${ m C.d.L.}$ in Scienze naturali Prova di Matematica del 23/02/2015

Cognome:
Nome:
Matricola:
Svolgere gli esercizi nelle facciate bianche disponibili e scrivere le soluzioni nei riquadri. Sarà ritirato soltanto questo fascicolo.
1. (a) Quante sequenze di 5 caratteri si possono formare con le lettere dell'insieme $\{A, B, C, D\}$? (b) Quante delle sequenze determinate al punto (a) non contengono la lettera B ? (c) Quante delle sequenze determinate al punto (a) contengono esattamente due volte la lettera B ? 2. Date le matrici $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ -1 & 2 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, \text{ calcolarse}$
lare: (a) tutte le soluzioni del sistema lineare $\mathbf{A}\mathbf{x}=\mathbf{b}$ con l'algoritmo di Gauss-Jordan: $\mathbf{x}=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=$
(b) $A^{-1} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$
3. Si consideri la funzione $f(x) = \sqrt[4]{x}$ $(x \ge 0)$ e il punto $x_0 = 625$. Si calcoli:
(a) $f'(x) =$
(b) $f''(x) =$

(c) il diffe	renziale della <i>j</i>	$x_0 \in \mathbb{R}$	usi per	${\it calcolare}$	approssimativamente	;
$\sqrt[4]{626}$						_
df(62)	5, dx) =			; $\sqrt[4]{6}$	$\overline{626} \approx$,

- (d) l'equazione della retta tangente al grafico nel punto (625, 5):
- (e) i coefficienti a,b,c del polinomio di Taylor $p_2(x)=a+b(x-625)+c(x-625)^2 \ \ \text{della } f \ \text{di grado 2 e di centro 625:}$ $a=\qquad ,\ b=\qquad ,\ c=$

(f)
$$\int_0^{625} f(x)dx =$$

- 4. Data la funzione $f(x) = \frac{1}{1 + e^{-x}}, x \in \mathbb{R}$, calcolare
 - (a) $\lim_{x \to -\infty} f(x) =$, $\lim_{x \to +\infty} f(x) =$
 - (b) f'(x) =
 - (c) f''(x) =
 - (d) il punto di flesso di f:
 - (e) $\int_0^{\ln(3)} f(x) dx =$

(integrazione per sostituzione: $x = \ln(t-1)$)

5. Calcolare la soluzione del seguente problema di Cauchy: $\begin{cases} \frac{dy}{dx} = y\left(1 - \frac{y}{2}\right) \\ y(0) = 4 \, . \end{cases}$

$$y(x) =$$

N.B.: Per l'integrazione è utile l'identità: $\frac{1}{y\left(1-\frac{y}{2}\right)} = \frac{1}{y} + \frac{1}{2-y}.$