,4) = S(1)∪ r.
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Proof. To prove the claim, letH ∈ P5 be a generic hyperplane containingα. The
hyperplaneH intersectsS(1,4) in a curve which is a union of lines and havingS(1) as
a component. In fact,H intersectsS(4) in four distinct pointsQ1, . . . ,Q4 and through
each of them there is a line of the ruling lying onH and intersectingS(1) in a point.
Denote these distinct lines byr1, . . . , r4 and letRi = r i ∩S(1).

We observe that exactly one of the linesr1, . . . , r4 is contained inα. In fact,
beingP∈ X, there exists a linel ⊂ X passing throughP. Such a line is contained inα,
but it cannot be a line onS(1,4) sinceP /∈ S(1,4). Let Q∈ (S(1,4)\S(1))∩ l . Such a
pointQ is the only point in which the planeα intersectsS(4), since a plane can contain
only one line of the ruling. Letr = r1 be the unique line ofS(1,4) passing through
Q= Q1. This liner is contained inα since the pointQ and the pointr ∩S(1) are inα,
henceS(1,4)∩α = S(1)∪ r.

The intersection cyclev(α,S(1,4)) is composed byr ∪S(1) and the three em-
bedded pointsR2,R3,R4 , which are movable onS(1) whenH(⊃ α) varies.

Let P= [0 : 1 : 1 : 0 : 0 : 0 : 0]∈X\S(1,4) and letπP be the linear projection from
P into P5 = Proj(C[x0,x1− x2,x3,x4,x5,x6]). The surfaceZ := Z(1,4) := πP(S(1,4))
is defined by the ideal

(−x3x5+x4
2,−x3x6+x4x5,−x4x6+x5

2,

−x0x5+(x2−x1)x4+x3
2,−x0x6+(x2−x1)x5+x3x4).

It has degree 5 and it is singular along the line of equationsx3 = x4 = x5 = x6 = 0,
which is a line of double points, whose preimage is composed by the two intersecting
lines of equationsx2 = · · ·= x6 = 0 andx1 = x3 = · · ·= x6 = 0 respectively.

The surfaceZ is a Verra variety since if we project the surface fromℓ, its image
is a rational normal cubic curve, henceZ is given by Verra’s construction.

One can observe that the surfaceZ has the same intersection numbers of the
surfaceT(2,3):

c(Z,Z) = (2,8,10,5) = 2(1,0,0,0)+2(0,2,1,0)+(0,4,8,5).

In Examples 1, 4 and 5 we considered surfaces with one apparent double point.
Recently Ciliberto and Russo [11] gave a complete classification of (possibly singular)
surfacesS⊂ P5 with one apparent double point, proving thatS is either a smooth
rational normal scroll or a (weak) del Pezzo surface of degree 5 or a Verra surface
constructed from a rational normal cubic.

EXAMPLE 6. Surface inP5 with a line of double points, an isolated singular
point which contributes to the self intersection cycle and two apparent double points
Let us consider the rational normal scroll

S(4,2)⊂ P7 = Proj(C[x0, . . . ,x4,y0,y1,y2]) .
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The ideal of its tangent variety is

(x0x4−4x1x3+3x2
2, 4x0x2x4−3x0x2

3−3x2
1x4+2x1x2x3,

−4x2
0x2

4+14x0x1x3x4−9x0x2x2
3−9x2

1x2x4+8x2
1x2

3,

−3x0x2y2+3x0x3y1−x0x4y0+3x2
1y2−3x1x2y1+x1x3y0,

−3x0x3y2+4x0x4y1+3x1x2y2−4x1x3y1−3x1x4y0+3x2x3y0,

−x0x4y2+x1x3y2+3x1x4y1−3x2x3y1−3x2x4y0+3x2
3y0,

x0y2
2−4x1y1y2+2x2y0y2+4x2y2

1−4x3y0y1+x4y2
0,

x0x1x4y2−9x0x2x3y2+12x0x2x4y1−3x0x3x4y0+8x2
1x3y2−12x2

1x4y1+3x1x2x4y0,

3x2
0x4y2−9x0x1x3y2−x0x1x4y1+9x0x2x3y1−3x0x2x4y0+6x2

1x2y2−8x2
1x3y1+3x2

1x4y0).

We observe that the pointQ = [0 : . . . : 0 : 1 : 0] ∈ TanS(4,2) has multiplicity
two for TanS(4,2).

Let us projectS(4,2) from the line passing through the points

P= [1 : 0 : 0 : 0 : 1 : 0 : 0 : 0] ∈ SecS(4,2)\TanS(4,2)

and
Q= [0 : 0 : 0 : 0 : 0 : 0 : 1 : 0] ∈ TanS(4,2),

that is, from the line

L = {[x0 : . . . : x4 : y0 : y1 : y2] ∈ P7 | x0−x4 = x1 = x2 = x3 = y0 = y2 = 0},

not contained in SecS(4,2) and intersecting TanS(4,2) only in the pointQ. The pro-
jection S= πL(S(4,2)) ⊂ P5 = {[x0 : . . . : x4 : y0 : y1 : y2] ∈ P7 | x0− x4 = y1 = 0} is
a singular surface with a line of double points and an isolated double point. After a
change of coordinates (in which we eliminatex0− x4 andy1), in the new coordinates
we have

SingS= {[x1 : . . . : x4 : y0 : y2]∈P5 | x1= x2= x3= x4= 0}∪{[1 : 0 : 0 : 0 : 0 : 0]}= ℓ∪R

and

TanS= {[x1 : . . . : x4 : y0 : y2] ∈ P5 |
− x2

1x2
2x2

4+6x1x3
2x3x4−4x1x2

2x3
3−6x1x2x3x3

4+4x1x3
3x2

4−4x5
2x4

+ 3x4
2x2

3−8x3
2x3

4+42x2
2x2

3x2
4−48x2x4

3x4−4x2x5
4+16x6

3+3x2
3x4

4 = 0}.

The surfaceS is a Verra variety since if we project the surface fromℓ, its image
is a quartic curveC with self-intersection vector

c(C,C) = (4,8,4) = 4(1,0,0)+2(0,1,0)+(0,6,4),

henceρ(S) = ρ(C) = 2. This can also be confirmed by the computation ofc(S,S) =
(4,14,12,6).

The singular pointR∈ Scontributes to the cycle with multiplicityj = 2, since
in the affine chartx1 = 1 the self-intersection vector ofS is (2,0,2).
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EXAMPLE 7. Surface inP5 with two lines of double points and two apparent
double points
Let us consider the rational normal scrollS(4,2)⊂ P7 and project it from the line

s= {[x0 : . . . : x7] ∈ P7 | x0 = x2 = x3 = x4 = x5 = x7 = 0}

on the linear space{[x0 : . . . : x7] ∈ P7 | x1 = x6 = 0} ∼= P5. The lines is contained in
TanS(4,2) and intersects Sing(TanS(4,2)) in a point.

We obtain a surfaceT ⊂ P5 with two lines of double points

r1 : {[x0 : x2 : x3 : x4 : x5 : x7] ∈ P5 | x2 = x3 = x4 = x7 = 0},

r2 : {[x0 : x2 : x3 : x4 : x5 : x7] ∈ P5 | x0 = x2 = x3 = x4 = 0},
intersecting in the pointP= r1∩ r2 = [0 : . . . : 0 : 1 : 0 : 0] and such that the preimage
of r1 in the projection is the line

{[x0 : . . . : x7] ∈ P7 | x1 = x2 = x3 = x4 = x6 = x7 = 0}

on the scroll and the preimage ofr2 in the projection is the conic

{[x0 : . . . : x7] ∈ P7 | x0 = x1 = x2 = x3 = x4 = x2
6−x5x7 = 0}.

The intersection vector ofT is

c(T,T) = (4,12,14,6) = 4(1,0,0,0)+{3(0,1,1,0)+2(0,2,1,0)}+(0,5,9,6),

where the contribution inside the curly braces refers to theone-dimensional part of the
singular locus. Preciselyjr1 = 3 and there is a movable point of multiplicity 3 onr1,
jr2 = 2 and there are two movable points of multiplicity 2 onr2 .

The surfaceT is a Verra variety since if we project it fromr2, its image is a
quartic curveC with self-intersection vectorc(C,C)= (4,8,4), henceρ(T)= ρ(C)= 2.

We observe thatc(S(4,2),S(4,2)) = (12,8,10,6), and this shows that

degP1(S(4,2))> degP1(T).

4. Computing ρ of a projection

In this section we propose a second method for the computation of ρ(T) when
the singular surfaceT ⊂ P5 arises as the projection of a surfaceS⊂ PN

K (N > 5) along
a linear subspaceL. This method reduces considerably the computational cost when
calculating concrete examples (see Section 5).

THEOREM3. Let X⊂ PN be a non-degenerate reduced and irreducible variety
such that2dimX +1 < N and the generic tangent hyperplane toSecX is tangent to
X at only finitely many points (that is, X is not1-weakly defective in the sense of [9],
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2.1). Let L⊂ PN be a linear subspace such thatcodimL > dimX+1 and such that the
linear projectionπL : X→ πL(X) =: Y is generically one to one.

Then
ρ(Y) ·degSecY = c0(L,SecX),

and, if L is a point and e(SecX,L) denotes the multiplicity ofSecX at L (which is
defined to be zero if L/∈ SecX), it holds

ρ(Y) ·degSecY = degSecX−e(SecX,L).

Proof. It is known that

ρ(Y) =
1
2

deg(J(Y,Y)/SecY)

and deg(J(X,X)/SecX) = 2 (see Proposition 2 and Remark 1). Let us consider the
following diagram of rational maps

J(X,X)
π∆N−−−−−−−→ SecX

yJ(πL,πL)

yπL

J(Y,Y)
π∆N−k−1−−−−−−−−→ SecY

whereJ(πL,πL) is the map induced byπL, π∆N andπ∆N−k−1 are the projections along
the diagonal spaces ofJ(PN,PN) andJ(PN−k−1,PN−k−1), respectively. By assumption
degJ(πL,πL) = 1, hence by the commutativity of the diagram it turns out that

deg(J(Y,Y)/SecY) = 2deg(SecX/SecY),

hence

(5) ρ(Y) = deg(SecX/SecY).

On the other hand, by van Gastel [19]

c0(L,SecX) = deg(J(L,SecX)/embJ(L,SecX)) ·deg(embJ(L,SecX)).

Since one of the two intersecting varieties is a linear space, the cyclev(L,SecX) can
be computed without passing to the ruled join (see [16], Proposition 2.2.11), therefore

c0(L,SecX) = deg(SecX/πL(SecX)) ·degπL(SecX)

= deg(SecX/SecY) ·degSecY,

which, together with (5), finishes the proof of the first formula.

If L is a point, by the refined Theorem of Bezout and taking into account that
j(SecX,L;L) = e(SecX,L) (see e.g. [16], Lemma 5.4.7) one has

c0(L,SecX) = degSecX−e(SecX,L),

which finishes the proof in this case.
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COROLLARY 1. Let S⊂ PN,N > 5 be a non-degenerate reduced and irre-
ducible surface such that the generic tangent hyperplane toSecS is tangent to S at
only finitely many points (that is, S is not1-weakly defective in the sense of [9], 2.1).
Let L⊂ PN be a linear subspace of codimension6 such that the linear projection
πL : S→ πL(S) =: T ⊂ P5 is generically one to one.

Thenρ(T) = c0(L,SecS).

Using this result we can compute the numberρ for some surfaces (of low de-
gree) in a class of Verra surfaces inP5 with a multiple line and one apparent double
point, which contains the surface of Example 5.

EXAMPLE 8. Let us consider the rational normal scrollS(1,d−1) of degreed
in Pd+1, with d≥ 5. Let Λ⊂ Pd+1 be a linear subspace of dimensiond−5 such that

Λ∩S(1,d−1) = /0, Λ∩embJ(S(1),S(d−1)) = {P1, . . . ,Pk}, 1≤ k≤ d−4.

We remark that SecS(1,d− 1) (resp. TanS(1,d− 1)) is a cone of vertexS(1) over
SecS(d−1) (resp. TanS(d−1)) and that SingSecS(1,d−1) (resp. SingTanS(1,d−
1)) is a cone of vertexS(1) over SingSecS(d−1) =S(d−1) (resp. SingTanS(d−1) =
S(d−1) ), hence

embJ(S(1),S(1,d−1)) = embJ(S(1),S(d−1)) =

= SingSecS(1,d−1) = SingTan(S(1,d−1)).

Moreover, d− 4 is the maximum number of points ofΛ∩ embJ(S(1),S(d− 1)). In
fact if Λ would intersect embJ(S(1),S(d−1)) in m> d−4 points, through each of
them there would be a linel i connectingS(1) with S(d−1). Let Qi = l i ∩S(d−1) and
let r i be the line of the ruling throughQi . We observe that the point

Qi ∈ α = 〈Λ,S(1)〉 ∼= Pd−3,

hence the liner i is contained inα. SinceS(d−1) is not contained inα, starting from
a pointQm+1 ∈ S(d−1) we can find a linerm+1 of the ruling which is not contained in
α. The linear space

〈α, rm+1〉 ∼= Pd−2

containsm+1> d−3 lines of the ruling and repeating this reasoning we could find a
hyperplaneH ∼=Pd containingd lines of the ruling and the lineS(1) and this contradicts
the theorem of Bezout, since the scrollS(1,d−1) is a non degenerate surface.

The intersection cyclev(S(1,d−1),α) is composed by the linesS(1), r1, . . . , rk

andd−1−k movable points onS(1).

Now let Z(1,d−1) = πΛ(S(1,d−1)) ⊂ P5. Such surface has a singular line,
sayℓ, of multiplicity k+1 whose preimage are the linesS(1), r1, . . . , rk. We can project
the surfaceZ from ℓ into P3 and we obtain an irreducible curveC of degreed− k−1
andZ turns out to be a Verra surface constructed fromℓ andC, henceρ(Z) = ρ(C).

If k= d−4 thenρ(Z) = ρ(C) = 1, if k< d−4 we can computeρ(C) by com-
puting the self-intersection cycle ofC (see [4]) or using Corollary 1.
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Now we show the application of Corollary 1 to projections ofS(1,5) andS(1,6)
into P5.

EXAMPLE 9. Let us project the rational normal scrollS(1,5)⊂ P7 intoP5 from
the line

s1 = {[x0 : . . . : x7] ∈ P7 | x0 = x1−x2 = x3−x4 = x5 = x6 = x7 = 0},

which intersects SecS(1,5) in the point

P= [0 : 1 : 1 : 0 :. . . : 0] ∈ Sing(SecS(1,5))

of multiplicity 3 for SecS(1,5), that isk= 1. The image is the surfaceZ1⊂ P5 defined
by the kernel of the map

φ1 : K[z0, . . . ,z5]→ K[x0, . . . ,x7]/I(S(1,5)),

z0 7→ x0, z1 7→ x1−x2, z2 7→ x3−x4, z3 7→ x5, z4 7→ x6, z5 7→ x7.

The singular locus ofZ1 is the double line

ℓ1 = {[z0 : . . . : z5] ∈ P5 | z2 = z3 = z4 = z5 = 0}.

We have
c(SecS(1,5),s1) = (2,4) = (2,0)+2(0,1)+(0,2),

in particularρ(Z1) = 2. Here 2(0,1) + (0,2) is the contribution ofP, which comes
from two components of the normal cone tos1∩SecS(1,5) in SecS(1,5), therefore
j(SecS(1,5),s1;P) = 4.

If we project nowS(1,5) into P5 from the line

s2 = {[x0 : . . . : x7] ∈ P7 | x0 = x1−x2 = x3 = x4 = x5 = x6−x7 = 0},

which intersects SecS(1,5) in the same point

P= [0 : 1 : 1 : 0 :. . . : 0] ∈ Sing(SecS(1,5))

as before and in the smooth pointQ = [0 : . . . : 0 : 1 : 1] (that isk = 1), we obtain a
surfaceZ2⊂ P5 defined by the kernel of the map

φ2 : K[z0, . . . ,z5]→ K[x0, . . . ,x7]/I(S(1,5)),

z0 7→ x0, z1 7→ x1−x2, z2 7→ x3, z3 7→ x4, z4 7→ x5, z5 7→ x6−x7.

The singular locus ofZ2 is composed of the double line

ℓ2 = {[z0 : . . . : z5] ∈ P5 | z2 = z3 = z4 = z5 = 0}

and the isolated point[0 : . . . : 0 : 1]. We have

c(SecS(1,5),s2) = (2,4) = 2(1,0)+(0,3)+(0,1),
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in particularρ(Z2) = 2, j(SecS(1,5),s2;P) = 3 and j(SecS(1,5),s2;Q) = 1.

Both Z1 andZ2 are Verra surfaces constructed fromℓi (i = 1,2) and the irre-
ducible quartic curveCi ⊂ P3 which is the projection ofZi from ℓi . The curveCi has a
double point and the self-intersection vector ofCi is c(Ci ,Ci) = (4,8,4), in particular
ρ(Ci) = 2.

EXAMPLE 10. Let us project the rational normal scrollS(1,6) ⊂ P8 into P5

from the plane

π1 = {[x0 : . . . : x8] ∈ P8 | x0 = x1−x2 = x3−x4 = x5 = x6 = x7−x8 = 0},

which intersects SecS(1,6) in the point

P= [0 : 1 : 1 : 0 :. . . : 0] ∈ Sing(SecS(1,6))

of multiplicity 4 on SecS(1,6) and in the smooth pointQ = [0 : . . . : 0 : 1 : 1], hence
k= 1. The image is the surfaceZ3⊂ P5 defined by the kernel of the map

φ3 : K[z0, . . . ,z5]→ K[x0, . . . ,x8]/I(S(1,6)),

z0 7→ x0, z1 7→ x1−x2, z2 7→ x3−x4, z3 7→ x5, z4 7→ x6, z5 7→ x7−x8.

The singular locus ofZ3 is the double line

ℓ3 = {[z0 : . . . : z5] ∈ P5 | z2 = z3 = z4 = z5 = 0}

and the point[0 : . . . : 0 : 1]. We have

c(SecS(1,6),π1) = (4,6) = 4(1,0)+2(0,1)+(0,3)+(0,1),

in particularρ(Z3) = 4. Here 2(0,1)+ (0,3) is the contribution ofP and(0,1) is the
contribution ofQ, that is, j(SecS(1,6),π1;P) = 5 and j(SecS(1,6),π1;Q) = 1.

Now let us projectS(1,6) into P5 from the plane

π2 = {[x0 : . . . : x8] ∈ P8 | x0−x8 = x1−x2 = x3−x4 = x5 = x6 = x7 = 0},

which intersects SecS(1,6) in the line

ℓ= {[x0 : . . . : x8] ∈ P8 | x0−x8 = x1−x2 = x3 = x4 = x5 = x6 = x7 = 0}

and Sing(SecS(1,6)) in the two pointsP1 = [0 : 1 : 1 : 0 :. . . : 0] andP2 = [1 : 0 :. . . : 0 : 1]
of multiplicity 4 on SecS(1,6), hencek= 2. The image is the surfaceZ4⊂ P5 defined
by the kernel of the map

φ4 : K[z0, . . . ,z5]→ K[x0, . . . ,x8]/I(S(1,6)),

z0 7→ x0−x8, z1 7→ x1−x2, z2 7→ x3−x4, z3 7→ x5, z4 7→ x6, z5 7→ x7.
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The singular locus ofZ4 is the triple line

ℓ4 = {[z0 : . . . : z5] ∈ P5 | z2 = z3 = z4 = z5 = 0}.
We have

c(SecS(1,6),π2) = (2,7,1) = 2(1,0,0)+2(0,1,0)+(0,2,0)+(0,3,0)+(0,0,1),

in particularρ(Z4) = 2. Here 2(0,1,0) + (0,2,0) is the contribution ofP1, (0,3,0)
is that of P2, and (0,0,1) is the contribution ofℓ, that is, j(SecS(1,6),π2;P1) = 4,
j(SecS(1,6),π2;P2) = 3 and j(SecS(1,6),π1;ℓ) = 1.

Both Z3 and Z4 are Verra surfaces constructed fromℓi (i = 3,4) and the ir-
reducible curveCi ⊂ P3 which is the projection ofZi from ℓi . The curveC3 has
degree 5 and two double points withj = 3, moreover its self-intersection vector is
c(C3,C3) = (8,12,5), in particularρ(C3) = 4. The curveC4 has degree 4 and a dou-
ble point, sayR, such that j(C4,C4;R) = 3. The self-intersection vector ofC4 is
c(C4,C4) = (4,8,4), in particularρ(C4) = 2.

5. Code of procedures for computing the examples

Code for computing the bidegreesck(R ) of a bigraded ring R

While REDUCE (using the package SEGRE [1]) and Macaulay2 provide the
functionsdegs or multideg andmultidegree respectively, in CoCoA and Singu-
lar the bidegreesck(R ) must be computed from the numerator of the non-simplified
Hilbert series ofR according to [25], p. 167. Furthermore, in CoCoA 4.7.4 it is not
possible to assign bidegrees beginning with zeros as deg(ti) = (0,1). The trick is to
pass to aZ3-graded ring with deg(xi) = deg(yi) = (1,1,0) and deg(ti) = (1,0,1). For
the convenience of the reader we provide the details:

CODE 1. CoCoA, version 4.7.4:

Define BiDegree(I,A,B)

F := Flatten([[1 | X In 1..A],[0 | X In 1..B]]);

S := Flatten([[0 | X In 1..A],[1 | X In 1..B]]);

G:= Mat([[1 | X In 1..(A+B)], F, S]);

This creates the matrix

G=




1. . . . . .1 1. . . . . .1
1. . . . . .1 0. . . . . .0
0. . . . . .0︸ ︷︷ ︸
A columns

1. . . . . .1︸ ︷︷ ︸
B columns




the columns of which are the degrees of theA+B ring variables for the subsequent Hilbert series
computation. Note that since CoCoA-4 does not allow zero-entries in the first row of the matrix
which defines the degrees, we have added a first row of ones.
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H := HilbertSeriesMultiDeg(CurrentRing()/I, G);

Now we extract the numerator of the non-simplified Hilbert series:

Num := Sum([X[1]*LogToTerm(X[2]) | X In @H[1]]);

According to [25], p. 167, the normalized leading coefficients of the Hilbert polynomial are
obtained from the numeratorNum by substituting each variablet by 1− t and then collecting the
coefficients of the terms having total degree codim(CurrentRing/I), i.e., the coefficients of the
lowest degree terms. To get rid of the artificially introduced first variablewhich is due to the first
row of G, this variable must be substituted by one. Doing this, we obtain from the numerator the
polynomialN, which we write as a polynomial in the first two variables of the current ring.

N := Eval(Num, [1, 1-Indet(1), 1-Indet(2)]);

M := Min([Deg(X) | X In Monomials(N)]);

P := Sum([X In Monomials(N) | Deg(X) = M]);

The polynomialP, written in the first two variables of the current ring, is the bidegree in the
sense of [25], p. 167. For better readability, the coefficients ofP are printed, butP is returned:

PrintLn [CoeffOfTerm(X,P) | X In Support((Indet(1)+Indet(2))^M)];

Return P;

EndDefine;

Singular, version 3.1.6:

We give the code of a procedure which computes the bidegrees of an ideal I .

LIB "multigrading.lib";

proc bidegree(ideal I, int a, int b)

{

ideal SI = std(I);

def currentring = basering;

int n = nvars(basering);
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intmat m[2][a+b] = 1:a,0:b,0:a,1:b;

This creates the matrix

m=




1. . . . . .1 0. . . . . .0
0. . . . . .0︸ ︷︷ ︸
a columns

1. . . . . .1︸ ︷︷ ︸
b columns




the columns of which are the degrees of thea+b ring variables.

setBaseMultigrading(m);

def h = hilbertSeries(SI);

setring h;

poly f = substitute(numerator1,t_(1),1-t_(1),t_(2),1-t_(2));

Herenumerator1 is the numerator of the non-simplified Hilbert series, which is called thefirst
Hilbert seriesin the Singular Manual.

poly g = jet(f,mindeg(f));

The polynomialg, that is, the homogeneous part of lowest degree off , is by [25] the bidegree
of I . It will be returned as a polynomial of the base ring written in the first two variables of the
base ring.

setring currentring;

return(fetch(h,g));

};

Code for computing the defining ideals of rational normal scrolls S(a,b)

The defining ideals ofS(a,b) can be conveniently computed by various com-
puter algebra systems, e.g. using the following functions:

CODE 2. Macaulay2, version 1.4:

scroll = (a,b,K) ->

(

R := K[x_0 .. x_a, y_0 .. y_b];
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M := map(R^2, a, (i,j)->x_(i+j));

N := map(R^2, b, (i,j)->y_(i+j));

I := minors(2, M|N)

)

CoCoA, version 4.7.4:

Define Scroll(A,B)

ScrollRing ::= Q[x[0..A],y[0..B]];

Using ScrollRing Do M := Mat([Concat(x[0]..x[A-1],y[0]..y[B-1]),

Concat(x[1]..x[A],y[1]..y[B])]);

Return Ideal(Minors(2,M));

EndUsing;

EndDefine;

Singular, version 3.1.6:

proc scroll(int a, int b, int ch)

{

ring scrollring = ch,(x(0..a),y(0..b)),dp;

matrix M[2][a+b] = x(0..a-1),y(0..b-1),x(1..a),y(1..b);

ideal scrollideal = minor(M,2);

export(scrollring,scrollideal);

}

Code for computing the intersection vector

We refer to Example 3 in order to explain the code we used for the computer
aided calculations in our examples.

CODE 3. REDUCE:
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Reduce (Free PSL version), 30-Nov-11 ...

1: load_package segre;

SEGRE 1999/2012-07-11 with package CALI, for help type: help(help);

2: setideal(s33, scroll{3,3})$

3: t := eliminate(s33, {x1,x6})$

4: setring({x0,x2,x3,x4,x5,x7},{},lex)$

5: setideal(nc, int_ncone{t,t})$

6: degs(nc, {6,6});

{8,12,10,6,0,0,0}

7: on time;

Time: 17284 ms plus GC time: 579 ms

Macaulay2, version 1.4:

i1 : load "scroll.m2"

i2 : t1 = cpuTime();

i3 : S33 = scroll(3,3,QQ);

o3 : Ideal of QQ[x , x , x , x , y , y , y , y ]

0 1 2 3 0 1 2 3

i4 : ringP7 = ring(S33);

i5 : ringP5 = QQ[z_0 .. z_5];

i6 : center = {x_0, x_2, x_3, y_0, y_1, y_3}

o6 = {x , x , x , y , y , y }

0 2 3 0 1 3

o6 : List

i7 : T = trim kernel map(ringP7/S33, ringP5, center);

o7 : Ideal of ringP5
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i8 : idealNormalCone = intNcone(T,T);

o8 : Ideal of QQ[z , z , z , z , z , z , w , w , w , w , w , w ]

0 1 2 3 4 5 0 1 2 3 4 5

i9 : multidegree idealNormalCone

6 5 4 2 3 3

o9 = 8T + 12T T + 10T T + 6T T

0 0 1 0 1 0 1

o9 : ZZ[T , T ]

0 1

i10 : cpuTime() - t1 --time in ms, CPU Intel(R) Core(TM) i5-2410M

o10 = 395.618

o10 : RR (of precision 53)

CoCoA, version 4.7.4:

Source "scroll.coc";

Set Timer;

Null

-------------------------------

S33:=Scroll(3,3);

Cpu time = 0.31, User time = 0

-------------------------------

Use ScrollRing;

Cpu time = 0.00, User time = 0

-------------------------------

T:=Elim([x[1],y[2]],S33);

Cpu time = 0.62, User time = 0

-------------------------------

Use RingP5::=Q[z[0..5]];

Cpu time = 0.00, User time = 0

-------------------------------

F:=RMap(z[0],0,z[1],z[2],z[3],z[4],0,z[5]);

Cpu time = 0.00, User time = 0

-------------------------------

T:=Ideal(Image(Gens(T),F));
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Cpu time = 0.47, User time = 0

-------------------------------

J:=RuledJoin(T,T);

Cpu time = 0.31, User time = 0

-------------------------------

Use JoinRing;

Cpu time = 0.00, User time = 0

-------------------------------

B:=BlowUp(J[1],J[2]);

Cpu time = 31.52, User time = 3

-------------------------------

N:=NumIndets(BlowUpRing)/3;

Cpu time = 0.00, User time = 0

-------------------------------

Use CoeffRing[x[1..N],t[1..N]];

Cpu time = 0.00, User time = 0

-------------------------------

G:=RMap(Concat(x[1]..x[N],x[1]..x[N],t[1]..t[N]));

Cpu time = 0.00, User time = 0

-------------------------------

NormalCone:=Image(B[2],G);

Cpu time = 1.09, User time = 0

-------------------------------

BiDegree(NormalCone,6,6);

[8, 12, 10, 6, 0, 0, 0]

8x[1]^6 + 12x[1]^5x[2] + 10x[1]^4x[2]^2 + 6x[1]^3x[2]^3

-------------------------------

Cpu time = 1.25, User time = 0

-------------------------------

Singular, version 3.1.6,input file:

< "scroll.s";

timer = 0;

system("--ticks-per-sec",1000);

int t1 = timer;
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scroll(3,3,0);

ideal s33 = scrollideal;

ideal t = eliminate(s33,x(1)*y(2));

ring ringP5 = 0, (x(0),x(2),x(3),y(0),y(1),y(3)), dp;

ideal t = imap(scrollring, t);

rjoin(t,t);

setring joinring;

formring(joinideal, diagonalideal);

int n = nvars(form_r)/3;

ring R = char(form_r),(x(1..n),t(1..n)),dp;

setring R;

map f = form_r, x(1..n),x(1..n),t(1..n);

bidegree(f(form_i),6,6);

"time in ms = ", timer-t1;

quit;

Output file (running Singular in quite mode):

Singular -q < inputfile > outputfile

------------

This proc returns a ring with polynomials called ’numerator1/2’

and ’denominator1/2’!

They represent the first and the second Hilbert Series.

The s_(i)-variables are defined to be the inverse of the

t_(i)-variables.

------------

8*x(1)^6+12*x(1)^5*x(2)+10*x(1)^4*x(2)^2+6*x(1)^3*x(2)^3

time in ms = 10300
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Code for computing the secant variety

If T = πL(S) is a linear projection ofS from L, then Theorem 3 and Corollary 1
can be applied to computeρ(T) by computingc0(SecS,L). Hence the defining ideal
of the secant variety SecShas to be computed. Nevertheless this method reduces the
computation time ofT = πL(S) considerably.

For example, the times required for the computation of Example 3 (see the pre-
vious subsection) reduces from ca. 18 seconds to less than 1 second (REDUCE), from
4 seconds to less than 1 second (CoCoA), from more than 6 minutes to 2 seconds
(Macaulay2), and from ca. 11 seconds to less than 1 second (Singular). The compu-
tations have been performed using a Cygwin installation under Microsoft Windows 7
with CPU Intel(R) Core(TM) i5-2410M.

REDUCE (with the package SEGRE) has the built-in facilitiesej(I,J) and
ejoin({I,J}) which permit the calculation of the ideal of the embedded join the
projective varieties defined by the homogeneous idealsI andJ. If I = J, then this is the
ideal of the secant variety of the projective variety definedby I .

Here we propose analogue procedures for CoCoA, Macaulay2, and Singular.

CODE 4. Macaulay2, version 1.4:

embJoin = (I,J) ->

(

R := ring(I);

K := coefficientRing(R);

n := numgens(R);

T := tensor(R/I,R/J);

G := gens(T);

x := take(G,{0,n-1});

y := take(G,{n,2*n-1});

F := map(T,R,x-y);

ker F

)

Singular, version 3.1.6:

// Author: Peter Schenzel, schenzel@informatik.uni-halle.de
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proc join(ideal I, ideal J)

{

def rj = basering;

int n = nvars(rj);

def sj = extendring(n,"v(","c,dp",1,rj);

setring sj;

ideal I1 = imap(rj,I);

ideal J1 = imap(rj,J);

int j;

for(j = 1; j <= n; j++)

{

I1 = subst(I1,var(j),v(j));

J1 = subst(J1,var(j),var(j)-v(j));

}

ideal K = I1+J1;

ideal join = elim(K,n+1..2*n);

setring rj;

ideal join = imap(sj,join);

return(join);

};

Further procedures needed include those for associated graded rings of quo-
tient rings, which can be obtained by standard elimination theory. They are built-in
functions in SEGRE and Macaulay2 but not in CoCoA and Singular. We shall not
reproduce here our code (which is certainly not optimal), but make it available at
http://www.dm.unibo.it/∼achilles/code.
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