Statistica Applicata

prof. Federico Plazzi

Corso di Laurea in Scienze Naturali

a. a. 2015/2016

Prova del 13 Giugno 2016
Nome:
Cognome:

ALCUNE INDICAZIONI:

- La prova consiste in cinque esercizi; dopo ogni esercizio c'è lo spazio in cui scrivere la risposta o le risposte. In caso questo spazio non sia sufficiente, si può continuare a rispondere sul retro del foglio, avendo cura di indicare il numero dell'esercizio a fianco della continuazione della risposta.
- Alcuni esercizi richiedono semplici calcoli, per i quali è consentito l'uso di una calcolatrice ed eventualmente la consultazione di una o più delle tabelle allegate.
- Altri esercizi richiedono invece la lettura dei dati: verrà valutata in questo caso l'argomentazione che giustifica l'interpretazione fornita.
- La durata massima della prova è di 60 minuti.
- Si prega di non scrivere nulla sulle tabelle allegate.

1 Descrizione dei dati

Di seguito sono presentati alcuni dati paelontologici riguardo ad alcune tra le più antiche faune a bivalvi note, risalenti al periodo Ordoviciano. Per ognuna delle otto stazioni è indicata l'età in milioni di anni ed è elencato il numero di esemplari appartenenti a quattro diversi gruppi tassonomici: nuculoidi, pteriomorfi, eteroconchi ed anomalodesmati.

I dati, modificati, provengono da Cope JCW e Kříž J (2013), $Geol\ Soc\ Lond\ Mem\ {\bf 38:}221\text{-}241.$

2 Dati

Tabella 1: Faune a bivalvi del periodo Ordoviciano.

- Cı :	Tabella I. Ta				A 1 1
Stazione	Età	Nuculoidi	Pteriomorfi	Eteroconchi	Anomalodesmati
Francia	485,4-470,0	168	1	201	1
Galles	485,4-470,0	160	597	490	23
Australia	470,0-458,4	255	84	0	0
Spagna	470,0-458,4	609	351	1522	0
Galles	470,0-458,4	122	324	38	0
Cina	470,0-458,4	11	143	115	0
Argentina	458,4-443,8	61	75	5	1
Stati Uniti	458,4-443,8	210	2838	30	0

3 Esercizi

3.1 Statistiche di base

Calcolare media, devianza, varianza e deviazione standard del numero di pteriomorfi considerando tutte e otto le stazioni.

3.2 Distribuzione dei dati

Di seguito sono elencati i risultati del test di Shapiro e Wilk sui quattro gruppi di bivalvi.

Cosa si può concludere sulla distribuzione dei dati?

 $1. \; {\it Shapiro-Wilk test}$

```
data: Nuculoidi
W = 0.82324, p-value = 0.05047
```

2. Shapiro-Wilk test

```
data: Pteriomorfi
W = 0.60253, p-value = 0.0001702
```

 $3. \; {\it Shapiro-Wilk test}$

```
data: Eteroconchi
W = 0.64958, p-value = 0.0005985
```

4. Shapiro-Wilk test

```
data: Anomalodesmati
W = 0.45837, p-value = 3.236e-06
```

3.3 Confronti all'interno della stessa area geografica

La composizione della fauna a bivalvi in Galles è cambiata tra le due stazioni disponibili, che rappresentano il Basso ed il Medio Ordoviciano? Di seguito sono mostrati i risultati di tre diversi approcci statistici:

- 1. un test di Wilcoxon a due code su due campioni appaiati;
- 2. un test di Mann e Whitney a due code su due campioni non appaiati;
- 3. un test del χ^2 con tre gradi di libertà.
- 1. Wilcoxon signed rank test

```
V = 10, p-value = 0.125 alternative hypothesis: true location shift is not equal to 0
```

2. Mann-Whitney rank sum test

```
W = 12, p-value = 0.3429 alternative hypothesis: true location shift is not equal to 0
```

3. Pearson's Chi-squared test

```
X-squared = 179.88, df = 3, p-value < 2.2e-16
```

Qual è il test più corretto per rispondere alla domanda? Qual'è la risposta?

3.4 Correlazioni

3.4.1 Relazioni ecologiche

Qualcuno sostiene che nuculoidi ed eteroconchi occupino nicchie ecologiche molto diverse, per cui se in una stazione sono molto frequenti i primi dovrebbero essere poco frequenti i secondi e viceversa.

Che cosa si può concludere a questo proposito dal seguente test di correlazione?

Tabella 2: Correlazione lineare tra nuculoidi ed eteroconchi.

	Stima	p-value	r	R^2
Intercetta	108,67271			
Pendenza	0,30263	0,006129	$0,\!8602438$	0,7400194

3.4.2 Andamenti evolutivi

Qualcuno sostiene invece che il numero di pteriomorfi è andato aumentando nel tempo. Per verificarlo, possiamo effettuare un test di correlazione tra l'età di una stazione (calcolando la media tra gli estremi dell'età stimata) ed i numero di pteriomorfi.

Cosa possiamo concludere dai risultati elencati qui sotto?

Tabella 3: Correlazione lineare tra età di una stazione e numero di pteriomorfi.

	Stima	p-value	r	R^2
Intercetta	466,999793			
Pendenza	-0,004894	$0,\!252$	$-0,\!4595053$	$0,\!2111451$