Statistica Applicata Corso di Laurea in Scienze Naturali a. a. 2016/2017

prof. Federico Plazzi 19 Luglio 2017

Nome:	
Cognome:	
Matricola:	

Alcune indicazioni:

- La prova è constituita da quattro esercizi; dopo ogni esercizio c'è lo spazio in cui scrivere la risposta o le risposte. In caso questo spazio non sia sufficiente, si può continuare a rispondere sul retro del foglio, avendo cura di indicare il numero dell'esercizio a fianco della continuazione della risposta.
- Alcuni esercizi richiedono semplici calcoli, per i quali è consentito l'uso di una calcolatrice ed eventualmente la consultazione di una o più delle tabelle allegate.
- Altri esercizi richiedono invece la lettura dei dati: verrà valutata in questo caso l'argomentazione che giustifica l'interpretazione fornita.
- $\bullet\,$ La durata massima della prova è di 60 minuti.
- Si prega di non scrivere nulla sulle tabelle allegate.

1 Dati

I genomi mitocondriali completi di cinque specie contengono quattro regioni: i tratti che contengono i geni per le proteine, quelli che contengono i geni per gli RNA ribosomali (rRNA), quelli che contengono i geni per gli RNA di trasporto (tRNA) e i tratti rimanenti (Regioni Non Codificanti, RNC). Nella Tabella 1 è indicato il numero di A, C, G e T che si trovano in ciascuna delle quattro regioni, specie per specie. Il contenuto in A+T è la proporzione, regione per regione, di A e T sul totale di basi.

Tabella 1: Composizione nucleotidica di cinque genomi mitocondriali.

Specie	Regione	A	С	G	Т	A+T
1	Proteine	2701	2730	3045	2724	0,484
1	rRNA	456	311	367	466	$0,\!576$
1	tRNA	199	130	161	310	0,636
1	RNC	850	263	345	942	0.747
2	Proteine	3206	3073	3094	2877	0,497
2	rRNA	459	378	417	496	0,546
2	tRNA	259	167	232	217	0,544
2	RNC	701	425	560	939	0.625
3	Proteine	2886	2994	2940	2730	$0,\!486$
3	rRNA	447	380	345	478	$0,\!561$
3	tRNA	268	178	147	232	0,606
3	RNC	1088	323	336	728	0,734
4	Proteine	3187	3217	3217	2979	$0,\!489$
4	rRNA	500	358	396	546	0,581
4	tRNA	253	162	175	310	0,626
4	RNC	891	583	371	855	0,647
5	Proteine	3262	3243	3114	2806	$0,\!488$
5	rRNA	455	429	372	519	0,549
5	tRNA	261	219	183	225	0,547
5	RNC	831	533	487	811	$0,\!617$

2 Esercizi

2.1 Statistiche di base

Calcolare media, varianza e deviazione standard tra le cinque specie del numero di A nelle regioni che codificano per proteine e nelle RNC.

	Media	Varianza	Deviazione standard
$\frac{Proteine}{RNC}$,	47346, 64 15684, 56	217, 59 125, 24

2.2 Distribuzione dei risultati

Viene eseguito un test di Shapiro e Wilk sulla colonna A+T e si ottengono i seguenti risultati.

Shapiro-Wilk test

```
data: A+T W = 0.92086, p-value = 0.1029
```

La Figura 1 mostra il Q-Q Plot riferito alla stessa variabile. Se si andasse a verificare la correlazione lineare tra i punti del grafico, quale delle tre tabelle seguenti potrebbe esserne il risultato? Perché?

Q-Q plot del contenuto in A+T

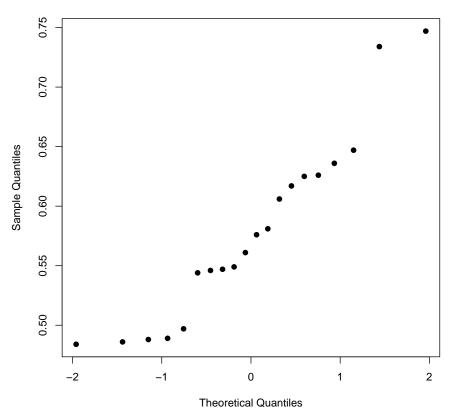


Figura 1: Q-Q Plot della variabile A+T

Tabella 2: Correlazione lineare tra i punti del Q-Q plot in Figura 1.

	Stima	p-value	r	R^2
Intercetta	0,58			
Pendenza	0,07	$9,92 \times 10^{-12}$	0,96	0,93

Tabella 3: Correlazione lineare tra i punti del Q-Q plot in Figura 1.

	Stima	p-value	r	R^2
Intercetta	0,56			
Pendenza	-0, 1	$5,51\times10^{-5}$	-0,91	0,83

Tabella 4: Correlazione lineare tra i punti del Q-Q plot in Figura 1.

	Stima	p-value	r	R^2
Intercetta	0,59			
Pendenza	0,02	$6,14 \times 10^{-1}$	0,03	0,02

La tabella corretta è la prima: il test di Shapiro e Wilk indica che la variabile ha una distribuzione normale (p-value > 0,05) e quindi ci aspettiamo che i punti del Q-Q Plot si dispongano lungo una retta a pendenza positiva, come infatti si può vedere in Figura 1: la seconda tabella indica però una correlazione negativa (r < 0) e la terza un'assenza di correlazione (p-value > 0,05). Nella terza tabella, tra l'altro, R^2 non è il quadrato di r.

2.3 Composizione nucleotidica

Gli studiosi sono interessati a capire se la composizione nucleotidica (numero di A, C, G e T) nelle regioni che codificano per le proteine sia diversa nella specie 2 rispetto alla specie 3. Per farlo, vengono usati tre diversi test: un test t a campioni appaiati, un test di Wilcoxon e un test del χ^2 , i cui risultati sono mostrati di seguito. Qual è l'approccio corretto? Perché? Cosa possiamo concludere in base al risultato?

1. Test t a campioni appaiati:

```
Paired t-test
```

```
data: Proteine (Specie 2) and Proteine (Specie 3)
t = 31.641, df = 3, p-value = 6.937e-05
```

2. Test di Wilcoxon a campioni appaiati

Wilcoxon signed rank test

```
data: Proteine (Specie 2) and Proteine (Specie 3) V = 10, p-value = 0.125
```

3. Test del χ^2 :

Chi-squared test

```
data: Proteine (Specie 2) and Proteine (Specie 3)
X-squared = 5.0381, df = 3, p-value = 0.169
```

L'approccio corretto è il test del χ^2 : contare quante basi, nelle regioni date, sono A, quante sono C, quante G e quante T equivale infatti ad usare quattro variabili qualitative e chiedersi quante basi sono da registrare sotto ciascuna di esse. Il p-value del test del χ^2 è maggiore di 0,05, per cui il test non è significativo: la specie 2 e la specie 3 non hanno una composizione nucleotidica significativamente differente nelle regioni che codificano per le proteine.

2.4 One-Way ANOVA

Esistono differenze significative tra i valori di A+T calcolati nelle quattro diverse regioni genomiche (proteine, rRNA, tRNA e RNC)? A questo scopo, si calcola la devianza *entro* gruppi e la devianza *tra* gruppi, usando come gruppi i quattro tipi di regioni genomiche. I risultati sono trascritti in Tabella 5.

Tabella 5: One-Way ANOVA. D, devianza; σ^2 , varianza; g.l., gradi di libertà.

	D	σ^2	g.l.	F	p-value
tra	0,0879674	0,02932247	3		
entro	0,0240048	0,0015003	16	19,5444	< 0,001

- 1. Per quale motivo l'ANOVA è un approccio valido in questo caso?
- 2. Completa la tabella 5 calcolando le due varianze e indicando i gradi di libertà.
- 3. Calcola di valore di F: è significativo? Cosa possiamo concludere?
- 4. L'analisi potrebbe procedere ulteriormente? Perché? Come?

L'ANOVA è indicata perché la variabile è a distribuzione normale; oltretutto i campioni sono tutti della stessa dimensione.

I gradi di libertà sono 3 per la varianza tra gruppi (perché i gruppi in tutto sono 4) e 16 per la varianza entro gruppi (perché ci sono 20 osservazioni e 4 gruppi). Le varianze si ottengono dividendo le rispettive devianze per i gradi di libertà; il valore di F si ottiene dividendo la varianza tra gruppi per la varianza entro gruppi. Consultando le tabelle allegate si vede che F è altamente significativo: il valore esatto sarebbe $1,34\times10^{-5}$.

Possiamo quindi concludere che esiste una differenza nel contenuto in A+T tra le quattro regioni genomiche. Il passo successivo potrebbe essere il test di Tukey per verificare se alcuni gruppi si discostano significativamente dagli altri.