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Abstract Let X be a surface in Cn or Pn and let CX(X × X) be the normal cone to X in X × X

(diagonally embedded). For a point x ∈ X, denote by g(x) := ex(CX(X × X)) the multiplicity of

CX(X ×X) at x. It is a former result of the authors that g(x) is the degree at x of the Stückrad–Vogel

cycle v(X, X) =
P

C j(X, X; C) [C] of the self-intersection of X, that is, g(x) =
P

C j(X, X; C) ex(C).

We prove that the stratification of X by the multiplicity g(x) is a Whitney stratification, the canonical

one if n = 3. The corresponding result for hypersurfaces in An or Pn, diagonally embedded in a multiple

product with itself, was conjectured by L. van Gastel. This is also discussed, but remains open.
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1. Introduction

In his article [21], H. Whitney introduced the notion of a regular stratification (later
called Whitney stratification) that turned out to be a very useful tool in the study of
singular complex analytic spaces. Whitney’s regularity condition had been characterized
numerically by B. Teissier [19] using polar multiplicities. We will use Teissier’s numerical
criterion (see Sect. 2) and the algebraic approach to intersection theory by J. Stückrad
and W. Vogel (see Sect. 3) to construct the canonical (or minimal) Whitney stratification
of a surface X in P3. More precisely, let CX(X × X) be the normal cone to X in
X × X (diagonally embedded). For a point x ∈ X, denote by g(x) := ex(CX(X × X))
the multiplicity of CX(X × X) at x. In [4] we proved that g(x) is the degree at x of
the Stückrad–Vogel cycle v(X, X) =

∑
C j(X, X;C) [C] of the self-intersection of X,

that is, g(x) =
∑

C j(X, X; C) ex(C); see Proposition 3.6 for details. In this paper, our
main result Theorem 4.2 states that the pointwise degree g(x) of the Stückrad-Vogel
intersection cycle of the self-intersection of X is a stratifying function which gives the
canonical Whitney stratification. Our restriction to algebraic surfaces in P3 or Pn is only
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for simplicity. In fact, using P. Tworzewski’s extension of the Stückrad-Vogel cycle to the
analytic case (see [20]), one has the analogue result for complex analytic surfaces in Cn.
Both in the projective and in the complex analytic case, the stratifying function g(x) can
be calculated by computer algebra systems: see our examples in Sect. 4.

L. van Gastel conjectured that for hypersurfaces in Pn or Cn, the pointwise degree
g(x) of the intersection cycle of a suitable multiple self-intersection should also give the
canonical Whitney stratification. However, we were not able to prove that the g-constant
strata are smooth. Hence we conclude our paper with some examples and open problems.

Notations. We denote the n-dimensional projective space over a field K by Pn
K . If not

explicitly stated to the contrary, our base field will be always the field of complex numbers
and we simply write Pn. By a variety or subvariety of Pn

K we mean a closed reduced (but
possibly reducible) equidimensional subscheme of Pn

K without embedded components.
A surface is a 2-dimensional variety and a hypersurface an (n − 1)-dimensional variety.
The multiplicity of a scheme X at a point x, i. e., the multiplicity of the local ring OX,x,
will be denoted by mx(X) = ex(X) = e(OX,x). Finally, Xreg stands for the set of closed
points x of X such that OX,x is a regular local ring, and Sing X is the complement of
Xreg in the set of closed points of X.

2. Polar multiplicities and Whitney stratifications

Definition 2.1. Let X ⊂ Pn be a d-dimensional subvariety, with 0 ≤ d ≤ n− 1, and
for each 0 ≤ k ≤ d let L(k) be an (n− d + k− 2)-dimensional linear subspace of Pn. The
polar variety (or polar locus) P (L(k), X) of X associated with L(k) is the closure of

{x ∈ Xreg | dim(TxX ∩ L(k)) ≥ k − 1} .

If n − d + k − 2 = −1 we set P (L(k), X) = X and L(k) = ∅. This happens only in the
case k = 0 and d = n− 1.

Remark 2.2. If L(k) is a generic linear subspace of Pn, then the polar variety
P (L(k), X) is either empty or equidimensional of codimension k in X, and its degree does
not depend upon L(k); see for example [18], Prop. 1.2 and the Transversality Lemma 1.3.

Notation 2.3. For L(k) generic we set Pk(X) := P (L(k), X) and call it the general
k-polar variety (or k-polar locus of X).
If

L : L(0) ⊂ L(1) ⊂ . . . ⊂ L(d)

is a generic flag of linear subspaces of Pn with dim L(k) = n − d + k − 2, then we have
the following inclusion of the corresponding polar varieties

X = P0(X) ⊃ P1(X) ⊃ . . . ⊃ Pd(X) .

If x ∈ X, we can consider the sequence of multiplicities

MX,x(L) = (mx(P0(X)), . . . , mx(Pd−1(X))) .
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This sequence does not depend upon the choice of the general flag L (see [19], IV 3.1,
p. 425), and is in fact constant on a Zariski open subset of the variety of flags. The
number mx(Pk(X)), for k = 0, . . . , d−1, is called the general k-polar multiplicity of X at
x. Note that mx(Pd(X)) = 0 since the germ of Pd(X) at the point x is empty; see [19],
IV 3.3.

Remark 2.4. The polar varieties Pk(X) arise as sets of critical points of generic linear
projections, see [14], (2.2.3), p. 462–463 or [19], p. 314.

We recall the definition of a critical point of a differentiable map.

Definition 2.5. Let f : M → N be a differentiable map. A point x ∈ M is called a
critical point of f if the rank of the tangent map

f∗x : TxM → Tf(x)N

is smaller than the maximal possible one, that is,

rank f∗x < min(dimx M, dimf(x) N) .

Remark 2.6. Maintaining the notation of Definition 2.1 and Remark 2.4, we observe
that the k-polar variety P (L(k), X) is the closure of the set of critical points of the
restriction to X of the linear projection on Pd−k+1 with center L(k). If dim L(k) = −1,
that is, if d = n− 1 and k = 0, we can consider the affine cones X̂ of X and L̂(0) = {0}
of L(0) = ∅ in An+1 and take the linear projection X̂ \ {0} → An. The closure of the set
of critical points of this map is X̂; in this sense, P0(X) = X can also be regarded as a
set of critical points.

Definition 2.7. Let X be d-dimensional complex projective variety and let Y be
a non-singular subvariety of X. We say that the pair (Xreg, Y ) satisfies the Whitney
conditions at a point x0 ∈ Y if for each sequence (xi) of points of Xreg and each sequence
(yi) of points of Y both converging to x0 and such that the limits limxi→x0 TxiX and
limxi,yi→x0 xiyi exist in the Grassmannians G(d, n) and G(1, n) respectively, one has:

(a) lim
xi→x0

TxiX ⊃ Tx0Y ,

(b) lim
xi→x0

TxiX ⊃ lim
xi,yi→x0

xiyi .

We remark that (b) implies (a).

Theorem 2.8. (Teissier [19]) With the above notation, the pair (Xreg, Y ) satisfies the

Whitney conditions in x0 if and only if the sequence of polar multiplicities

my(X),my(P1(X)), . . . , my(Pd−1(X))

is locally constant in Y around x0.
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Definition 2.9. With the above notation, a Whitney stratification of X is given by a
filtration of X by algebraic sets Fi

X = F0 ⊇ F1 ⊇ · · · ⊇ Fd+1 = ∅
with the following properties:

(i) For each i = 0, . . . , d, the locally closed subset Fi \Fi+1 is either empty or is a non-
singular quasi-projective variety of pure codimension i. (The connected components
of Fi \ Fi+1 (i = 0, . . . , d) are called the strata of the stratification.)

(ii) Whenever Sj and Sk are connected components of Fi\Fi+1 and Fl\Fl+1 respectively
(i, l = 0, . . . , d) with Sj ⊂ Sk, then the pair (Sk, Sj) satisfies the Whitney conditions
(a) and (b).

Remark 2.10. In the case of a (reduced) surface X ⊂ Pn, the above Theorem 2.8
of Teissier implies that a Whitney stratification of X can be obtained as follows. Set
F0 = X, F1 = Sing X (the singular locus of X), and, if F1,1, . . . F1,m are the 1-dimensional
irreducible components of F1, set

F2 = Sing F1 ∪ {0-dimensional components of F1}∪

∪
m⋃

j=1

{x ∈ F1,j | (mx(X),mx(P1(X))) is different from its generic value in F1,j}

and F3 = ∅. This is the so-called canonical Whitney stratification, which is characterized
by the fact that the connected components of the differences Fi \ Fi+1 are the strata of
the minimal or coarsest Whitney stratification, see [19], Chap. 6.

3. Intersection cycle of Stückrad and Vogel

Let X, Y be equidimensional closed subschemes of Pn
K = Proj(K[X0, . . . , Xn]), where K

is an arbitrary field. For indeterminates Uij (0 ≤ i, j ≤ n) let L be the pure transcendental
field extension K(Uij)0≤i,j≤n and XL := X ⊗K L, etc. Proving a Bezout theorem for
improper intersections, Stückrad and Vogel (see [7]) introduced a cycle v(X, Y ) = v0 +
· · ·+ vn+1 on XL ∩ YL, which is obtained by an intersection algorithm on the ruled join
variety

J := J(XL, YL) ⊂ P2n+1
L = Proj(L[X0, . . . , Xn, Y0, . . . , Yn])

as follows:
Let ∆ be the “diagonal” subspace of P2n+1

L given by the equations

X0 − Y0 = · · · = Xn − Yn = 0 ,

let Hi ⊆ J be the divisor given by the equation

`i :=
n∑

j=0

Uij(Xj − Yj) = 0
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and set ` := (`0, . . . , `n). Then one defines inductively cycles βk and vk by setting β0 :=
[J ]. If βk is already defined, decompose the intersection

βk ∩Hk = vk+1 + βk+1 (0 ≤ k ≤ dim J) ,

where the support of vk+1 lies in ∆ and where no component of βk+1 is contained in ∆.
It follows that vk is a (dim J − k)-cycle on XL ∩ YL

∼= J ∩∆. The part of dimension k

of the cycle v(X, Y ) := v(`, J) :=
∑

vk will be denoted by vk, so that the upper index
denotes the codimension in the ruled join and the lower one the dimension of the cycle.
In general, the cycle v(X, Y ) is defined over L. By a result of van Gastel ([11], Prop. 3.9),
a K-rational irreducible subvariety C of XL ∩ YL occurs in v(X, Y ) if and only if C is a
distinguished variety of the intersection of X and Y in the sense of Fulton ([9], p. 95),
and this is equivalent to the maximality of the analytic spread (see [2]) or the maximality
of the dimension of the so-called limit of join variety (see [8]).

Definition 3.1. ([7], 2.2.1) The cycle v(X,Y ) is called the v-cycle of the intersection of
X and Y . An irreducible subvariety C of XL∩YL is said to be a characteristic subvariety
if C occurs in v(X,Y ). The coefficient of C in v(X, Y ) is denoted by j(X, Y ;C). Thus

v(X, Y ) =
∑

C

j(X,Y ; C) [C] ,

where C runs through the characteristic subvarieties. The set of all these subvarieties is
denoted by C = C(X, Y ). Moreover, the set of all elements of C which are defined over
K is denoted by Crat = Crat(X, Y ), that is, Crat is the set of K-rational or distinguished
or fixed subvarieties and C \ Crat is the set of the so-called non K-rational or movable
subvarieties of the intersection of X and Y .

Remark 3.2. The Stückrad-Vogel intersection cycle can be constructed in the same
way also for more than two equidimensional closed subschemes X1, . . . , Xr ⊆ Pn

K by
applying the intersection algorithm to the join variety J(X1, . . . , Xr) ⊆ PN , N :=
r(n + 1) − 1 and generic hyperplanes H0, . . . , HN−n−1 ⊂ PN whose intersection is the
diagonal ∆ ⊂ PN ; see for example [7], 2.2.14. The resulting cycle will be denoted by
v(X1, . . . , Xr).

We observe that for improper intersections the associativity law does not hold, that
is, in general, v(X1, v(X2, X3)) 6= v(v(X1, X2), X3) and both of these cycles may be also
different from v(X1, X2, X3), see [7], Example 2.2.15. In Sect. 4 we will compare the
cycles v(X,X, X) and v(v(X,X), X).

In the case of a self-intersection, we define inductively

X(1) := X and X(m) := v(X(m−1), X) ,

and we will see that on the smooth locus of X this cycle is composed of polar varieties; see
Proposition 3.5 below. In order to prove this proposition, we need the following definition
and result from [6].
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Definition 3.3. ([6], 3.5 and 4.1) The map

p := (`0 : . . . : `r) : Pn
L 99K Pr

L

is called the rth generic linear projection.
The set

Sm(X,Y ) := {x ∈ X ∩ Y | X, Y and X ∩ Y are smooth at x}

is called the smooth locus of the pair (X, Y ).

Theorem 3.4. ([6], Thm. 4.6) Let X, Y ⊆ Pn be algebraic varieties of dimension d and

e, respectively. Let t be an integer such that 0 ≤ t ≤ dim X∩Y −1 and n ≥ d+e−t−1. Let

p : XL ∪ YL −→ Pd+e−t−1
L be the generic linear projection and R(p) = R(p,XL, YL) its

ramification locus. Then dim R(p) ≤ t, and the associated t-cycle [R(p)]t is just vt(X, Y )
on Sm(XL, YL).

We observe that in a projective space over an infinite field K the Stückrad–Vogel inter-
section cycle can be constructed also with elements uij from K instead of indeterminates
Uij . It is sufficient to choose these elements such that the linear forms `i avoid a finite
number of certain prime ideals (see [3] for the precise conditions). The above results
remain valid if we specialize the indeterminates Uij to generic elements uij in K.

Proposition 3.5. Let X ⊂ Pn be a hypersurface (reduced and equidimensional with-

out embedded components). Define inductively X(1) := X and X(m) := v(X(m−1), X).
Then

X(m) =
m−1∑

k=0

(
m− 1

k

)
[Pk(X)] + wm, 2 ≤ m ≤ n ,

where the support of wm is contained in the singular locus of X.

Proof. For m = 2 the result follows immediately from Theorem 3.4, with t = n − 2
and d = e = n − 1, and Remark 2.4 with k = 1 (since [P0(X)] = [X]). By induction
assume m ≥ 3 and that

X(m−1) =
m−2∑

k=0

(
m− 2

k

)
[Pk(X)] + wm−1 .

Hence by the linearity of the Stückrad–Vogel cycle

X(m) = v(X(m−1), X) =
m−2∑

k=0

(
m− 2

k

)
v(X, Pk(X)) + v(X, wm−1) .

Observe that the support of v(X, wm−1) is contained in the singular locus of X. Now, if
Pk(X) 6= ∅,

v(X,Pk(X)) = [Pk(X)] + vn−k−2(X,Pk(X)) ;
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see [7], Remark 2.2.7.(2). Moreover, again by Remark 2.4 and Theorem 3.4 in the non-
trivial case where Pk(X) 6= ∅, with t = n − k − 2, d = n − 1 and e = n − 1 − k, noting
that Pk(X) ⊆ X,

v(X,Pk(X)) = [Pk(X)] + [Pk+1(X)] + w̃k ,

where w̃k is supported by the singular locus of X. Then we obtain

X(m) =
m−2∑

k=0

(
m− 2

k

)
([Pk(X)] + [Pk+1(X)]) + wm ,

and an easy computation gives the result. ¤

For an arbitrary irreducible subvariety Z ⊆ XL ∩ YL ⊂ Pn
L we set Z∆ := J(Z, Z)∩∆.

By Ĵ and Ẑ∆ we denote the affine cones of the ruled join J := J(XL, YL) ⊂ P2n+1
L

and Z∆ in the affine space A2n+2
L . Let (A, m) be the local ring OĴ,Ẑ∆

and I ⊂ A be
the ideal of the diagonal subspace ∆ and let G(X,Y ; Z) denote the associated graded
ring GI(A) = ⊕∞j=0I

j/Ij+1. If Z is the empty subvariety of Pn, then A becomes the
homogeneous ring of coordinates of the ruled join J ⊂ P2n+1

L localized at the irrelevant
maximal ideal; that is, we obtain a global picture of the intersection algorithm. Let e(B)
denote the multiplicity of a local ring (or graded ring) B with respect to its unique
maximal (or homogeneous maximal) ideal. Finally we denote by

ck := ck(I,A) := ck(Gm(GI(A)) (0 ≤ k ≤ dim A =: d)

the generalized Samuel multiplicities of the ideal I ⊂ A, which are defined by the leading
coefficients of the Hilbert polynomial belonging to the twofold sum transform of the
Hilbert function of the bigraded ring R = ⊕∞i,j=0 Rij with

Rij = Gi
m(Gj

I(A)) = (miIj + Ij+1)/(mi+1Ij + Ij+1) ;

see [4], Def. 2.2.

Proposition 3.6. ([4], 2.5, 4.2 and 4.4) With the preceding notation,

e(G(X, Y ; Z)) = e(GI(A)) =
∑

C

j(X, Y ; C) · e(OC,Z) =
d∑

k=0

ck(I, A) ,

where C runs through the characteristic subvarieties of X and Y with C ⊇ Z.

If Z = ∅, then d = dim A = dim J + 1,

c0 = j(X, Y ; ∅), c1 = deg v0, c2 = deg v1, . . . , cd = deg vd−1

and if k > dim(X ∩ Y ) + 1, then ck = 0.

If Z 6= ∅ is K-rational, then d = dim A = dim J − dim Z and

ck =
∑

C

j(X, Y ; C) · e(OC,Z) (0 ≤ k ≤ d) ,

where C runs through all varieties of C(X, Y ) with C ⊇ Z and codimC Z = k. If k >

dim(X ∩ Y )− dim Z, then ck = 0.
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Remark 3.7. (Analytic case) In the paper [20], P. Tworzewski has constructed an
intersection cycle of complex analytic subsets X and Y of a manifold M which do not
intersect necessarily properly. His construction is based on a pointwise defined intersec-
tion multiplicity g(x) = g(X × Y, ∆M , x) for a point x ∈ ∆M , where ∆M is the diagonal
of M × M and g(x) is the sum of the coordinates of the so-called extended index of
intersection g̃(x); see [20], Definition (4.2), p. 185.

Let A = OX×Y,x and I = I∆M
· OX×Y,x. K. Nowak [16], [17] (see also [5]) has recently

proved that g(x) = e(GI(A)) and that g̃(X) is composed of the generalized Samuel
multiplicities c0(I, A), . . . , cdim(X∩Y )(I,A) and of zeros.

In the analytic case, also the Segre numbers of an ideal I introduced by T. Gaffney
and R. Gassler [10] are special cases of the generalized Samuel multiplicities ck(I,A); see
[5].

4. Self-intersection and Whitney stratification

If one wants to use the Stückrad-Vogel intersection cycle of a self-intersection of a surface
X in P3 for the construction of a Whitney stratification of X, then it seems to be natural
to consider v(X,X, X) or v(v(X, X), X) rather than v(X,X), since the latter cycle cannot
have a zero-dimensional part; see [7], Remark 2.2.7.(2).

L. van Gastel proposed to use v(X, X, X) and conjectured that

v(X,X, X) = v(v(X, X), X)

(up to a field extension or up to rational equivalence). Such an associativity formula
would then allow an application of Proposition 3.5. Unfortunately, the associativity law
does not hold. H. Flenner suggested to us the following example from [7] (Example 2.2.15)
in order to show that in general v(X, X,X) 6= v(v(X,X), X).

Example 4.1. Consider the following configuration of two lines V1, V2 and of a conic
V3 in the projective plane.

�

�

���
�

���

� ���

Let Xi be the cone over Vi with common vertex C in P3 and denote by LP , LQ the
lines PC and QC, respectively. We want to calculate the twofold self-intersections of the
surface

X := X1 ∪X2 ∪X3 ⊂ P3 = Proj(C[x, y, z, w]) ,
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which is given by the equation xy(yz−x2) = 0. Obviously v(X1, X1) = X1, v(X1, X2) =
LP , v(X2, X2) = X2, v(X2, X3) = LP +LQ and v(X3, X3) = X3 +L1 +L2, where L1 and
L2 are movable lines on the cone X3 passing through the vertex C. Hence v(X1, Li) = C,
v(X2, Li) = C, v(X3, Li) = Li + C. Furthermore, v(X1, LP ) = LP , v(X1, LQ) = C,
v(X2, LP ) = LP , v(X2, LQ) = LQ, v(X3, LP ) = LP +C, v(X3, LQ) = LQ +C. Using the
bilinearity of the Stückrad-Vogel cycle we get

v(v(X, X), X) = X1 + X2 + X3 + 32 · LP + 6 · LQ + L1 + · · ·+ L4 + 18 · C ,

where L3 and L4 are two further movable lines on X3 going through C. The calculation
of v(X,X, X) is more difficult. Again by the bilinearity of the cycle, we have to sum up
27 cycles vijk := v(Xi, Xj , Xk), which by symmetry can be grouped as follows:

v123 = v132 = v213 = v231 = v312 = v321 = LP + C ,

v112 = v121 = v211 = v122 = v212 = v221 = LP ,

v113 = v131 = v311 = 2 · LP ,

v133 = v313 = v331 = 2 · LP + 2 · C ,

v223 = v232 = v322 = LP + LQ ,

v233 = v323 = v332 = LP + LQ + 2 · C
v111 = X1 and v222 = X2 ,

v333 = X3 + L1 + · · ·+ L4 + 2 · C ,

where L1, . . . L4 are again movable lines as before. It follows that

v(X, X, X) = X1 + X2 + X3 + 30 · LP + 6 · LQ + L1 + · · ·+ L4 + 20 · C .

This time the contribution of the vertex C is higher by 2, but that of the line LP smaller
by 2 so that we have of course the same Bezout number 64.

Surprisingly it turns out that neither v(X,X, X) nor v(v(X, X), X) is needed in order
to get a Whitney stratification of the surface X. As we will see in the next theorem, it
is sufficient to consider the self-intersection v(X,X) and to take its local degree g(x) as
a stratifying function:

Theorem 4.2. Let X ⊂ Pn be a (reduced) surface, x ∈ X be a closed point and

g : X → N be the map defined by g(x) = e(G(X, X;x)). Then

Xj := {x ∈ X | g(x) ≥ j}, j = 0, 1, . . .

are closed subschemes of X or empty, and the connected components of

Sg(j) := g−1(j) = Xj \Xj+1

are the strata of a Whitney stratification of X (the coarsest one if n = 3).
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Proof. At first we will show that Xj is closed. In fact, given a closed point x ∈ X \Xj ,
we will construct a Zariski open subset U of X containing x such that g(y) ≤ g(x) for
each closed point y ∈ U . Let

C(X, X) = {C1, . . . , Cs, Ds+1, . . . , Dt}

be the set of the characteristic subvarieties of the self-intersection of X, and assume that
C1, . . . , Cs pass through x but Ds+1, . . . , Dt do not. By [13], Lemma 2.2, the sets

Di := {y ∈ Ci | e(OCi,y) > e(OCi,x)}, i = 1, . . . , s

are closed in Ci and hence in X. Then U := X \ (
⋃t

i=1 Di) is a Zariski open subset of X

containing x such that

g(y) =
s∑

i=1

j(X,X; Ci) · e(OCi,y) ≤ g(x) =
s∑

i=1

j(X,X; Ci) · e(OCi,x)

for all y ∈ U .
Now we prove that Sg(j) is smooth.
At first we note that g(x) = 1 if and only if X is smooth at x. In fact, g(x) = 1 forces

X to be irreducible at x. Thus g(x) = mx(X) + · · · = 1, which implies mx(X) = 1.
Conversely, the regularity of OX,x implies the regularity of A = OĴ,x̂∆

(see, for example,
[7], 1.3.15) and of A/I ∼= OX̂,x̂, where we used our notation introduced before Proposi-
tion 3.6. Hence I is generated by regular parameters, GI(A) is a polynomial ring over
the regular local ring A/I, and g(x) = e(GI(A)) = 1.

If dim(Sing X) = 0 then, by the above consideration, the stratification is given by X

and by the singular points of X. So the strata are smooth.
If dim(Sing X) = 1, then

v(X,X) = [X] + [P1(X)] +
t∑

k=1

jk[Ck] + eventual 0-dim. part ,

where Ck (k = 1, . . . , t) are all the 1-dimensional irreducible components of the singular
locus of X counted by their intersection numbers jk; see Proposition 3.5 and [2], 2.5. The
0-dimensional part can only occur if n ≥ 4 (see [7], Remark 2.2.7.(2)), and its fixed part
(if there is any) is supported on Sing X (see [2], 2.5) and its movable part is [P2(X)].
Note that for a point x ∈ X, g(x) is the degree of v(X, X) at x (Proposition 3.6):

g(x) = mx(X) + mx(P1(X)) +
t∑

k=1

jk ·mx(Ck) + j(X, X;x) .

Here we have used that mx(P2(X)) = 0; see the remark at the end of 2.3. Now consider
a point x on a fixed Ck, and call it a general point of Ck if the following four conditions
are satisfied:

(i) x is a smooth point of Ck (equivalently, mx(Ck) = 1) and mx(X) = e(OX,Ck
);
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(ii) x 6∈ P1(X); that is, mx(P1(X) = 0;

(iii) x does not belong to Ci with i 6= k; that is, mx(Ci) = 0 if i 6= k;

(iv) x does not belong to the 0-dimensional part of v(X,X); that is, j(X, X;x) = 0.

In all general points of Ck, the function g takes the same value a := e(OX,Ck
) + jk, but

g(x) will be strictly larger than a if x ∈ Ck is not a general point of Ck. This can be
easily seen from the above description of g(x). For example, if x is a singular point of
Ck, then mx(Ck) = e(OCk,x) > 1. It follows that the 1-dimensional strata are formed
by the general points of Ck (k = 1, . . . , t) and that they are smooth. As in the case
dim(Sing X) = 0, every isolated singular point of X (which could also be in v(X, X) if
n ≥ 4) itself forms a stratum. The 2-dimensional strata, being the connected components
of X \ Sing X, are obviously smooth.

Now we know that Sg(j) := g−1(j) = Xj \Xj+1 is smooth and that, by construction,
for all x ∈ Xj \Xj+1 it holds that, following the notation of 3.5,

g(x) = mx(X) + mx(P1(X)) + mx(w) = j .

Here w denotes the part of v(X, X) whose support is contained in the singular locus
of X, and we have used that, as noted previously, mx(P2(X)) = 0 (which is relevant
only if n ≥ 4). By the upper-semicontinuity of the multiplicities mx(. . .), it follows that
both mx(X) and mx(P1(X)) must be constant on the connected components of Sg(j)
and hence, by Teissier’s result (Theorem 2.8), the connected components of Sg(j) are the
strata of a Whitney stratification of X. Moreover, if n = 3, then we have obtained the
coarsest Whitney stratification of X. In fact, to get smooth strata,

∑t
k=1 jk ·mx(Ck) =

mx(w) (for this equality we have used that n = 3) must be constant along each stratum
of an arbitrary Whitney stratification and hence, again by Theorem 2.8, g(x) must be
constant, which is the condition used to construct our stratification. This finishes the
proof. ¤

One is tempted to ask whether a Whitney stratification of a surface X can be obtained
by other stratifying functions coming from self-intersections. Of course, by Remark 3.2,
one could also consider the cycles v(X, X, X) and v(v(X, X), X) and take again their
pointwise degree as stratifying functions to obtain what we call the g-stratifications of X

by v(X, X, X) and v(v(X, X), X), respectively. Or one could stratify X by the pointwise
degree of the fixed part only of v(X, X), v(X, X,X) and v(v(X,X), X), getting stratifi-
cations which we call the distinguished stratifications of X by v(X,X), v(X, X,X) and
v(v(X, X), X), respectively.

The complete comparison of the g-stratifications and of the distinguished stratifications
by v(X,X), v(X,X, X) and v(v(X, X), X) is still open. In particular, it is not known
if the distinguished stratification by v(X, X,X) coincides with the g-stratification by
v(X, X, X), but an example from Teissier ([19], p. 315) shows that for v(X,X) the two
stratifications may differ and that the distinguished one needs not to be a Whitney
stratification.
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Example 4.3 (Teissier). Consider the hypersurface X ⊂ C3 with the defining equa-
tion y2 − x3 − z2x2 = 0:
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The singular locus of X is the z-axis, which is the only distinguished subvariety (except
the whole surface X). So the distinguished stratification has only two strata and hence
is not a Whitney stratification; see [19], p. 315. In order to find the g-stratification of the
preceding theorem, we calculate the generalized Samuel multiplicities

(c0(I,A), c1(I, A), c2(I, A))

for A := OX×X,a (a ∈ X, and X is considered to be diagonally embedded in X×X) and
I = I∆ · A. This can be done by using the computer program CALI [12], a REDUCE
package for commutative algebra, together with the script [1] written by D. Aliffi and
the first author. We obtain (0, 3, 2) if the point a ∈ X is the origin, (0, 2, 2) for a on the
z-axis but different from the origin, and (0, 0, 1) for all smooth points a of X; see the
figure. Note that g(a) = c0(I,A) + c1(I,A) + c2(I,A). Therefore we have three strata:
the origin with g = 5 (which is not a stratum in the distinguished stratification), the
z-axis except the origin with g = 4, and Xreg with g = 1.

In a similar way one finds the canonical Whitney stratification of the projective closure
X of X in P3 = Proj(C[t, x, y, z]). The singular locus of X consists of the two lines
L1 : x = y = 0 and L2 : t = x = 0, which intersect in the point P3 = (0, 0, 0, 1). To
construct a Whitney stratification, the points P1 = (1, 0, 0, 0) and P2 = (0, 0, 1, 0) are
also needed. The canonical Whitney stratification of X has the following six strata: Xreg

with g = 1, L1 \ (P1 ∪ P3) and L2 \ (P2 ∪ P3) with g = 4, the point P1 with g = 5, and
the points P3 and P2 with g = 6.

In the following example we study a surface X whose g-stratification by v(X, X) is
different from its distinguished stratification by v(v(X, X), X).

Example 4.4. Let X ⊂ C3 be the union of the plane X1 with defining equation
z = 0 and the nonsingular surface X2 with defining equation z − x3 + y2 = 0. Then the
singular locus of X is the cuspidal plane curve C := X1 ∩X2 with cusp point O. By the
bilinearity of the Stückrad-Vogel cycle we get easily v(X, X) = X1 + X2 + 2 · C + P ,
where P is a (movable) polar curve of X2 that can be moved away from O. Using again
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the bilinearity we find v(X, v(X, X)), and since O is a smooth point both of X1 and X2

and is not lying on a general polar curve P , the point O will not appear in the cycle
v(X, v(X,X)). But the point O is a singular point of C = Sing X and hence the function
g(x) = mx(X1) + mx(X2) + 2 ·mx(C) (see v(X, X) above), being 1 on X \ C and 4 on
C \O, has in O the value 1 + 1 + 2 ·mx(C) = 6.

Let X be a hypersurface in Pn and consider the g-stratifications of X coming from
X(n−1) or X(n), respectively. If the g-constant strata were smooth, then one could gen-
eralize Theorem 4.2 to X ⊂ Pn, n ≥ 4. Unfortunately this is not the case, at least for
reducible hypersurfaces. We have the following counterexample:

Example 4.5. Consider the projective closure in P4 of the hypersurface X ⊂ C3

which is defined as the union of the two smooth hypersurfaces X1 : t = 0 and X2 : t +
z(z + y2 − x3) = 0. The singular locus of X is X1 ∩ X2 and consists of the plane
S1 : t = z = 0 and the smooth surface S2 : t = z + y2 − x3 = 0. Note that C :=
Sing(Sing X) = S1 ∩ S2 is a plane curve with a cusp at the origin. We will see that the
stratifying function g is constant on C and does not jump at the cusp point. To this
end we calculate the Stückrad-Vogel cycle that defines g. Obviously v(X1, X1) = X1,
v(X2, X2) = X2, v(X1, X2) = S1 + S2, and using the bilinearity of the Stückrad-Vogel
cycle we get v(X, X) = X1+X2+2(S1+S2), X(3) = v(v(X, X), X) = X1+X2+6(S1+S2),
and X(4) = v(X(3), X) = X1 + X2 + 14(S1 + S2). This implies that g is constant on C,
namely 14 if g is defined by X(3) or 30 if it is defined by X(4).

We conclude with two open problems.

Problem 4.6. Let X be an irreducible (and reduced) hypersurface in Pn and con-
sider the g-stratification of X by X(n). Are the g-constant strata smooth? A positive
answer would allow to generalize Theorem 4.2 to such X ⊂ Pn: but see the preceding
counterexample if X is not irreducible.

Problem 4.7. Let X be a (reduced) surface in P3. Is the distinguished stratification
by v(X,X, X) equal to the g-stratification by v(X, X), that is, to the canonical Whitney
stratification of X?
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