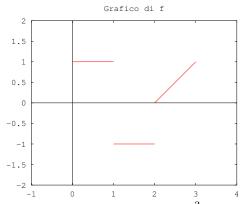
C.d.L. in Scienze naturali – Matematica

03. 12. 2015

1. Calcolare gli integrali: (a)
$$\int_{-e}^{-1} x^{-1} dx$$
, (b) $\int_{2}^{3} (3x-5)^{-2} dx$, (c) $\int_{1}^{4} \frac{1}{x\sqrt{x}} dx$, (d) $\int_{1}^{2} xe^{-x} dx$, (e) $\int_{-3}^{0} \frac{1}{\sqrt{1-5x}} dx$, (f) $\int_{0}^{\frac{\pi}{6}} x \sin(3x) dx$, (g) $\int_{0}^{\pi} \frac{\sin x}{3+\cos x} dx$ (sost. $u = 3 + \cos x$), (h) $\int_{0}^{\frac{\pi}{2}} (1 - \cos x)^{4} \sin x dx$ (sost. $u = 1 - \cos x$), (i) $\int_{0}^{2} \frac{x}{\sqrt{x+1}} dx$ (sost. $u = \sqrt{x+1}$), (k) $\int_{1}^{e} \frac{\ln x}{\sqrt{x}} dx$ (per parti).

- 2. Calcolare l'area della regione limitata di piano compresa tra il grafico di $y = \text{sen}(\frac{x}{3})$ e l'asse x, al variare di x nell'intervallo $[0, \pi]$.
- 3. Si trovi l'area limitata dalla parabola $y=3-x^2$ e dalla retta y=-2x (disegno!).
- 4. Dire quale dei integrali è più grande e calcolarli: $\left| \int_{-4}^{2} x \, dx \right|$, $\int_{-4}^{2} |x| \, dx$.
- 5. Determinare gli eventuali punti in cui la funzione $f:[0;3] \to \mathbb{R}$, il cui grafico è stato riportato qui sotto, assume il suo valor medio integrale.



Nota: Il valore dell'integrale $\int_0^3 f(x) dx$ si vede direttamente dal grafico senza fare alcun calcolo con l'espressione analitica della funzione.

6. (a) Trovare la soluzione N=N(t) del seguente problema di Cauchy:

$$\left\{ \begin{array}{l} \frac{dN}{dt} = r \left(1 - \frac{N}{K} \right) N \text{ (equazione logistica)}, \\ N(0) = N_0 \,, \end{array} \right.$$

dove r e K sono costanti positive.

Suggerimento: Discutere separatamente i casi $N_0 < 0, \ N_0 = 0, \ 0 < N_0 < K, \ N_0 = K, \ N_0 > K.$

(b) Trovare il punto di flesso e gli asintoti della seguente funzione logistica:

$$N(t) = \frac{5}{1 + e^{-2t+3}}.$$

7. Si consideri la reazione $2 N_2 O_5 \longrightarrow 4NO_2 + O_2$. La concentrazione $x := [N_2 O_5]$ dipende dal tempo t, cioè x = x(t), ed è soluzione del seguente problema di Cauchy:

$$\begin{cases} \frac{dx}{dt} = -kx \\ x(0) = x_0, \end{cases}$$

dove $k = 8,05 \cdot 10^{-5} \text{s}^{-1}$.

- (a) Si calcoli la soluzione del problema di Cauchy (in modo esplicito).
- (b) Si trovi il limite di x(t) per $t \to +\infty$.
- (c) Dopo quante ore la concentrazione di N_2O_5 si riduce al 50% della concentrazione iniziale x_0 ?
- 8. Risolvere, mediante separazione delle variabili, l'equazione differenziale

$$\frac{dy}{dx} = y(y-3)$$

con la condizione iniziale

(a)
$$y(0) = \frac{3}{2}$$
, (b) $y(0) = 3$, (c) $y(0) = 6$.

9. Nella reazione bimolecolare 2 NO₂ \longrightarrow N₂O₄ la concentrazione $C=C(t)=[{\rm NO_2}]$ soddisfa l'equazione differenziale

$$\frac{dC}{dt} = -kC^2$$

dove k è una costante positiva. Sia $C(0) = C_0$.

- (a) Trovare la soluzione dell'equazione differenziale.
- (b) Trovare il limite di C(t) per $t \to \infty$.
- 10. Calcolare la soluzione y = y(x) del seguente problema di Cauchy:

$$\begin{cases} y' = e^y \ln x \\ y(1) = 0. \end{cases}$$

11. In una reazione chimica $A + B \longrightarrow C$ del secondo ordine le concentrazioni (molari) iniziali di A, B e C siano $[A]_0$, $[B]_0$ e 0 rispettivamente. Allora la concentrazione x = x(t) di C al tempo t è soluzione del problema di Cauchy

$$\begin{cases} \frac{dx}{dt} = k([A]_0 - x) \cdot ([B]_0 - x) \\ x(0) = 0, \end{cases}$$

dove k (in s⁻¹M⁻¹) è una costante positiva. Si calcolino la soluzione x(t) del problema di Cauchy e il limite di x(t) per $t \to \infty$ nei seguenti due casi:

2

(a)
$$[A]_0 = [B]_0 = 2$$
, (b) $[A]_0 = 3$, $[B]_0 = 2$.

- 12. Si considerino i vettori $\vec{u}=(2,1)$ e $\vec{v}=(1,3)$. Calcolare e disegnare i vettori $2\vec{u}+\vec{v}$ e $-2\vec{u}-3\vec{v}$.
- 13. Trovare la somma di $\mathbf{a} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} -8 \\ 1 \end{pmatrix}$, $\mathbf{d} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$, geometricamente usando un poligono vettoriale. Verificare il risultato con una somma algebrica.
- 14. Dati i vettori $\vec{a}=(2,1),$ $\vec{b}=(-3,2),$ calcolare $\vec{a}-\vec{b},$ $|\vec{a}|,$ $|\vec{b}|,$ $|\vec{a}-\vec{b}|.$