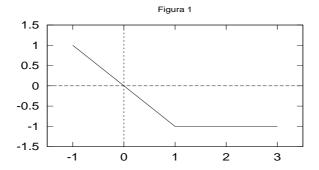
C.d.L. in Chimica e Tecnologie per l'Ambiente e i Materiali, curriculum Ambiente, Energia, Rifiuti 20. 1. 2010

1. Calcolare $\int_{-1}^{3} f(x) dx$ per la funzione f il cui grafico è rappresentato in fig. 1.



- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua e dispari. Calcolare $\int_{-3}^{3} (f(x) 1) dx$.
- 3. Calcolare

(a)
$$\int_1^{e^3} \frac{1}{x} dx$$
, (b) $\int_0^2 (1 - \frac{x}{2})^7 dx$, (c) $\int_0^{+\infty} xe^{-x} dx$.

4. Calcolare la soluzione y = y(x) del seguente problema di Cauchy:

$$\begin{cases} y'' + 9y = 0 \\ y(0) = 0 \\ y'(0) = 3 \end{cases}$$

e disegnare il grafico di y(x) nell'intervallo $[0, 2\pi]$.

5. In una reazione chimica $A + B \longrightarrow C$ del secondo ordine le concentrazioni (molari) iniziali di A, B e C siano $[A]_0$, $[B]_0$ e 0 rispettivamente. Allora la concentrazione x = x(t) di C al tempo t è soluzione del problema di Cauchy

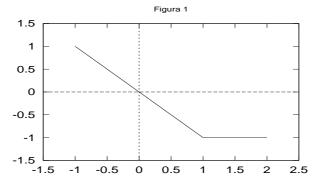
$$\begin{cases} \frac{dx}{dt} = k([A]_0 - x) \cdot ([B]_0 - x) \\ x(0) = 0, \end{cases}$$

dove k (in s⁻¹M⁻¹) è una costante positiva. Si calcolino la soluzione x(t) del problema di Cauchy e il limite di x(t) per $t \to \infty$ nei seguenti casi:

(a)
$$[A]_0 = [B]_0 = 1$$
, (b) $[A]_0 = 4$, $[B]_0 = 5$.

C.d.L. in Chimica e Tecnologie per l'Ambiente e i Materiali, curriculum Ambiente, Energia, Rifiuti 20. 1. 2010

1. Calcolare $\int_{-1}^{2} f(x) dx$ per la funzione f il cui grafico è rappresentato in fig. 1.



- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua e dispari. Calcolare $\int_{-1}^{1} (f(x) 1) dx$.
- 3. Calcolare

(a)
$$\int_{1}^{e^2} \frac{1}{x} dx$$
, (b) $\int_{0}^{1} (1 - 2x)^5 dx$, (c) $\int_{-\infty}^{0} 2xe^{2x} dx$.

4. Calcolare la soluzione y = y(x) del seguente problema di Cauchy:

$$\begin{cases} y'' + 4y = 0 \\ y(0) = -1 \\ y'(0) = 0 \end{cases}$$

e disegnare il grafico di y(x) nell'intervallo $[0, \pi]$.

5. In una reazione chimica $A + B \longrightarrow C$ del secondo ordine le concentrazioni (molari) iniziali di A, B e C siano $[A]_0$, $[B]_0$ e 0 rispettivamente. Allora la concentrazione x = x(t) di C al tempo t è soluzione del problema di Cauchy

$$\begin{cases} \frac{dx}{dt} = k([A]_0 - x) \cdot ([B]_0 - x) \\ x(0) = 0, \end{cases}$$

dove k (in s⁻¹M⁻¹) è una costante positiva. Si calcolino la soluzione x(t) del problema di Cauchy e il limite di x(t) per $t \to \infty$ nei seguenti casi:

(a)
$$[A]_0 = [B]_0 = 2$$
, (b) $[A]_0 = 4$, $[B]_0 = 3$.