

- 1. (a) In fig. 1 sono riportati i grafici di due funzioni reali di cui una è la derivata dell'altra. È f (curva tratteggiata) la derivata di g (curva continua) o è g la derivata di f?
 - (b) Disegnate il grafico della derivata della funzione h il cui grafico è riportato in fig. 2. In quale punto la funzione h non è derivabile?
 - (c) Quanto valgono $\int_{-1}^{0} h(x) dx$, $\int_{0}^{1} h(x) dx$, $\int_{1}^{3} h(x) dx$ e $\int_{-1}^{3} h(x) dx$? (Il grafico di h è riportato in fig. 2.)

- 2. Data la funzione $f(x) = \frac{1}{x+1} 2$, $x \neq -1$,
 - (a) stabilire in quali intervalli la funzione è monotona crescente, ed in quali intervalli è monotona decrescente;
 - (b) determinare gli asintoti;
 - (c) disegnare il grafico;
 - (d) calcolare l'equazione della retta tangente al grafico nel punto (0,-1).
- 3. Data la funzione $f(x) = x \ln x, x > 0$,
 - (a) determinare gli intervalli in cui essa è crescente o decrescente;
 - (b) determinare gli estremanti;
 - (c) calcolare il polinomio di Taylor di grado 2 e di punto iniziale $\frac{1}{e}$;
 - (d) calcolare $\lim_{x\to 0^+} f(x)$ applicando la regola di de l'Hospital (si noti che $f(x) = \frac{\ln x}{\frac{1}{2}}$).
- 4. Calcolare gli integrali:

(a)
$$\int_{2}^{3} x^{5} dx$$
, (b) $\int_{-2}^{-1} x^{-5} dx$, (c) $\int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) dx$
(d) $\int_{0}^{9} 4\sqrt{x} dx$, (e) $\int_{0}^{2} \frac{6x^{2} + 4x + 2}{\sqrt{x}} dx$, (f) $\int_{1}^{e} -\frac{1}{x} dx$.

5. Calcolare gli integrali indefiniti con il metodo di integrazione per parti:

(a)
$$\int x \log_{10} x \, dx$$
, (b) $\int x \cos x \, dx$, (c) $\int \sqrt{x} \ln x \, dx$, (d) $\int x \, 2^x \, dx$.