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Stuckrad-Vogel intersection cycle
X, Y C P", equidimensional
v(X,Y)=vg4+ v+ ...
if v, # 0 then v, is of dimension k£ (k= 0,1,...

Example 1

X x2—y2=0 cone
Y | x=y=0 line on the cone

cut out Y by generic planes

U117 + U2y 0,
u21T + unpy = O;
and intersect X step by step with these generic planes



components lying in X NY are collected in the cycle v(X,Y) and
the rest is intersected with the next generic plane:

First step

2
(z© —yz,ur1x +uioy) = (z,y) N (u10z + ui12,u117 + U12Y)

Second step

(uiox +ui12,ur1T + 12y, up1T + upoy) = (x,v, 2).

= v(X,Y)=Y 4 O.



Example 2 In P3.

X [ xzy—2t=20 non-singular quadric
Y . x=2=0 line on it

First step

(zy — zt,u112 + u122) = (z,2) N (u10y +uiit,ur1z + u122)

Second step

(u12y + ui1t,ur12 + w122, un1x + unoz) = (z, 2, w12y + uy1t).

= v(X,Y) =Y+ P, where P is a non K-rational (or a movable)
point



Theorem 1 (Flenner-Manaresi, 1997) X,Y C P%- varieties,
e . =dimX +dimY —n. Let kK € 7Z such that
e—1<k<dmXnY -1, L:=K(u),

p: X; NYy — prteil

the generic linear projection and R(p) := ramification locus of
p. Then dim R(p) < k, and the associated k-cycle [R(p)]; is just
v (X, Y)on{zxe XNY | X,Y,XNY smooth at x}.

Definition 1

X,Y C Z closed subschemes of an algebraic K-scheme X, f: Z —
N a morphism to an algebraic manifold with dimN > dim X +

dimY —dimX NY. Then R(f) is defined to be the degeneracy
locus of

f*(Q}v) ® Oxny — Q}(uy ® Oxny -



Generalized Samuel multiplicities

P. Samuel, 1951

(A,m) noetherian local ring I of dimension d an m-primary ideal
(that is, an ideal of finite colength)

(9 (5) := length (17 /17F1)

Hilbert-Samuel function

(1) / (0)/ . 41 o
H;7(j) = Y H; /() =length(A/PT") if j> 1,
k=0
_ J+d J+d—1 d
= eo< )—61( g1 )—I—...—I—(—l) ed

write e(I, A) for eg.



Achilles-Manaresi, 1997

I not necessarily m-primary
pass from the associated graded ring

G[(A) = @jzofj/fj+1
to the bigraded ring
R = &;,>0Rij = G;Ln(G (A))
= @ >0 (' + PTh)/(m T 4 1)

Roo = A/m, have Hilbert function H(O O)(z j) = dim R;;, twofold

sum transform H(LL(; 5) = 2}71:0 o o HO0)(p,q), for both
1,7 > 1 becomes a polynomial which can be written in the form

(1,1) /¢ + ky g+ 1
k—g;dkl (k)( I )’



Define the generalized Samuel multiplicity to be

(adhP alt P als) =1 (cosen,. . ca):

Theorem 2 Set q := dim(A/I), G := G;(A), s ;= dimG/mG.
T hen

1. ¢ =0 fork<d—s and k > q;

2. ¢cg_s = Y.pe(mGp) - e(G/P), where P runs over all high-
est dimensional associated prime ideals of G/mG such that
dimG/P +dimGp =dimG,



3. cqg = Ype(Ap) - e(A/p), where p runs over all highest dimen-
sional associated prime ideals of A/p such that dim A/p +
dim Ap = dim A;

4. If A is the ring of the ruled join J = J(X,Y) c P2"+1 (|o-
calized at the irrelevant homogeneous maximal ideal), I the
ideal of the ‘diagonal’ A c P2+l and n: J — XY the canon-
ical projection onto the embedded join XY C P", then

co = deg ) deg(l/XY)deg(n(I)),
rcJ

degvp_1, k=1,...,d—1=dimJ,
0.

Ck
Cd



Here the sum is taken over all irreducible components ' of J
with the induced scheme structure and =(I") denotes the closure

of (" \ A) C P% equipped with its reduced structure.
If K is algebraically closed and X,Y are irreducible (but not

necessarily reduced), then

co = deg(J/XY)deg(XY).



Segre numbers of Gaffney and Gassler, 1999

A = Oxp, (X,0) C (C"0) a reduced closed analytic space of
pure dimension d and I an ideal which defines a nowhere dense
subspace of (X,0). They considered the blowup of X along I

X x PPD-1 5 g1 (x) 4 x
with exceptional divisor E and defined the kth Segre number as
er,(I,Y) ;= multg(bs(Hy---H_1-FE-Bl;X)),

where H; is a generic hyperplane on Bil;X induced by one in
pPr)—1 Note that

en(1,Y) = cq (A1), k=1,...,4d

that is, Segre numbers are a special case of the generalized
Samuel multiplicity.



Our generalized Samuel multiplicities are also related to the de-
grees of Segre classes of cones and subvarieties:

W C V; let W,V be nonsingular, Ny/V the normal bundle with
Chern classes ¢;(Nyw/ V) N [W] and Segre classes s;(Ny/ V) N [W],

l+ci4ceo-=0Q4+s1+so+---) L

In general there is only a normal cone, C' = CyV of V along
W. The total Segre class s(W,V) € AW is defined as follows:
if W =1V then s(W,V) = [V]. Otherwise V = BlyV, E = P(C)
exceptional divisor, n: E — W projection, d .= dimV = dim V.
The i-fold self intersections E' = E x...* E are well defined
classes in Ay;_;(E).
s(W, V) == > (—=1)" ' (E")
i>1
(B. Segre, 1953, sottovarieta covarianti)



Now NpV = Oy (E)|g=p(cy = Oc(-1) is the dual of the canon-
ical line bundle O~ on P(C). It follows

E'= (-1)"te1((0Oc(1))~1) N [P(O)], hence

s=3s(C) =s(W,V) = n(c1(Oc(1))"" N [P(O)])
i>0

which makes sense for every cone C' on a scheme W under the
assumption that there is no irreducible component C’ of C with
P(C" = 0.

By s; we denote the part of s of dimension ¢, and by s’ the part
of codimension 7 in V. Thus, if V is equidimensional (which we
assume), then s; = s@¢.



Connection with Samuel multiplicity:

W C V irreducible and reduced, r := codim(W,V) >0, g=d—r.
e(Oy,w) = ewV[W] n«(c1(Oc(1))" "1 N [P(C)])

(1) (BT,

that is, degs"(CyV) = deg sq(CwV) = ¢¢. In the situation of
Theorem 2, (4):

9. d—k-—1
cp = Zk (d—i— 1) deg s;(CangJ)
1=
and
Fook—1 -
deg Sk = deg Sd—k — Z (’L B 1)(_1)k_zcd—i7

1=0

k=0,...,d—1. Convention: (1”1> ‘= 0 for m > 0, (j) = 1.



More general, if V is an equidimensional algebraic scheme over
the base field K, £ a line bundle of degree 6 on V, o1,...04 €
HO(V,L£) and W :=V(c1)N...NV(oy), then

9 . d—k—1

C. = z:k (d i 1)5k_ideg SZ'(CAQJJ)
1=

and

k
oa ok — LA |
egs’ — egsd_k—Z(,
i=0 ¢~ 1

) (=) eqs,



Definition 2 Y C X complex projective varieties, Y non-singular.
(Xreg,Y) satisfies the Whitney conditions at a point zg € Y if
for each sequence (x;) of points of Xreg and each sequence (y;)
of points of Y both converging to xg and such that the lim-
its liMg, —xo T, X and limg, y.—xo T;y; €Xist in the Grassmannians
G(d,n) and G(1,n) respectively, one has:

(3) lim ToX O T,
(b) w!@BoTxiX - xiyyi@xomiyi.

We remark that (b) implies (a).



Definition 3 A Whitney stratification of X (d = dim X ) is given
by a filtration of X by algebraic sets F;

X=Fp2F 2...0F ;=10
such that

(i) F;\ F;41 Is either empty or is a non-singular quasi-projective
variety of pure codimension i. (The connected components
of F; \ F;41 are called the strata of the stratification.)

(ii) Whenever S; and Sy are connected components of F; \ F; 4,
and Fy\ F41 respectively with S; C Sy, then the pair (S, S;)
satisfies the Whitney conditions (a) and (b).



Polar varieties

Ly = (n — d 4+ k — 2)-dimensional linear subspace of P", 1 <
k< d= dimX. The kth polar variety (or polar locus) of X
assocCiated with Ly Is

P(Ly, X) := closure of {z € Xreg | dim(TeX NLgy) > k—1}.
For k = 0 we set P(L(O),X) = X.

If L) is generic, we write P.(X) = P(L(k),X) and if

IS a generic flag, then we have

X =Py(X)DPi(X)D...DPy(X).



Let z € X. Teissier showed that the sequence of multiplicities

mo = ex(Po(X)),...,myg_1 = ex(FPy_1(X))

does not depend upon the choice of the general flag.

Theorem 3 (Teissier, 1982) The pair (Xreg,Y ) satisfies the
Whitney conditions in xq if and only if the sequence of polar
multiplicities

mo = ey(X),m1 = ey(P1(X)),...,mg_1 = ey(Py_1(X))

is locally constant in'Y around xg.



We propose the following function g to measure the singularity
of X in a point = of X:

A =0xyx (2,2) 1= diagonal ideal in A,

d
g(z) = ) I, A) = e(G[(A)).
i=0
Note that dimA = 2d,cy41 = -+ = cpq = 0 and that

(CO(Ia A)) Cl(Ia A)7 SRR Cd(Ia A))
IS a refinement of the multiplicity
ca(I,A) = ex X = e(Ox )
of X at =x.



Theorem 4 (Achilles-Manaresi, 2003) Let X C P" be a (re-
duced) surface and x € X be a closed point. Then

X;:={zcX|g(&>j},ji=01,...

are closed subschemes of X or empty, and the connected com-
ponents of

Se(3) =97 () = X;\ Xj41

are the strata of a Whitney stratification of X (the coarsest one
ifn=3).



Generalized Samuel multiplicities (¢»,c1,¢cg) and
polar multiplicities (mg, m1) (both ordered by codimension) for
the surface in C3 (or in P3) defined by the equation

1. 2%+ y* —2yz =0;

2. y2—z3—1%22=0.

In both cases the Whitney stratification is given by
surface C z-axis C origin .

We illustrate the second example:






(2,2,0) (2,0)

(1,0,0) (1,0)
(2.3.0) (2,1)
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