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REMARKS ON THE CAYLEY–VAN DER WAERDEN–CHOW

FORM

by Rüdiger Achilles and Jürgen Stückrad

Abstract. It is known that a variety in projective space is uniquely de-
termined by its Cayley–van der Waerden–Chow form. An algebraic formu-
lation and a proof (for an arbitrary base field) of this classical result are
given in view of applications to the Stückrad–Vogel intersection cycle.

1. Introduction. It is well-known that, given a k-dimensional projective
variety X ⊂ Pn

K , all (n − k − 1)-dimensional projective subspaces meeting X
form a hypersurface in the Grassmannian of (n−k−1)-dimensional projective
subspaces in Pn from which X can be recovered. The homogeneous form in
the Plücker coordinates defining this hypersurface is known as the (Cayley–van
der Waerden–) Chow form of X. It was introduced by Cayley [2], [3] and later
generalized by Chow and van der Waerden [4]. Since then there has appeared
a vast literature on the subject, see for example [5], [7], and the references
given there.

In this note we present some results on generic hyperplane sections of affine
or projective varieties and an algebraic formulation and proof of the classical
result that a variety X ⊂ Pn

K , where K is an arbitrary field, is determined by
its Cayley–van der Waerden–Chow form. These algebraic results, for which
we could not find any suitable reference, are very useful in order to study
movable components of the intersection cycle (and its intersection numbers)
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in the algebraic approach to intersection theory of Stückrad and Vogel [8], [6],
see our forthcoming paper [1].

In Section 2 we will establish a 1-1 correspondence between components of
the closure of the difference of two varieties and the components of a generic
residual intersection, see Proposition 2.5. This result is important in the study
of the Stückrad–Vogel intersection algorithm in order to control components
outside the intersection, see [1].

In Section 3, using Lemma 2.3, we shall prove the result on the Cayley–
van der Waerden–Chow form (Proposition 3.3) and give an example that in
positive characteristic the degree of the Chow form can be smaller than the
degree of the variety.

2. Some algebraic preliminaries. Let R be a commutative noetherian
ring with identity element. Further let x1, . . . , xr ∈ R and let u1, . . . , ur be
indeterminates over R, where r ∈ N+. If M is an R-module, N a submodule
of M and J an ideal in R, let

N :M 〈J〉 := {m ∈M | J t ·m ⊆ N for some t ∈ N} .
We will assume that not all of the elements x1, . . . , xr are nilpotent and set

S := R[u1, . . . , ur], I := (x1, . . . , xr)R,

F :=
r∑

i=1

xiui ∈ S and R′ := S/FS :S 〈IS〉 .

We note that R′ is an S-algebra which is not the zero ring because of our
assumption.

In this section we will establish a 1-1 correspondence between the associated
prime ideals of R and R′ and we will prove that the corresponding primary
ideals have the same length. We note that the geometric background of these
investigations is the study of generic hyperplane sections of affine or projective
varieties.

For this we will use a more general approach. First of all it is easy to see
that the definition of R′ can be extended to R-modules: For an R-module M
let

M ′ := (M ⊗R S)/F (M ⊗R S) :M⊗RS 〈IS〉.
M ′ is an S-module which may be considered as an R′- and an R-module as
well.

If f : M → N is an R-linear map (M,N R-modules), then f⊗RS : M⊗RS
→ N ⊗R S induces a homomorphism f ′ : M ′ → N ′, which is S-, R′- and
R-linear.

It is clear, that this defines an additive covariant functor from the category
of R-modules to the category of S-modules (R′-, R-modules, resp.). We will
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denote it by GR(x1, . . . , xr) and write G if no confusion is possible. (By defi-
nition G(M) = M ′ and G(f) = f ′ for all R-modules M and all R-linear maps
f .) G commutes with localizations, i. e., if T ⊂ R is multiplicatively closed
then (M ′)T = (MT )′ for all R-modules M if we consider M ′ as an R- or an
S-module.

Furthermore, let ϕM : M →M ′ be the composition of the embedding

M ⊆M [u1, . . . . . . , ur] = M ⊗R S

and the canonical epimorphismM⊗RS →M ′. It is clear that kerϕM = 0 :M 〈I〉.
By ϕ∗R : SpecR′ → SpecR we denote the morphism induced by ϕR.

Finally, we note that the map

V (FS) \ V (IS) → SpecR′

given by P 7→ P/FS :S 〈IS〉 for all P ∈ V (FS) \V (IS) ⊆ SpecS, is injective.

Lemma 2.1. With the preceding notation, it holds
(a) GR(x1, . . . , xr) respects monomorphisms and epimorphisms.
(b) For all R-modules M,N and all R-linear maps f : M → N there is a

commutative diagram
M

ϕM−−−−→ M ′yf

yf ′

N
ϕN−−−−→ N ′ ,

Moreover, f ′ is a monomorphism (isomorphism) if Supp(ker f) ⊆ V (I)
(and f is an epimorphism).

Remark 2.2. The commutative diagram in (b) says that the ϕM , M an R-
module, provide a natural transformation of the identity functor of the category
of R-modules into G(x1, . . . , xr) considered as a functor from the category of
R-modules to itself.

Before embarking on the proof of Lemma 2.1 we introduce the following
notion: A prime ideal P ∈ SpecS is called R-rational if there is a prime ideal
p ∈ SpecR such that P = p · S. In this situation we have p = P ∩ R and
htS(P) = htR(p), where ht(I) denotes the height of an ideal I. If M is an
R-module, then all prime ideals of AssS(M ⊗R S) are R-rational, for R ⊂ S is
a special case of a flat extension of rings.

Proof. We set
X̃ := X ⊗R S/F (X ⊗R S),

X an R-module. It is enough to show the following: For any exact sequence

(1) 0 →M
f→ N

g→ P → 0
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of R-modules f ′ is a monomorphism and g′ an epimorphism. If, moreover,
SuppM ⊆ V (I) then g′ is an isomorphism. Tensoring (1) with S/FS we
obtain an exact sequence

(2) 0 → C → M̃ → Ñ → P̃ → 0

with a suitably defined S-module C. Since C=coker(0 :N⊗RS F → 0 :P⊗RS F )
we have SuppS(C) ⊆ SuppS(0 :P⊗RS F ).

On the other hand, AssS(P⊗RS) consists only of R-rational primes. There-
fore 0 :P⊗RS F ⊆ 0 :P⊗RS 〈IS〉, i. e.,

SuppS(C) ⊆ SuppS(0 :P⊗RS F ) ⊆ V (IS).

Hence H0
IS(C) = C, H i

IS(C) = 0 for all i > 0 and from (2) we obtain a
commutative diagram with exact rows

0 −→H0
IS(C) −−−−→ H0

IS(M̃) −−−−→ H0
IS(Ñ)

g̃−−−−→ H0
IS(P̃ )

‖
y ⋂

|
yρ

⋂
|
yσ

⋂
|
yτ

0 −→ C −−−−→ M̃ −−−−→ Ñ −−−−→ P̃ −−−−→ 0
Therefore, passing to cokernels, we get a monomorphism

M ′ = coker ρ
f ′
→ cokerσ = N ′

and an epimorphism

N ′ = cokerσ
g′→ coker τ = P ′

as claimed. If SuppM ⊆ V (I) then g̃ is an epimorphism, ρ = id and therefore
g′ is an isomorphism.

We note that the following result can be obtained by analyzing the proofs
in [9]. For the convenience of the reader we will give here an independent
proof. We begin with two lemmata.

Lemma 2.3. Let M be an R-module. Then we have for P ∈ AssS M
′ and

p := P ∩R:
(a) p ∈ AssR(M) \ V (I),
(b) P = (pS + FS) :S 〈IS〉.

Proof. Since

AssS M
′ = AssS(M ⊗R S)/F (M ⊗R S) \ V (IS)

we have P ∈ V (FS) \V (IS) and therefore I 6⊆ p, i. e., p /∈ V (I). Without loss
of generality we assume x1 /∈ p.
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Considering M ′ as an R-module, we have

(M ′)p = (Mp)′

= Mp[u1, . . . , ur]/FMp[u1, . . . , ur] (since ISp = Sp)
∼= Mp[u2, . . . , ur],

where the last isomorphism is induced by the inclusion

Mp[u2, . . . , ur] ⊂Mp[u1, . . . , ur]

(note that the image of x1 in Rp is a unit). Because R\p ⊆ S\P and I 6⊆ p this
isomorphism gives rise to the following isomorphisms (note that ISP = SP)

(M ′)P = ((M ′)p)PSp
∼= Mp[u2, . . . , ur]P′ ,

where P′ denotes the image of PSp in Rp[u2, . . . , ur] under the map given by
the composition of the canonical epimorphism Sp → Sp/FSp = (R′)p and the
isomorphism Sp/FSp

∼= Rp[u2, . . . , ur]. Therefore we have

PSp/FSp = (P′Sp + FSp)/FSp,

i. e., PSp = P′Sp +FSp. Since P ∈ AssS M
′ we have PSP ∈ AssSP

(M ′)P and
consequently

P′Rp[u2, . . . , ur]P′ ∈ AssRp[u2,...,ur]P′ Mp[u2, . . . , ur]P′ .

Therefore

P′ ∈ AssRp[u2,...,ur]Mp[u2, . . . , ur] = {qRp[u2, . . . , ur] | q ∈ AssMp},
i. e., there is some q ∈ AssMp with P′ = qRp[u2, . . . , ur]. For this prime ideal
q we have

q = P′ ∩Rp = (P′Sp + FSp) ∩Rp = PSp ∩Rp = (P ∩R)p = pRp .

Therefore pRp ∈ AssRp Mp and thus p ∈ AssRM , which shows (a).
For proving (b) we note that q = pRp implies P′ = pRp[u2, . . . , ur] and

therefore we get with p∗ := (pS + FS) :S 〈IS〉 (note that I 6⊆ p):

PSp = P′Sp + FSp = pSp + FSp = p∗Sp .

Let P̃ ∈ AssS S/p
∗. Since S/p∗ ∼= (R/p)′, (a) implies (P̃/pS) ∩ (R/p) = 0,

i. e., P̃∩R = p and therefore we have R \ p ⊆ S \ P̃. Now PSp = p∗Sp implies
P = p∗.

Lemma 2.4. For p ∈ SpecR we set p∗ := (pS + FS) :S 〈IS〉. Then the
following conditions are equivalent:

(i) p∗ ∈ SpecS,
(ii) p /∈ V (I),
(iii) p∗ ∩R = p.

In this case p∗ ∈ V (FS) \ V (IS) and htS(p∗) = 1 + htR(p).
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Proof. (ii) ⇒ (i), (iii): Passing from R to R/p, we can assume without
loss of generality that R is an integral domain and that p = 0. Then S/p∗ = R′.
Since

(FS :S 〈I〉) ∩R = kerϕR = 0 :R 〈I〉 = 0,

it is sufficient to show that FS :S 〈I〉 is a prime ideal in S.
Let P ∈ AssS R

′. Then P ∩ R ∈ AssR = {0} by Lemma 2.3(a), i. e.
P ∩ R = 0. By Lemma 2.3(b) we therefore obtain P = FS :S 〈I〉, i. e.
FS :S 〈I〉 is a prime ideal.

(i), (iii) ⇒ (ii): Assume that p ∈ V (I). Then IS ⊆ pS and therefore
p∗ = S /∈ SpecS and p∗ ∩R = S ∩R = R 6= p.

It is clear, that p∗ ∈ V (FS) \ V (IS) in this case. Then

p∗Sp∗ = (pSp∗ + FSp∗) :Sp∗ 〈ISp∗〉 = pSp∗ + FSp∗ .

Since F /∈ pSp∗ ,

htS(p∗) = htSp∗ (p∗Sp∗) = 1 + htSp∗ (pSp∗) = 1 + htR(p)

by Krull’s Hauptidealsatz.

Now we can prove:

Proposition 2.5. For any R-module M the map ϕ∗R : SpecR′ → SpecR
induces a bijection AssR′ M ′ → AssR(M) \ V (I).

Proof. By our above remarks it is sufficient to show that the restric-
tion map SpecS → SpecR induces a bijection AssS(M ′) → AssR(M) \ V (I).
For p ∈ SpecR \ V (I), we set again p∗ := (pS + FS) :S 〈IS〉. Then p∗ ∈
V (FS) \ V (IS) ⊆ SpecS and p∗ ∩R = p by Lemma 2.4.

By Lemma 2.3(a) the restriction map SpecS → SpecR induces a map

ψM : AssS(M ′) → AssR(M) \ V (I).

By Lemma 2.3(b) we have P = ψM (P)∗ for all P ∈ AssS M
′ and therefore ψM

is injective.
Let now p ∈ AssR(M) \ V (I), i. e., there is a monomorphism R/p → M .

By Lemma 2.1(a) this monomorphism induces a monomorphism
S/p∗ ∼= (R/p)′ →M ′, i. e., p∗ ∈ AssS M

′. Since ψM (p∗) = p, ψM is surjec-
tive and hence bijective.

Corollary 2.6. Let M be a finitely generated R-module and let p ∈
minAssRM with I 6⊆ p. If p′ ∈ AssR′ M ′ is the uniquely determined prime ideal
such that p = ϕ∗R(p′) then p′ ∈ minAssR′ M ′ and length(Rp) = length(R′

p′).



17

Proof. Passing from R to R/AnnRM , we may assume without loss of
generality that p is minimal in SpecR. Since I 6⊆ p, we get IS 6⊆ p∗ and
F /∈ pS. Using Lemma 2.4 we obtain

AssSp∗ = {qSp∗ |q ∈ AssR, q ⊆ p∗} = {qSp∗ |q ∈ AssR, q ⊆ p∗ ∩R} = {pSp∗}
by the minimality of p in SpecR. Since dimSp∗ = htS(p∗) = 1 + htR(p) = 1
by Lemma 2.4, F is a parameter element in Sp∗ which is a nonzerodivisor.
Therefore

lengthSp∗/FSp∗ = e(FSp∗ , Sp∗) <∞ .

Now
R′

p′
∼= R′

p∗ = Sp∗/(FSp∗ :Sp∗ 〈ISp∗〉) = Sp∗/FSp∗ ,

i. e., we obtain lengthR′
p′ = e(FSp∗ , Sp∗) < ∞, in particular, p′ is minimal in

AssR′. Further, by the addition and reduction theorem for multiplicities, we
get

e(FSp∗, Sp∗) = length(SpS) · e(FSp∗, Sp∗/pSp∗) ,
for pSp∗ is the unique minimal prime ideal in Sp∗ . Since R ⊂ S is flat, Rp ⊂ SpS

is flat too with fibre Sp/pSp. Therefore length(SpS) = length(Rp). Further-
more, since F /∈ p, we get

e(FSp∗, Sp∗/pSp∗) = length(Sp∗/pSp∗ + FSp∗) = length(Sp∗/p
∗Sp∗) = 1 ,

as required.

Corollary 2.7. Assume R is reduced (an integral domain). Then R′ is
again reduced (an integral domain) with the same number of associated primes
as R.

3. The Cayley–van der Waerden–Chow form. Let u0, . . . , un, n ≥ 1,
be indeterminates of degree one. We will use the following notation: Let R be
a ring. For a polynomial f ∈ R[u0, . . . , un] we denote by supp f the (finite) set
of all monomials in u0, . . . , un occurring in f with non-zero coefficient.

Lemma 3.1. Let L|K be an algebraic field extension. For ξ := (ξ1, . . . , ξn) ∈
Ln, set

Gξ := u1ξ1 + · · ·+ unξn ∈ L[u1, . . . , un] and

Fξ := u0 +Gξ ∈ L[u0, u1, . . . , un].

Then:
(a) There is an irreducible homogeneous polynomial fξ ∈ K[u0, u1, . . . , un] of

positive degree with the following properties:
(i) fξ ·K[u0, u1, . . . , un] = FξL[u0, u1, . . . , un] ∩K[u0, u1, . . . , un].

(ii) fξ is integral with respect to u0, that is, udeg fξ

0 ∈ supp fξ.
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(iii) gξ := fξ(X,u1, . . . un) ∈ K(u1, . . . , un)[X] (X an indeterminate) is
the minimal polynomial of −Gξ∈L(u1, . . . , un) over K(u1, . . . , un).

(iv) If all but possibly one of the elements ξ1, . . . , ξn are separable over
K, then deg fξ = [K[ξ1, . . . , ξn] : K]. Otherwise there exists a non-
negative integer ε with pε deg fξ = [K[ξ1, . . . , ξn] : K], where p :=
charK > 0.

(b) If ζ := (ζ1, . . . , ζn) ∈ Ln, then fξ = fζ (up to a non zero constant factor) if
and only if there exists a K-isomorphism ϕ : K[ξ1, . . . , ξn] → K[ζ1, . . . , ζn]
with ϕ(ξi) = ζi, i = 1, . . . , n.

Proof. For any field Z with K ⊆ Z ⊆ L we set

SZ := Z[u0, . . . , un], QZ := Z(u0, . . . , un) = Q(SZ) and

S′
Z := Z[u1, . . . , un], Q′

Z := Z(u1, . . . , un) = Q(S′
Z).

Since Fξ is homogeneous of degree one it is obviously irreducible in SL and in
Q′

L[u0]. Therefore FξSL is a homogeneous prime ideal in SL (note that SL is
factorial) and Pξ := FξSL ∩ SK is a homogeneous prime ideal in SK .

(a) Since

Pξ = FξSL ∩ SK = FξSL ∩ SK[ξ1,...,ξn] ∩ SK = FξSK[ξ1,...,ξn] ∩ SK ,

we may assume without loss of generality that L = K[ξ1, . . . , ξn] and hence
that L|K is finite. Furthermore Pξ ∩ S′

K ⊆ FξSL ∩ S′
L = 0 so that we have a

chain of monomorphisms and isomorphisms, respectively,

S′
K → SK/Pξ → SL/FξSL

∼= S′
L ,

where the composition map S′
K → S′

L is given by the inclusion K ⊆ L and by
ui 7→ ui, i = 1, . . . , n. Since L|K is finite, S′

L(∼= S′
K⊗KL) is a finitely generated

graded S′
K-module and hence SK/Pξ is a finitely generated graded S′

K-module
as well. Therefore there exists an irreducible homogeneous polynomial fξ in
Pξ which is integral with respect to u0. It is clear, that deg fξ = degu0

fξ > 0.
Moreover,

ht(Pξ) = dimSK − dimSK/Pξ = n+ 1− dimS′
K = n+ 1− n = 1,

so that actually Pξ = fξ · SK , and (i) and (ii) have been proved.
Since fξ is irreducible in SK = S′

K [u0], fξ(X,u1, . . . , un) is irreducible in
Q′

K [X]. Let g := fξ(−Gξ, u1, . . . , un) ∈ S′
L. Since fξ = fξ(Fξ −Gξ, u1, . . . , un)

we have g − fξ ∈ FξSL and therefore

g = g − fξ + fξ ∈ FξSL ∩ S′
L = 0.

Thus (iii) has been proved.
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If all but possibly one of the elements ξ1, . . . , ξn are separable over K, then
all but possibly one of them, viewed as elements of QL = QK [ξ1, . . . , ξn], are
separable overQK with the same minimal polynomials as overK. ThereforeGξ

is a primitive element of the finite field extensionQK [ξ1, . . . , ξn]|QK and, taking
into account (a)(ii) and (iii) and using QK [ξ1, . . . , ξn] ∼= QK ⊗K K[ξ1, . . . , ξn],
one has

deg fξ = degX fξ(X,u1, . . . , un) = [QK [−Gξ] : QK ] =

= [QK [ξ1, . . . , ξn] : QK ] = [K[ξ1, . . . , ξn] : K] .

Assume that at least two of the elements ξ1, . . . , ξn are not separable over K.
Then, in particular, K is not perfect. Since ξpe

1 , . . . , ξ
pe

n are separable over K
for e� 1, Gpe

ξ is a primitive element of QK [ξpe

1 , . . . , ξ
pe

n ]|QK . Therefore

ξpe

i ∈ QK [Gpe

ξ ] ⊆ QK [Gξ] for all i = 1, . . . , n.

As above,

deg fξ = [QK [−Gξ] : QK ] = [QK [Gξ] : QK ] =

=
[QK [ξ1, . . . , ξn] : QK ]

[QK [ξ1, . . . , ξn] : QK [Gξ]]
=

[K[ξ1, . . . , ξn] : K]
[QK [ξ1, . . . , ξn] : QK [Gξ]]

.

Since QK [ξpe

1 , . . . , ξ
pe

n ] ⊆ QK [Gξ], the degree [QK [ξ1, . . . , ξn] : QK [Gξ]] divides

[QK [ξ1, . . . , ξn] : QK [ξpe

1 , . . . , ξ
pe

n ]],

but the latter is a power of p. Therefore [QK [ξ1, . . . , ξn] : QK [Gξ]] = pε for
some ε ∈ N, which shows (iv).

(b) If fξ = fζ =: f , then −Gξ and −Gζ are roots of f(X,u1, . . . , un).
Therefore there is a QK-isomorphism

ψ : QK [Gξ] → QK [Gζ ] with ψ(Gξ) = Gζ .

We choose a positive integer q as follows: If K is perfect, we set q := 1.
If K is not perfect and p := charK, then q := pe, where e ∈ N has been
chosen as in the proof of (a)(iv), that is, such that ξpe

1 , . . . , ξ
pe

n ∈ QK [Gξ] and
ζpe

1 , . . . , ζpe

n ∈ QK [Gζ ]. Then
n∑

i=1

uq
i ζ

q
i = Gq

ζ = ψ(Gξ)q = ψ(Gq
ξ) = ψ

n∑
i=1

uq
i ξ

q
i ) =

n∑
i=1

uq
iψ(ξq

i )

and we obtain ζq
i = ψ(ξq

i ), i = 1, . . . , n, since ψ(ξq
i ) ∈ QK [Gζ ] is even algebraic

over K (with the same minimal polynomial as ξq
i ). Thus the restriction of ψ

to Kq[ξq
1, . . . , ξ

q
n] is a Kq-isomorphism

ψq : Kq[ξq
1, . . . , ξ

q
n] → Kq[ζq

1 , . . . , ζ
q
n].
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The Frobenius homomorphism ϕq :L→ L induces an isomorphism ϕ̃q :L→ Lq.
Now we set

ϕ := (ϕ̃−1
q |Kq [ζq

1 ,...,ζq
n]) ◦ ψq ◦ (ϕ̃q|K[ξ1,...,ξn]) .

The homomorphism ϕ has the desired property.
Conversely, let ϕ : K[ξ1, . . . , ξn] → K[ζ1, . . . , ζn] be a K-isomorphism with

ϕ(ξi) = ζi for i = 1, . . . , n. Then the restriction of ϕ⊗K QK to QK [Gξ] yields
a QK-isomorphism ψ : QK [Gξ] → QK [Gζ ] such that ψ(Gξ) = Gζ . Hence the
minimal polynomials of −Gξ and −Gζ over QK coincide, that is, fξ = fζ by
(a)(iii). This finishes the proof of Lemma 3.1.

Lemma 3.2. Let K be a field, and let X0, . . . , Xn be further indetermi-
nates of degree one. Set R := K[X0, . . . , Xn], T := K[u0, . . . , un], S :=
T [X0, . . . , Xn] = R[u0, . . . , un] and F := u0X0 + · · · + unXn ∈ S. Further-
more, let P ⊂ R be a homogeneous prime ideal with r := ht(P ) ≤ n and
set

P ∗ := (PS + FS) :S 〈X0, . . . , Xn〉.
Then:
(a) P ∗ is a prime ideal in S of height r + 1 such that P ∗ ∩R = P , and P ∗ is

homogeneous both with respect to X0, . . . , Xn and u0, . . . , un.
(b) If ht(P )=n, then there exists an irreducible and (with respect to u0, . . . , un)

homogeneous polynomial fP ∈ T with the following properties:
(i) fPT = P ∗ ∩ T .
(ii) Let I := {i ∈ {0, . . . , n} | Xi 6∈ P}. Then fP ∈ K[{ui | i ∈ I}] and,

for any i ∈ I, fP is integral with respect to ui, that is,

udeg fP
i ∈ supp fP .

(iii) deg fP = h0(R/P ) if charK = 0. If p := charK > 0,

deg fP = p−εh0(R/P ) ≤ h0(R/P )

for a suitable ε ∈ N.
(c) If P ′ ⊂ R is another homogeneous prime ideal with ht(P )′ = ht(P ) = n,

then fP = fP ′ (up to multiplication by a nonzero constant) if and only if
P = P ′.

Proof. (a) follows from Lemma 2.4 (it is clear, that P ∗ is homogeneous
with respect to X0, . . . , Xn and u0, . . . , un).

(b) Suppose that X0 6∈ P . Then X0 6∈ P ∗ by (a). We set

R′ := K[X1, . . . , Xn], S′ := R′[u0, . . . , un], and

F ′ := u0 + u1X1 + · · ·+ unXn ∈ S′.
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Furthermore, let λR : R′ → RX0 be the K-homomorphism defined by

λR(Xi) =
Xi

X0
, i = 1, . . . , n.

Moreover, we set
λS := λR ⊗K T : S′ → SX0 .

By definition, λS is a T -homomorphism. Then P̃ := λ−1
R (PRX0) and P̃ ∗ :=

λ−1
S (P ∗SX0) are prime ideals in R′ and S′, respectively. More precisely, P̃ =
{f |X0=1 | f ∈ P} and P̃ ∗ = {f∗|X0=1 | f∗ ∈ P ∗} are the dehomogenizations of
P and P ∗, respectively, with respect to X0. Therefore ht(P̃ ) = ht(P ) = n (i. e.
P̃ is a maximal ideal of R′), ht(P̃ ∗) = ht(P ∗) = n + 1 and P̃ ∗ = P̃S′ + F ′S′.
Moreover, P̃S′ ∩ T = PS ∩ T = 0 and P̃ ∗ ∩ T = P ∗ ∩ T . Hence T may
be considered as a subring of S′/P̃S′ and we have P ∗ ∩ T =

(
P̃ ∗/P̃S′

)
∩ T .

Since P̃ is a maximal ideal in R′, we have R′/P̃ = K[ξ1, . . . , ξn] =: L, where
ξi := Xi+P̃ ∈ K for i = 1, . . . , n. With the notation of the proof of Lemma 3.1
we therefore have S′/P̃S′ = SL where F ′ + P̃S′ = Fξ. By Lemma 3.1 (a)(i)
we obtain (note that T = SK)

P ∗ ∩ T =
(
P̃ ∗/P̃S′

)
∩ T =

(
(P̃S′ + F ′S′)/P̃S′

)
∩ T

= FξSL ∩ SK = fξT = fPT

with fP := fξ and (i) is shown. Moreover, fP depends (up to constant factors)
only on P and not on the choice of the indeterminate Xi such that Xi 6∈ P .
Therefore, by Lemma 3.1 (a)(ii), fP is integral with respect to all ui, i ∈ I.
On the other hand, if Xj ∈ P for j ∈ {0, . . . , n} then with

P ′ := P ∩Rj , where Rj := K[X0, . . . , Xj−1, Xj+1, . . . , Xn]

it is immediately clear that P ∗ = P ′∗S +XjS, where

P ′∗ ⊆ Rj [u0, . . . , uj−1, uj+1, . . . , un]

is suitably defined. Thus fP = fP ′ does not depend upon uj , and (ii) is proved.
(iii) follows from Lemma 3.1 (a)(iv) since

h0(R/P ) = rankK R′/P̃ = [K[ξ1, . . . , ξn] : K].

(c) Let fP = fQ =: f and I := {i ∈ {0, . . . , n} | Xi 6∈ P}. Assume that
Xi ∈ Q for all i ∈ I. Then by (b)(ii) we had

f = fP ∈ K[{ui | i ∈ I}] and

f = fQ ∈ K[{ui | i ∈ {0, . . . , n} \ I],
so that f would be constant, which is a contradiction. Hence there exists an
i ∈ {0, . . . , n} such that Xi 6∈ P and Xi 6∈ Q. Without loss of generality we
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may assume that this happens for i = 0. Further let R′/P̃ ∼= K[ξ1, . . . , ξn] and
R′/Q̃ ∼= K[ζ1, . . . , ζn] (cf. the proof of (b)). Then fξ = fP = fQ = fζ and, by
Lemma 3.1 (b), there is a K-isomorphism

ϕ : K[ξ1, . . . , ξn] → K[ζ1, . . . , ζn] with ϕ(ξi) = ζi, i = 1, . . . , n.

But this implies for any g ∈ Q̃ that

ϕ(g(ξ1, . . . , ξn)) = g(ϕ(ξ1), . . . , ϕ(ξn)) = g(ζ1, . . . , ζn) = 0 ,

that is, g(ξ1, . . . , ξn) = 0. Thus g ∈ P̃ and Q̃ ⊆ P̃ . Since Q̃, P̃ are maximal
ideals in R′, this implies P̃ = Q̃ and hence P = Q. The converse is trivial.

Proposition 3.3 (Cayley–van der Waerden–Chow form). Let K be a field,
and let X0, . . . , Xn be indeterminates. Further let P ⊂ R := K[X0, . . . , Xn] be
a homogeneous prime ideal and d := dimR/P − 1 ≥ 0, that is, d is the degree
of the Hilbert polynomial of R/P . For i = 0, . . . , d and j = 0, . . . , n let uij be
further indeterminates and abbreviate ui0, . . . , uin by ui. Moreover, set

S := R[u0, . . . ,ud], T := k[u0, . . . ,ud], Fi :=
n∑

j=0

uijXj , i = 0, . . . , d,

and P ∗ := (PS + (F0, . . . , Fd)S) : 〈X0, . . . , Xn〉.
Then:
(a) P ∗ is a prime ideal in S of height n + 1 with P ∗ ∩ R = P , and P ∗ is

homogeneous in each row of indeterminates u0, . . . ,ud as well as in X :=
X0, . . . , Xn.

(b) There exists an irreducible and with respect to each row of indeterminates
u0, . . . ,ud homogeneous polynomial fP ∈ T with the following properties:

(i) fPT = P ∗ ∩ T .
(ii) 0 < degu0

fP = · · · = degud
fP ≤ h0(R/P ) with equality if charK =

0.
(c) If Q ⊂ R is another homogeneous prime ideal with ht(Q) = ht(P ), then

fP = fQ (up to multiplication by a nonzero constant) if and only if P = Q.

fP is called Cayley–van der Waerden–Chow form of P .

Proof. (a) For 0 ≤ i ≤ d we set S(i) := R[u0, . . . ,ui] and

P ∗
i := (PS(i) + (F0, . . . , Fi)S(i)) : 〈X0, . . . , Xn〉 .

Since P ∗
i = (P ∗

i−1S
(i) + FiS

(i)) : 〈X0, . . . , Xn〉 (P ∗
−1 := P ), it follows from

Lemma 3.2 by induction on i that P ∗
i is a prime ideal in S(i) of height

ht(P ) + i = n− d+ i+ 1.
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Now (a) follows since P ∗ = P ∗
d .

(b) Let IP := P ∗ ∩ T . The ideal IP is a prime ideal in T , which is
homogeneous in each row of indeterminates u0, . . . ,ud. Now let

T0 := K[u1, . . . ,ud],

S0 := R[u1, . . . ,ud], and

k := Q(T0) = K(u1, . . . ,ud) .

Furthermore, we set

P0 := (PS0 + (F1, . . . , Fd)S0) : 〈X0, . . . , Xn〉 .

By the proof of (a) P0 is a prime ideal in S0 of height ht(P ) + d = n. Since
also

ht(PS0 + (F1, . . . , Fd)S0) = ht(P ) + d = n

< n+ 1 = ht(X0, . . . , Xn)S0 ,

it follows that P0 ⊆ (X0, . . . , Xn)S0, and therefore

P0 ∩ T0 ⊆ (X0, . . . , Xn)S0 ∩ T0 = 0.

Furthermore, by Lemma 3.2 (a), P ∗ ∩ S0 = P0 and hence

P ∗ ∩ T0 = P ∗ ∩ S0 ∩ T0 = P0 ∩ T0 = 0,

that is, IP ∩ T0 = 0. Now let

Rk := k[X0, . . . , Xn],

Sk := Rk[u0] = k[X0, . . . , Xn, u01, . . . , u0n], and

Tk := k[u0].

Then Rk = S0⊗T0k is the localization of S0 at the multiplicatively closed subset
T0 \ {0}, and similar statements hold for Sk and Tk. Because of IP ∩ T0 = 0
we have ht(IP ) = ht(IPTk) and

IPTk = P ∗Sk ∩ Tk = (P0Rk)∗ ∩ Tk.

Since P0Rk is a homogeneous prime ideal in Rk of height n, it follows by
Lemma 3.2 (b) that IPTk = fP0Rk

Tk. Thus ht(IP ) = 1, that is, IP = fPT
for some irreducible and with respect to each row of indeterminates u0, . . . ,ud

homogeneous polynomial fP ∈ T which shows (i). Any permutation of the rows
of indeterminates u0, . . . ,ud induces an automorphism of S and T , respectively,
which maps the ideal P ∗ to itself and therefore leaves fP unchanged. Hence
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degu0
fP = · · · = degud

fP > 0. If we set P ′ := P0Rk then, by Lemma 3.2
(b)(iii) and the theorem of Bézout,

degu0
fP = deg fP ′ ≤ h0(Rk/P

′)

= degX F1 · . . . · degX Fd · h0(Rk/PRk)

= h0(Rk/PRk) = h0(R/P )

with equality if char k = charK = 0, which finishes the proof of (ii).

(c) Let fP = fQ. Then, with the notation introduced in (b), we have

fP0 = fPRk
= fQRk

= fQ0

and, by Lemma 3.2 (c), we conclude that P0 = Q0. Now from (a) and
Lemma 3.2 (a) it follows that

P = P ∗ ∩R = P ∗ ∩Rk ∩R = P0 ∩R
= Q0 ∩R = Q∗ ∩Rk ∩R = Q∗ ∩R = Q ,

which finishes the proof.

The following example shows that the assumption on the characteristic in
Proposition 3.3 (b)(ii) cannot be omitted.

Example 3.4. Let K := (Z/2Z)(s, t) with indeterminates s, t and

R := K[X0, X1, X2].

Furthermore, let f1 = X2
1 + sX2

0 , f2 = X2
2 + tX2

0 and P := (f1, f2)R. Then P
is a homogeneous prime ideal in R. If we set

S := R[u0, u1, u2],
F := u0X0 + u1X1 + u2X2,

F̃ := u0X1X2 + u1X0X2 + u2tX0X1 and

f := u2
0 + su2

1 + tu2
2,

then we have

PS + FS = (f1, f2, F, F̃ , f)S ∩ (X2
0 , X

2
1 , X

2
2 , X0X1X2, F )S ,

where (X2
0 , X

2
1 , X

2
2 , X0X1X2, F )S is (X0, X1, X2)S-primary.

Therefore P ∗=(f1, f2, F, F̃ , f)S and fP =f , i. e., deg fP =2<4=h0(R/P ).
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