Computation of Segre numbers: an application to Whitney stratifications

Rüdiger Achilles (Bologna, Italy)

achilles@dm.unibo.it http://www.dm.unibo.it/~achilles

Commutative and Non-Commutative Algebraic Geometry

Chisinau, June 6–11, 2004

with Mirella Manaresi (Bologna) and Davide Aliffi (Bologna)

- R. Achilles and D. Aliffi, Segre: a script for the REDUCE package CALI. Bologna, 1999-2001. Available at http://www.dm.unibo.it/~achilles/segre/.
- R. Achilles and M. Manaresi, Self-intersections of surfaces and Whitney stratifications. *Proc. Edinburgh Math. Soc.*(2) 46 (2003), 545–559.

1. Stückrad-Vogel intersection cycle

Stückrad - Vogel, 1982; Flenner - O'Carroll - Vogel, Joins and Intersections, Springer, 1999.

2. Generalized Samuel multiplicities and Segre numbers

Achilles - Manaresi, *Math. Ann.* **309** (1997), 573–591; Gaffney - Gassler, *J. Algeb. Geom.* **8** (1999), 695–736.

3. Polar multiplicities and Whitney stratifications

Teissier, SLN 961 (1982), 314-491.

4. Result and examples

Stückrad-Vogel intersection cycle

 $X, Y \subset \mathbf{P}^n$, equidimensional

$$v(X,Y) = v_0 + v_1 + \dots$$

if $v_k \neq 0$ then v_k is of dimension k (k = 0, 1, ...)

Example 1

$$X : x^2 - yz = 0 \qquad \text{cone}$$

$$Y : x = y = 0 \qquad \text{line on the cone}$$

cut out Y by generic planes

$$u_{11}x + u_{12}y = 0, u_{21}x + u_{22}y = 0;$$

and intersect X step by step with these generic planes

components lying in $X \cap Y$ are collected in the cycle v(X, Y) and the rest is intersected with the next generic plane:

First step

 $(x^2 - yz, u_{11}x + u_{12}y) = (x, y) \cap (u_{12}x + u_{11}z, u_{11}x + u_{12}y)$ Second step

$$(u_{12}x + u_{11}z, u_{11}x + u_{12}y, u_{21}x + u_{22}y) = (x, y, z).$$

 $\Rightarrow v(X,Y) = Y + O.$

Example 2 In P_K^3

X : xy - zt = 0non-singular quadricY : x = z = 0line on it

First step

 $(xy - zt, u_{11}x + u_{12}z) = (x, z) \cap (u_{12}y + u_{11}t, u_{11}x + u_{12}z)$ Second step

 $(u_{12}y + u_{11}t, u_{11}x + u_{12}z, u_{21}x + u_{22}z) = (x, z, u_{12}y + u_{11}t).$

 $\Rightarrow v(X,Y) = Y + P$, where P is a non K-rational (or a movable) point

Theorem 1 (Flenner-Manaresi, 1997) $X, Y \subset \mathbf{P}_{K}^{n}$ varieties, $e := \dim X + \dim Y - n$. Let $k \in \mathbf{Z}$ such that $e - 1 \le k \le \dim X \cap Y - 1$, $L := K(\mathbf{u})$,

$$p: X_L \cap Y_L \to \mathbf{P}_L^{n+e-k-1}$$

the generic linear projection and R(p) := ramification locus of p. Then dim $R(p) \leq k$, and the associated k-cycle $[R(p)]_k$ is just $v_k(X,Y)$ on $\{x \in X \cap Y \mid X, Y, X \cap Y \text{ smooth at } x\}$.

Definition 1

 $X, Y \subseteq Z$ closed subschemes of an algebraic K-scheme $X, f: Z \rightarrow N$ a morphism to an algebraic manifold with dim $N \ge \dim X + \dim Y - \dim X \cap Y$. Then R(f) is defined to be the degeneracy locus of

$$f^*(\Omega^1_N) \otimes \mathcal{O}_{X \cap Y} \to \Omega^1_{X \cup Y} \otimes \mathcal{O}_{X \cap Y}.$$

Generalized Samuel multiplicities

P. Samuel, 1951

 (A, \mathfrak{m}) noetherian local ring I of dimension d an \mathfrak{m} -primary ideal (that is, an ideal of finite colength)

$$H_{I}^{(0)}(j) := \text{length}(I^{j}/I^{j+1})$$

Hilbert-Samuel function

$$H_{I}^{(1)}(j) := \sum_{k=0}^{j} H_{I}^{(0)}(j) = \text{length} (A/I^{j+1}) \quad \text{if } j \gg 1,$$
$$= e_{0} {\binom{j+d}{d}} - e_{1} {\binom{j+d-1}{d-1}} + \dots + (-1)^{d} e_{d}$$

write e(I, A) for e_0 .

Achilles-Manaresi, 1997

I not necessarily m-primary pass from the associated graded ring

$$G_I(A) := \bigoplus_{j \ge 0} I^j / I^{j+1}$$

to the bigraded ring

$$R = \bigoplus_{i,j\geq 0} R_{ij} = G^{i}_{\mathfrak{m}}(G^{j}_{I}(A))$$

= $\bigoplus_{i,j\geq 0} (\mathfrak{m}^{i}I^{j} + I^{j+1})/(\mathfrak{m}^{i+1}I^{j} + I^{j+1})$

 $R_{00} = A/\mathfrak{m}$, have Hilbert function $H^{(0,0)}(i,j) = \dim R_{ij}$, twofold sum transform $H^{(1,1)}(i,j) := \sum_{q=0}^{j} \sum_{p=0}^{i} H^{(0,0)}(p,q)$, for both $i,j \gg 1$ becomes a polynomial which can be written in the form

$$\sum_{k+l\leq d} a_{k,l}^{(1,1)} \binom{i+k}{k} \binom{j+l}{l},$$

Define the generalized Samuel multiplicity to be

$$(a_{0,d}^{(1,1)}, a_{1,d-1}^{(1,1)}, \dots, a_{d,0}^{(1,1)}) =: (c_0, c_1, \dots, c_d).$$

Theorem 2 Set $q := \dim(A/I)$, $G := G_I(A)$, $s := \dim G/\mathfrak{m}G$. Then

1.
$$c_k = 0$$
 for $k < d - s$ and $k > q$;

2. $c_{d-s} = \sum_{P} e(\mathfrak{m}G_{P}) \cdot e(G/P)$, where P runs over all highest dimensional associated prime ideals of $G/\mathfrak{m}G$ such that $\dim G/P + \dim G_{P} = \dim G$;

- 3. $c_q = \sum_{\mathfrak{p}} e(A_{\mathfrak{p}}) \cdot e(A/\mathfrak{p})$, where \mathfrak{p} runs over all highest dimensional associated prime ideals of A/\mathfrak{p} such that dim $A/\mathfrak{p} + \dim A_{\mathfrak{p}} = \dim A$;
- 4. If A is the ring of the ruled join $J := J(X,Y) \subset \mathbb{P}^{2n+1}$ (localized at the irrelevant homogeneous maximal ideal), I the ideal of the 'diagonal' $\Delta \subset \mathbb{P}^{2n+1}$ and $\pi: J \to XY$ the canonical projection onto the embedded join $XY \subset \mathbb{P}^n$, then

$$\begin{split} c_0 &= \deg \sum_{\Gamma \subseteq J} \deg(\Gamma/XY) \deg(\pi(\Gamma)), \\ c_k &= \deg v_{k-1}, \quad k = 1, \dots, d-1 = \dim J, \\ c_d &= 0. \end{split}$$

Here the sum is taken over all irreducible components Γ of J with the induced scheme structure and $\pi(\Gamma)$ denotes the closure of $\pi(\Gamma \setminus \Delta) \subseteq \mathbf{P}_K^n$ equipped with its reduced structure. If K is algebraically closed and X, Y are irreducible (but not necessarily reduced), then

 $c_0 = \deg(J/XY) \deg(XY).$

Segre numbers of Gaffney and Gassler, 1999

 $A = \mathcal{O}_{X,0}, (X,0) \subset (\mathbb{C}^n, 0)$ a reduced closed analytic space of pure dimension d and I an ideal which defines a nowhere dense subspace of (X, 0). They considered the blowup of X along I

$$X \times \mathbf{P}^{\mu(I)-1} \supset Bl_I(X) \xrightarrow{b} X$$

with exceptional divisor E and defined the kth Segre number as

 $e_k(I,Y) := \operatorname{mult}_0(b_*(H_1 \cdots H_{k-1} \cdot E \cdot Bl_I X)),$

where H_i is a generic hyperplane on $Bl_I X$ induced by one in $\mathbf{P}^{\mu(I)-1}$. Note that

$$e_k(I,Y) = c_{d-k}(A,I), \quad k = 1, ..., d,$$

that is, Segre numbers are a special case of the generalized Samuel multiplicity.

Our generalized Samuel multiplicities are also related to the degrees of Segre classes of cones and subvarieties: $W \subset V$: lot W V be possingular. New the permatenegative bundle with

 $W \subset V$; let W, V be nonsingular, $N_W V$ the normal bundle with Chern classes $c_i(N_W V) \cap [W]$ and Segre classes $s_i(N_W V) \cap [W]$,

$$1 + c_1 + c_2 \dots = (1 + s_1 + s_2 + \dots)^{-1}.$$

In general there is only a normal cone, $C = C_W V$ of V along W. The total Segre class $s(W,V) \in A_*W$ is defined as follows: if W = V then s(W,V) = [V]. Otherwise $\tilde{V} = Bl_W V$, $E = \mathbf{P}(C)$ exceptional divisor, $\eta: E \to W$ projection, $d := \dim V = \dim \tilde{V}$. The *i*-fold self intersections $E^i = E * \ldots * E$ are well defined classes in $A_{d-i}(E)$.

$$s(W,V) := \sum_{i \ge 1} (-1)^{i-1} \eta_*(E^i)$$

(B. Segre, 1953, sottovarietà covarianti)

Now $N_E \tilde{V} = \mathcal{O}_{\tilde{V}}(E)|_{E=\mathbf{P}(C)} = \mathcal{O}_C(-1)$ is the dual of the canonical line bundle \mathcal{O}_C on $\mathbf{P}(C)$. It follows

 $E^{i} = (-1)^{i-1}c_{1}((\mathcal{O}_{C}(1))^{i-1}) \cap [\mathbf{P}(C)], \text{ hence}$

$$s = s(C) = s(W, V) = \sum_{i \ge 0} \eta_*(c_1(\mathcal{O}_C(1))^{i-1} \cap [\mathbf{P}(C)])$$

which makes sense for every cone C on a scheme W under the assumption that there is no irreducible component C' of C with $P(C') = \emptyset$.

By s_i we denote the part of s of dimension i, and by s^i the part of codimension i in V. Thus, if V is equidimensional (which we assume), then $s_i = s^{d-i}$.

Connection with Samuel multiplicity:

 $W \subset V$ irreducible and reduced, $r := \operatorname{codim}(W, V) > 0$, q = d - r.

$$e(\mathcal{O}_{V,W}) = e_W V[W] = \eta_*(c_1(\mathcal{O}_C(1))^{r-1} \cap [\mathbf{P}(C)])$$

= $(-1)^{q-1}\eta_*(E^{r-1}),$

that is, deg $s^r(C_W V) = \deg s_q(C_W V) = c_q$. In the situation of Theorem 2, (4):

$$c_k = \sum_{i=k}^{q} {d-k-1 \choose d-i-1} \deg s_i(C_{\Delta \cap J}J)$$

and

$$\deg s^{k} = \deg s_{d-k} = \sum_{i=0}^{k} {\binom{k-1}{i-1}} (-1)^{k-i} c_{d-i},$$

$$k = 0, \dots, d-1. \text{ Convention: } {\binom{m}{-1}} := 0 \text{ for } m \ge 0, \ {\binom{-1}{-1}} := 1.$$

More general, if V is an equidimensional algebraic scheme over the base field K, \mathcal{L} a line bundle of degree δ on V, $\sigma_1, \ldots, \sigma_t \in$ $H^0(V, \mathcal{L})$ and $W := V(\sigma_1) \cap \ldots \cap V(\sigma_t)$, then

$$c_k = \sum_{i=k}^q {d-k-1 \choose d-i-1} \delta^{k-i} \deg s_i(C_{\Delta \cap J}J)$$

and

deg
$$s^k = \deg s_{d-k} = \sum_{i=0}^k {\binom{k-1}{i-1} (-\delta)^{k-i} c_{d-i}},$$

 $k=0,\ldots,d-1.$

Definition 2 $Y \subset X$ complex projective varieties, Y non-singular. (X_{reg}, Y) satisfies the Whitney conditions at a point $x_0 \in Y$ if for each sequence (x_i) of points of X_{reg} and each sequence (y_i) of points of Y both converging to x_0 and such that the limits $\lim_{x_i \to x_0} T_{x_i} X$ and $\lim_{x_i, y_i \to x_0} \overline{x_i y_i}$ exist in the Grassmannians G(d, n) and G(1, n) respectively, one has:

(a)
$$\lim_{x_i \to x_0} T_{x_i} X \supset T_{x_0} Y,$$

(b)
$$\lim_{x_i \to x_0} T_{x_i} X \supset \lim_{x_i, y_i \to x_0} \overline{x_i y_i}$$

We remark that (b) implies (a).

Definition 3 A Whitney stratification of X ($d = \dim X$) is given by a filtration of X by algebraic sets F_i

$$X = F_0 \supseteq F_1 \supseteq \ldots \supseteq F_{d+1} = \emptyset$$

such that

- (i) $F_i \setminus F_{i+1}$ is either empty or is a non-singular quasi-projective variety of pure codimension *i*. (The connected components of $F_i \setminus F_{i+1}$ are called the strata of the stratification.)
- (ii) Whenever S_j and S_k are connected components of $F_i \setminus F_{i+1}$ and $F_l \setminus F_{l+1}$ respectively with $S_j \subset \overline{S}_k$, then the pair (S_k, S_j) satisfies the Whitney conditions (a) and (b).

Polar varieties

 $L_{(k)} = (n - d + k - 2)$ -dimensional linear subspace of \mathbf{P}^n , $1 \le k \le d = \dim X$. The *k*th polar variety (or *polar locus*) of X associated with $L_{(k)}$ is

 $P(L_k, X) := \text{ closure of } \{x \in X_{\text{reg}} \mid \dim(T_x X \cap L_{(k)}) \ge k - 1\}.$ For k = 0 we set $P(L_{(0)}, X) := X.$

If $L_{(k)}$ is generic, we write $P_k(X) = P(L_{(k)}, X)$ and if

$$L_{(0)} \subset L_{(1)} \subset \ldots \subset L_{(d)}$$

is a generic flag, then we have

$$X = P_0(X) \supset P_1(X) \supset \ldots \supset P_d(X).$$

Let $x \in X$. Teissier showed that the sequence of multiplicities

$$m_0 = e_x(P_0(X)), \dots, m_{d-1} = e_x(P_{d-1}(X))$$

does not depend upon the choice of the general flag.

Theorem 3 (Teissier, 1982) The pair (X_{reg}, Y) satisfies the Whitney conditions in x_0 if and only if the sequence of polar multiplicities

$$m_0 = e_y(X), m_1 = e_y(P_1(X)), \dots, m_{d-1} = e_y(P_{d-1}(X))$$

is locally constant in Y around x_0 .

We propose the following function g to measure the singularity of X in a point x of X:

$$A := \mathcal{O}_{X \times X, (x,x)}, I :=$$
 diagonal ideal in A ,

$$g(x) := \sum_{i=0}^{d} c_i(I, A) = e(G_I(A)).$$

Note that dim $A = 2d, c_{d+1} = \cdots = c_{2d} = 0$ and that

$$(c_0(I,A), c_1(I,A), \dots, c_d(I,A))$$

is a refinement of the multiplicity

$$c_d(I,A) = e_x X = e(\mathcal{O}_{X,x})$$

of X at x.

Theorem 4 (Achilles-Manaresi, 2003) Let $X \subset \mathbb{P}^n$ be a (reduced) surface and $x \in X$ be a closed point. Then

$$X_j := \{x \in X \mid g(x) \ge j\}, j = 0, 1, \dots$$

are closed subschemes of X or empty, and the connected components of

$$S_g(j) := g^{-1}(j) = X_j \setminus X_{j+1}$$

are the strata of a Whitney stratification of X (the coarsest one if n = 3).

Generalized Samuel multiplicities (c_2, c_1, c_0) and polar multiplicities (m_0, m_1) (both ordered by codimension) for the surface in C³ (or in P³) defined by the equation

1.
$$x^4 + y^4 - xyz = 0;$$

$$2. \quad y^2 - x^3 - x^2 z^2 = 0.$$

In both cases the Whitney stratification is given by

surface $\subset z$ -axis \subset origin.

We illustrate the second example:

