Esercizi di Matematica – C.d.L. in Tecnologie Chimiche per l'Ambiente e per la Gestione dei Rifiuti 17. 10. 2007

- 1. In una foresta giovane la quantità di alberi da legna cresce in maniera quasi esponenziale. Si può supporre che il tasso annuale sia del 3,5%.
 - a) Che aumento si può prevedere in dieci anni?
 - b) Quanti anni ci vorranno perché la quantità di legname sia raddoppiata?
- 2. Una sostanza radioattiva perde il 10% della sua intensità di radiazione ogni anno. Che percentuale perderà in tre anni?
- 3. Calcolare le seguenti somme parziali:

a)
$$1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243$$
.

b)
$$2 + 2/11 + 2/11^2 + \dots + 2/11^5$$
,

c)
$$1 - 1/2 + 1/4 - 1/8 + 1/16 - 1/32 + 1/64$$
.

- 4. Calcolare le somme delle serie:
 - a) $1 + r + r^2 + r^3 + \cdots$ supponendo che |r| < 1,
 - b) $c + c/2 + c/2^2 + c/2^3 + \cdots$,
 - c) $1 r + r^2 r^3 + r^4 \cdots$ supponendo che -1 < r < +1.
- 5. Scrivere i numeri decimali illimitati

$$2.444444444...$$
, $1.032323232...$, $5.2699999999...$

(nelle scritture dei quali si immagina di proseguire ripetendo infinitamente 4, 32 e 9 rispettivamente) in forma di frazione $\frac{m}{n}$, dove m e n sono interi.

6. Trovare i limiti (se esistono) delle seguenti successioni $\{a_n\}$ per $n \to +\infty$:

a)
$$a_n = (2 + \frac{3}{n})(4 - \frac{100}{n})$$
, b) $a_n = \frac{2n+5}{7n-5}$

c)
$$a_n = (\frac{1}{2})^n$$
, d) $a_n = (-2)^n$,

e)
$$a_n = \frac{3-n}{n^2}$$
, f) $a_n = \frac{\sqrt{5n^2+1}}{n+1}$,

g)
$$a_n = (-\frac{1}{3})^n$$
, h) $a_n = (1+10^{-4})^n$

i)
$$a_n = (1 + \frac{1}{n})^{3n}$$
, j) $a_n = \frac{an^2 + 400n}{bn^2 - 400}$ $(b \neq 0)$.

- 7. Il cesio isotopo $^{137}\mathrm{Cs}$ perde annualmente il 2.3 % della sua massa per disintegrazione radioattiva. $^{137}\mathrm{Cs}$ è un pericoloso inquinante contenuto nel fall-outradioattivo. Supponiamo che ogni anno si liberi nell'ambiente la stessa massa M del $^{137}\mathrm{Cs}$.
 - (a) Qual è la massa totale che verrà accumulata dopo n anni?

(b) Qual è la massa totale che verrà accumulata quando viene raggiunto l'equilibrio $(n \to \infty)$?

Il decadimento radioattivo è esponenziale, cioè il numero N(t) di atomi residui al tempo t può essere valutato in rapporto al numero N_0 di atomi radioattivi iniziali tramite la formula

$$N(t) = N_0 e^{-\lambda t}$$
.

- (c) Trovare la costante di decadimento λ (unità di misura?) per il $^{137}\mathrm{Cs}$.
- (d) Qual è la relazione tra il tempo di dimezzamento $T_{1/2}$ e λ ? Calcolare il tempo di dimezzamento di ¹³⁷Cs.
- (e) Dopo quanti anni la radioattività del ¹³⁷Cs si riduce a 1%?

Il cesio isotopo ¹³⁴Cs ha un tempo di dimezzamento di 2,06 anni.

(f) Calcolare la costante di decadimento λ per il $^{134}\mathrm{Cs}.$

Nel 1995 è stata fatta un'analisi del rapporto dell'attività del ¹³⁴Cs sul ¹³⁷Cs nei funghi. Si è trovato un rapporto di 1 : 40. Il rapporto nella nube radioattiva proveniente da Chernobyl in seguito all'incidente nei primi giorni del maggio 1986 era 1 : 2.

(g) La provenienza dei due isotopi nei funghi è da imputare alla deposizione in seguito all'incidente di Chernobyl?

Anche l'eliminazione biologica (per via urinaria, fecale e respiratoria) delle sostanze radioattive dall'organismo umano è approssimativamente esponenziale ed è caratterizzato dal tempo di dimezzamento biologico $T_{\rm b1/2}$. Il cosiddetto tempo di dimezzamento effettivo $T_{\rm eff}$ risulta sia dal decadimento radioattivo sia dall'eliminazione biologica della sostanza radioattiva.

(h) Trovare la relazione fra il tempo di dimezzamento effettivo $T_{\rm eff}$, il tempo di dimezzamento fisico $T_{1/2}$ e il tempo di dimezzamento biologico $T_{\rm b1/2}$.

Il cesio isotopo ¹³⁴Cs ha un tempo di dimezzamento fisico di 2,06 anni e un tempo di dimezzamento biologico di 110 giorni (maschi).

(i) Calcolare il tempo di dimezzamento effettivo del cesio isotopo $^{134}\mathrm{Cs}.$