${ m C.d.L.}$ in Scienze naturali Prova di Matematica del 20/01/2017

Cognome:
Nome:
Matricola:
Svolgere gli esercizi nelle facciate bianche disponibili e scrivere le soluzioni nei riquadri. Sarà ritirato soltanto questo fascicolo.
1. Si utilizzino solo le cifre 1, 2, 3, 4, 5, 6 per formare dei numeri.
Quanti numeri di 4 cifre, anche ripetute, si possono formare?
Quanti di questi numeri contengono esattamente due volte la cifra 6?
Quanti numeri di 4 cifre tutte distinte si possono formare?
2. Data la funzione $f(x) = \sqrt{x} \cdot \ln x, x > 0$, calcolare:
(a) $\lim_{x \to 0^+} f(x) = $ $, \lim_{x \to +\infty} f(x) = $
(Per trovare il primo limite è utile la regola di de l'Hospital, $f(x) = \frac{\ln x}{x^{-\frac{1}{2}}}$.)
(b) $f'(x) = $ (c) $f''(x) = $
(c) $f''(x) =$
(d) i punti stazionari di f e classificarli:
(e) l'equazione della retta tangente al grafico della f nel punto $(1,0)$:
(f) i punti di flesso della f :
$(g) \int_{1}^{e^2} \sqrt{x} \cdot \ln x dx =$

3. Calcolare

(a)
$$\int_0^{\pi} \operatorname{sen}\left(-\frac{x}{3}\right) dx = \boxed{$$

(b)
$$\int_{-3}^{0} \frac{x}{\sqrt{1-x}} dx =$$

(per sostituzione: $u = \sqrt{1-x}$)

4. Calcolare la soluzione y=y(x) del seguente problema di Cauchy, e precisare il suo dominio:

$$\begin{cases} \frac{dy}{dx} = -y\\ y(0) = -3. \end{cases}$$

y(x) = dominio:

- 5. Date le matrici $\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ 7 & -4 & 2 \\ -3 & 2 & -4 \end{bmatrix}, \mathbf{a} = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix},$
 - (a) calcolare la soluzione del sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$ con l'algoritmo di Gauss-

Jordan:
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

- (b) calcolare (se ciò è possibile) $\mathbf{A}\mathbf{a}=$, $\mathbf{b}\mathbf{a}^T=$
- (c) dire se ${\bf A}$ è invertibile e giustificare la risposta:

