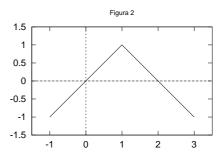

C.d.L. in Chimica e Tecnologie per l'Ambiente e per i Materiali, curriculum Ambiente, Energia, Rifiuti 27. 10. 2010


- 1. Calcolare le derivate delle seguenti funzioni:

 - (a) $U(t) = qt^{-2}$, (b) $y = x \cdot \cos x$, (c) $R(s) = \sqrt{\log_{10} s}$, (d) $R(s) = \frac{1}{a bs}$ (e) $y = \frac{x+1}{x-2}$, (f) $y = x \cdot \log_{10} x$, (g) $v(t) = (3t-1)^{-2}$, (h) $f(x) = \sqrt{(\ln x)^2}$.

Dire se la funzione di (h) è derivabile anche nel punto x=1 (motivare la risposta) e, in caso affermativo, calcolare f'(1).

2. In fig. 1 sono riportati i grafici di due funzioni di cui una è la derivata dell'altra. $\to f$ (curva tratteggiata) la derivata o g (curva continua)?

- 3. Sia f la funzione f il cui grafico è rappresentato in fig. 2.
 - (a) La funzione f è derivabile?
 - (b) Trovate un'espressione analitica per la f.
- 4. (Si veda l'esercizio 9 del 06. 10. 2009.) Calcolare le derivate sia delle funzione che delle funzioni inverse.

(a)
$$f: \mathbf{R} \to \mathbf{R}$$
, $f(x) = \frac{2}{1 + e^{-3x}}$, (b) $f: \mathbf{R} \setminus \{2\} \to \mathbf{R} \setminus \{3\}$, $f(x) = \frac{3x + 5}{x - 2}$,

(c)
$$f: \{x \in \mathbf{R} \mid x > -1\} \to \mathbf{R}$$
, $f(x) = \ln(1+x)$.

5. Le funzioni seno iperbolico e coseno iperbolico sono definite come

$$\sinh x := \frac{1}{2}(e^x - e^{-x})$$
 e $\cosh x := \frac{1}{2}(e^x + e^{-x})$

rispettivamente.

- (a) Calcolare $\cosh^2 x \sinh^2 x$.
- (b) Calcolare le derivate delle funzioni $\sinh x = \cosh x$.
- 6. Usare il differenziale della funzione $f(x) = \frac{1}{x}$ per calcolare approssimativamente $1,002^{-1}$ e $0,997^{-1}$ e confrontare i risultati con i valori precisi.
- 7. Se il pH è stato determinato con una accuratezza di un centesimo di pH, con quale errore (relativo) percentuale si conosce [H⁺]? (Si usi il differenziale della funzione $y = f(x) = -\log_{10} x$ e il valore $\log_{10} e \approx 0, 4$.)