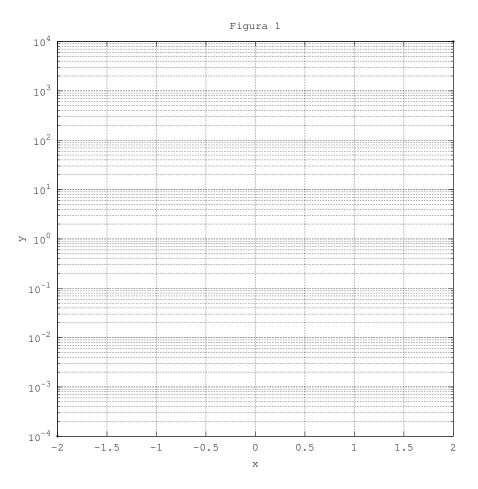
${ m C.d.L.}$ in Scienze naturali Prova di Matematica del 14/01/2015

Cognome:	
Nome:	
Matricola:	
Svolgere gli esercizi nelle facciate bianche disponibili e scrivere le soluzioni nei quadri. Sarà ritirato soltanto questo fascicolo.	. ri
1. Data la funzione $f(x) = x^3 \ln x$, $x \in \mathbb{R}, x > 0$,	
(a) determinare $\lim_{x\to 0^+} f(x) =$	
(applicare la regola di de l'Hospital: $f(x) = \frac{\ln x}{\frac{1}{x^3}}$)	
(b) calcolare $f'(x) =$	_
(c) calcolare $f''(x) =$	
(d) trovare e classificare il punto stazionario x_0 di f :	_
$x_0 =$, si tratta di un punto di	
(e) calcolare l'equazione della retta tangente al grafico nel punto (e, e^3) :	
(f) calcolare il polinomio di Taylor di grado 2 e di punto iniziale e:	
(g) trovare gli intervalli di convessità/concavità e il punto di flesso di f :	_
(h) calcolare $\int_{1}^{e} f(x) dx$ (integrazione per parti):	
$\int_{1}^{e} f(x) dx = $	
J_1 " \mathcal{I}_1	

2. Disegnate i grafici delle funzioni $f(x) = 10^{-2x+1}$ e $g(x) = 2^{-2x+1}$ in scala semilogaritmica nel sistema di riferimento della figura 1.



3. La concentrazione C = C(t) di un soluto in funzione del tempo t sia soluzione del seguente problema di Cauchy (omettendo le unità di misura):

$$\begin{cases} \frac{dC}{dt} = 4(80 - C) \\ C(0) = 20. \end{cases}$$

(a) Si calcoli la soluzione del problema di Cauchy.

$$C(t) =$$

(b) Si trovi il limite di C(t) per $t \to +\infty$.

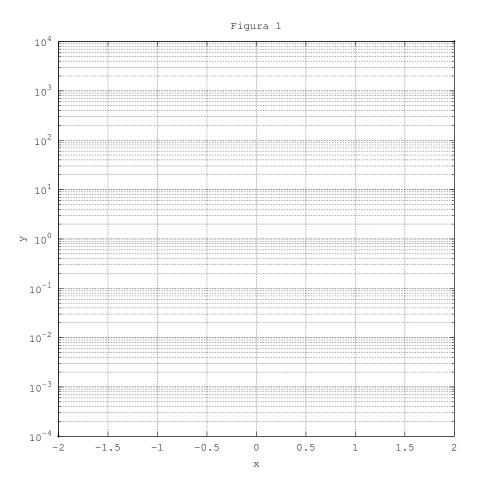
$$\lim_{t \to +\infty} C(t) =$$

(c) Usando la risposta di (a) e il valore $\ln(2) \approx 0,69,$ si determini t in modo tale che C(t)=50. t=

${ m C.d.L.}$ in Scienze naturali Prova di Matematica del 14/01/2015

Cognome:	
Nome:	
Matricola:	
Svolgere gli esercizi nelle facciate bianche disponibili e scrivere le soluzioni ne quadri. Sarà ritirato soltanto questo fascicolo.	ei ri
1. Data la funzione $f(x) = x^4 \ln x$, $x \in \mathbb{R}, x > 0$,	
(a) determinate $\lim_{x\to 0^+} f(x) =$	
(applicare la regola di de l'Hospital: $f(x) = \frac{\ln x}{\frac{1}{x^4}}$)	
(b) calcolare $f'(x) =$	
(c) calcolare $f''(x) =$	
(d) trovare e classificare il punto stazionario x_0 di f :	
$x_0 =$, si tratta di un punto di	
(e) calcolare l'equazione della retta tangente al grafico nel punto (1,0):	
(f) calcolare il polinomio di Taylor di grado 2 e di punto iniziale 1:	
(g) trovare gli intervalli di convessità/concavità e il punto di flesso di f :	
(h) calcolare $\int_{1}^{e} f(x) dx$ (integrazione per parti):	
$\int_{1}^{e} f(x) dx =$	
J_1	

2. Disegnate i grafici delle funzioni $f(x) = 10^{2x+1}$ e $g(x) = 2^{2x+1}$ in scala semilogaritmica nel sistema di riferimento della figura 1.



3. La concentrazione C = C(t) di un soluto in funzione del tempo t sia soluzione del seguente problema di Cauchy (omettendo le unità di misura):

$$\begin{cases} \frac{dC}{dt} = 2(40 - C) \\ C(0) = 20. \end{cases}$$

(a) Si calcoli la soluzione del problema di Cauchy.

$$C(t) =$$

- (b) Si trovi il limite di C(t) per $t \to +\infty$. $\lim_{t \to +\infty} C(t) =$
- (c) Usando la risposta di (a) e il valore $\ln(2) \approx 0,69,$ si determini t in modo tale che C(t)=30.

$$t =$$