# Computation of Segre numbers: an application to Whitney stratifications 

Rüdiger Achilles (Bologna, Italy)<br>achilles@dm.unibo.it<br>http://www.dm.unibo.it/~achilles

Commutative and Non-Commutative Algebraic Geometry
Chisinau, June 6-11, 2004
with Mirella Manaresi (Bologna) and Davide Aliffi (Bologna)

1. R. Achilles and D. Aliffi, Segre: a script for the REDUCE package CALI. Bologna, 1999-2001. Available at http://www.dm.unibo.it/~achilles/segre/.
2. R. Achilles and M. Manaresi, Self-intersections of surfaces and Whitney stratifications. Proc. Edinburgh Math. Soc.(2) 46 (2003), 545-559.
3. Stückrad-Vogel intersection cycle

Stückrad - Vogel, 1982; Flenner - O'Carroll - Vogel, Joins and Intersections, Springer, 1999.
2. Generalized Samuel multiplicities and Segre numbers

Achilles - Manaresi, Math. Ann. 309 (1997), 573-591;
Gaffney - Gassler, J. Algeb. Geom. 8 (1999), 695-736.
3. Polar multiplicities and Whitney stratifications

Teissier, SLN 961 (1982), 314-491.
4. Result and examples

## Stückrad-Vogel intersection cycle

$X, Y \subset \mathbf{P}^{n}$, equidimensional

$$
v(X, Y)=v_{0}+v_{1}+\ldots
$$

if $v_{k} \neq 0$ then $v_{k}$ is of dimension $k(k=0,1, \ldots)$

## Example 1

$$
\begin{array}{lll}
X & : x^{2}-y z=0 & \text { cone } \\
Y & : x=y=0 & \text { line on the cone }
\end{array}
$$

cut out $Y$ by generic planes

$$
\begin{aligned}
& u_{11} x+u_{12} y=0 \\
& u_{21} x+u_{22} y=0 ;
\end{aligned}
$$

and intersect $X$ step by step with these generic planes
components lying in $X \cap Y$ are collected in the cycle $v(X, Y)$ and the rest is intersected with the next generic plane:

First step

$$
\left(x^{2}-y z, u_{11} x+u_{12} y\right)=(x, y) \cap\left(u_{12} x+u_{11} z, u_{11} x+u_{12} y\right)
$$

Second step

$$
\left(u_{12} x+u_{11} z, u_{11} x+u_{12} y, u_{21} x+u_{22} y\right)=(x, y, z)
$$

$\Rightarrow v(X, Y)=Y+O$.

Example 2 In $\mathrm{P}_{K}^{3}$

$$
\begin{array}{lll}
X: x y-z t=0 & \text { non-singular quadric } \\
Y: x=z=0 & \text { line on it }
\end{array}
$$

First step

$$
\left(x y-z t, u_{11} x+u_{12} z\right)=(x, z) \cap\left(u_{12} y+u_{11} t, u_{11} x+u_{12} z\right)
$$

Second step

$$
\left(u_{12} y+u_{11} t, u_{11} x+u_{12} z, u_{21} x+u_{22} z\right)=\left(x, z, u_{12} y+u_{11} t\right)
$$

$\Rightarrow v(X, Y)=Y+P$, where $P$ is a non $K$-rational (or a movable) point

Theorem 1 (Flenner-Manaresi, 1997) $X, Y \subset P_{K}^{n}$ varieties, $e:=\operatorname{dim} X+\operatorname{dim} Y-n$. Let $k \in \mathbf{Z}$ such that $e-1 \leq k \leq \operatorname{dim} X \cap Y-1, L:=K(\mathbf{u})$,

$$
p: X_{L} \cap Y_{L} \rightarrow \mathbf{P}_{L}^{n+e-k-1}
$$

the generic linear projection and $R(p):=$ ramification locus of $p$. Then $\operatorname{dim} R(p) \leq k$, and the associated $k$-cycle $[R(p)]_{k}$ is just $v_{k}(X, Y)$ on $\{x \in X \cap Y \mid X, Y, X \cap Y$ smooth at $x\}$.

## Definition 1

$X, Y \subseteq Z$ closed subschemes of an algebraic $K$-scheme $X, f: Z \rightarrow$ $N$ a morphism to an algebraic manifold with $\operatorname{dim} N \geq \operatorname{dim} X+$ $\operatorname{dim} Y-\operatorname{dim} X \cap Y$. Then $R(f)$ is defined to be the degeneracy locus of

$$
f^{*}\left(\Omega_{N}^{1}\right) \otimes \mathcal{O}_{X \cap Y} \rightarrow \Omega_{X \cup Y}^{1} \otimes \mathcal{O}_{X \cap Y} .
$$

## Generalized Samuel multiplicities

P. Samuel, 1951
$(A, \mathfrak{m})$ noetherian local ring $I$ of dimension $d$ an $\mathfrak{m}$-primary ideal (that is, an ideal of finite colength)

$$
H_{I}^{(0)}(j):=\operatorname{length}\left(I^{j} / I^{j+1}\right)
$$

Hilbert-Samuel function

$$
\begin{aligned}
H_{I}^{(1)}(j) & :=\sum_{k=0}^{j} H_{I}^{(0)}(j)=\text { length }\left(A / I^{j+1}\right) \quad \text { if } j \gg 1, \\
& =e_{0}\binom{j+d}{d}-e_{1}\binom{j+d-1}{d-1}+\ldots+(-1)^{d} e_{d}
\end{aligned}
$$

write $e(I, A)$ for $e_{0}$.

Achilles-Manaresi, 1997
$I$ not necessarily m-primary pass from the associated graded ring

$$
G_{I}(A):=\oplus_{j \geq 0} I^{j} / I^{j+1}
$$

to the bigraded ring

$$
\begin{aligned}
R & =\oplus_{i, j \geq 0} R_{i j}=G_{\mathfrak{m}}^{i}\left(G_{I}^{j}(A)\right) \\
& =\oplus_{i, j \geq 0}\left(\mathfrak{m}^{i} I^{j}+I^{j+1}\right) /\left(\mathfrak{m}^{i+1} I^{j}+I^{j+1}\right)
\end{aligned}
$$

$R_{00}=A / \mathfrak{m}$, have Hilbert function $H^{(0,0)}(i, j)=\operatorname{dim} R_{i j}$, twofold sum transform $H^{(1,1)}(i, j):=\sum_{q=0}^{j} \sum_{p=0}^{i} H^{(0,0)}(p, q)$, for both $i, j \gg 1$ becomes a polynomial which can be written in the form

$$
\sum_{k+l \leq d} a_{k, l}^{(1,1)}\binom{i+k}{k}\binom{j+l}{l}
$$

Define the generalized Samuel multiplicity to be

$$
\left(a_{0, d}^{(1,1)}, a_{1, d-1}^{(1,1)}, \ldots, a_{d, 0}^{(1,1)}\right)=:\left(c_{0}, c_{1}, \ldots, c_{d}\right)
$$

Theorem 2 Set $q:=\operatorname{dim}(A / I), G:=G_{I}(A), s:=\operatorname{dim} G / \mathfrak{m} G$. Then

1. $c_{k}=0$ for $k<d-s$ and $k>q$;
2. $c_{d-s}=\sum_{P} e\left(\mathfrak{m} G_{P}\right) \cdot e(G / P)$, where $P$ runs over all highest dimensional associated prime ideals of $G / \mathfrak{m} G$ such that $\operatorname{dim} G / P+\operatorname{dim} G_{P}=\operatorname{dim} G$;
3. $c_{q}=\sum_{\mathfrak{p}} e\left(A_{\mathfrak{p}}\right) \cdot e(A / \mathfrak{p})$, where $\mathfrak{p}$ runs over all highest dimensional associated prime ideals of $A / \mathfrak{p}$ such that $\operatorname{dim} A / \mathfrak{p}+$ $\operatorname{dim} A_{\mathfrak{p}}=\operatorname{dim} A ;$
4. If $A$ is the ring of the ruled join $J:=J(X, Y) \subset \mathbf{P}^{2 n+1}$ (localized at the irrelevant homogeneous maximal ideal), I the ideal of the 'diagonal' $\Delta \subset \mathbf{P}^{2 n+1}$ and $\pi: J \rightarrow X Y$ the canonical projection onto the embedded join $X Y \subset \mathbf{P}^{n}$, then

$$
\begin{aligned}
c_{0} & =\operatorname{deg} \sum_{\Gamma \subseteq J} \operatorname{deg}(\Gamma / X Y) \operatorname{deg}(\pi(\Gamma)) \\
c_{k} & =\operatorname{deg} v_{k-1}, \quad k=1, \ldots, d-1=\operatorname{dim} J \\
c_{d} & =0
\end{aligned}
$$

Here the sum is taken over all irreducible components $\Gamma$ of $J$ with the induced scheme structure and $\pi(\Gamma)$ denotes the closure of $\pi(\Gamma \backslash \Delta) \subseteq \mathbf{P}_{K}^{n}$ equipped with its reduced structure. If $K$ is algebraically closed and $X, Y$ are irreducible (but not necessarily reduced), then

$$
c_{0}=\operatorname{deg}(J / X Y) \operatorname{deg}(X Y)
$$

## Segre numbers of Gaffney and Gassler, 1999

$A=\mathcal{O}_{X, 0},(X, 0) \subset\left(\mathrm{C}^{n}, 0\right)$ a reduced closed analytic space of pure dimension $d$ and $I$ an ideal which defines a nowhere dense subspace of $(X, 0)$. They considered the blowup of $X$ along $I$

$$
X \times \mathrm{P}^{\mu(I)-1} \supset B l_{I}(X) \xrightarrow{b} X
$$

with exceptional divisor $E$ and defined the $k$ th Segre number as

$$
e_{k}(I, Y):=\operatorname{mult}_{0}\left(b_{*}\left(H_{1} \cdots H_{k-1} \cdot E \cdot B l_{I} X\right)\right),
$$

where $H_{i}$ is a generic hyperplane on $B l_{I} X$ induced by one in $\mathrm{P}^{\mu(I)-1}$. Note that

$$
e_{k}(I, Y)=c_{d-k}(A, I), \quad k=1, \ldots, d,
$$

that is, Segre numbers are a special case of the generalized Samuel multiplicity.

Our generalized Samuel multiplicities are also related to the degrees of Segre classes of cones and subvarieties:
$W \subset V$; let $W, V$ be nonsingular, $N_{W} V$ the normal bundle with Chern classes $c_{i}\left(N_{W} V\right) \cap[W]$ and Segre classes $s_{i}\left(N_{W} V\right) \cap[W]$,

$$
1+c_{1}+c_{2} \cdots=\left(1+s_{1}+s_{2}+\cdots\right)^{-1}
$$

In general there is only a normal cone, $C=C_{W} V$ of $V$ along $W$. The total Segre class $s(W, V) \in A_{*} W$ is defined as follows: if $W=V$ then $s(W, V)=[V]$. Otherwise $\tilde{V}=B l_{W} V, E=\mathbf{P}(C)$ exceptional divisor, $\eta: E \rightarrow W$ projection, $d:=\operatorname{dim} V=\operatorname{dim} \tilde{V}$. The $i$-fold self intersections $E^{i}=E * \ldots * E$ are well defined classes in $A_{d-i}(E)$.

$$
s(W, V):=\sum_{i \geq 1}(-1)^{i-1} \eta_{*}\left(E^{i}\right)
$$

(B. Segre, 1953, sottovarietà covarianti)

Now $N_{E} \tilde{V}=\left.\mathcal{O}_{\tilde{V}}(E)\right|_{E=\mathrm{P}(C)}=\mathcal{O}_{C}(-1)$ is the dual of the canonical line bundle $\mathcal{O}_{C}$ on $\mathbf{P}(C)$. It follows
$E^{i}=(-1)^{i-1} c_{1}\left(\left(\mathcal{O}_{C}(1)\right)^{i-1}\right) \cap[\mathbf{P}(C)]$, hence

$$
s=s(C)=s(W, V)=\sum_{i \geq 0} \eta_{*}\left(c_{1}\left(\mathcal{O}_{C}(1)\right)^{i-1} \cap[\mathbf{P}(C)]\right)
$$

which makes sense for every cone $C$ on a scheme $W$ under the assumption that there is no irreducible component $C^{\prime}$ of $C$ with $\mathrm{P}\left(C^{\prime}\right)=\emptyset$.
By $s_{i}$ we denote the part of $s$ of dimension $i$, and by $s^{i}$ the part of codimension $i$ in $V$. Thus, if $V$ is equidimensional (which we assume), then $s_{i}=s^{d-i}$.

## Connection with Samuel multiplicity:

$W \subset V$ irreducible and reduced, $r:=\operatorname{codim}(W, V)>0, q=d-r$.

$$
\begin{aligned}
e\left(\mathcal{O}_{V, W}\right)=e_{W} V[W] & =\eta_{*}\left(c_{1}\left(\mathcal{O}_{C}(1)\right)^{r-1} \cap[\mathbf{P}(C)]\right) \\
& =(-1)^{q-1} \eta_{*}\left(E^{r-1}\right),
\end{aligned}
$$

that is, deg $s^{r}\left(C_{W} V\right)=\operatorname{deg} s_{q}\left(C_{W} V\right)=c_{q}$. In the situation of Theorem 2, (4):

$$
c_{k}=\sum_{i=k}^{q}\binom{d-k-1}{d-i-1} \operatorname{deg} s_{i}\left(C_{\Delta \cap J} J\right)
$$

and

$$
\operatorname{deg} s^{k}=\operatorname{deg} s_{d-k}=\sum_{i=0}^{k}\binom{k-1}{i-1}(-1)^{k-i} c_{d-i},
$$

$k=0, \ldots, d-1$. Convention: $\binom{m}{-1}:=0$ for $m \geq 0,\binom{-1}{-1}:=1$.

More general, if $V$ is an equidimensional algebraic scheme over the base field $K, \mathcal{L}$ a line bundle of degree $\delta$ on $V, \sigma_{1}, \ldots \sigma_{t} \in$ $H^{0}(V, \mathcal{L})$ and $W:=V\left(\sigma_{1}\right) \cap \ldots \cap V\left(\sigma_{t}\right)$, then

$$
c_{k}=\sum_{i=k}^{q}\binom{d-k-1}{d-i-1} \delta^{k-i} \operatorname{deg} s_{i}\left(C_{\Delta \cap J} J\right)
$$

and

$$
\operatorname{deg} s^{k}=\operatorname{deg} s_{d-k}=\sum_{i=0}^{k}\binom{k-1}{i-1}(-\delta)^{k-i} c_{d-i},
$$

$k=0, \ldots, d-1$.

Definition $2 Y \subset X$ complex projective varieties, $Y$ non-singular. ( $X_{r e g}, Y$ ) satisfies the Whitney conditions at a point $x_{0} \in Y$ if for each sequence $\left(x_{i}\right)$ of points of $X$ reg and each sequence $\left(y_{i}\right)$ of points of $Y$ both converging to $x_{0}$ and such that the limits $\lim _{x_{i} \rightarrow x_{0}} T_{x_{i}} X$ and $\lim _{x_{i}, y_{i} \rightarrow x_{0}} \overline{x_{i} y_{i}}$ exist in the Grassmannians $G(d, n)$ and $G(1, n)$ respectively, one has:
(a) $\lim _{x_{i} \rightarrow x_{0}} T_{x_{i}} X \supset T_{x_{0}} Y$,
(b) $\lim _{x_{i} \rightarrow x_{0}} T_{x_{i}} X \supset \lim _{x_{i}, y_{i} \rightarrow x_{0}} \overline{x_{i} y_{i}}$.

We remark that (b) implies (a).

Definition 3 A Whitney stratification of $X(d=\operatorname{dim} X)$ is given by a filtration of $X$ by algebraic sets $F_{i}$

$$
X=F_{0} \supseteq F_{1} \supseteq \ldots \supseteq F_{d+1}=\emptyset
$$

such that
(i) $F_{i} \backslash F_{i+1}$ is either empty or is a non-singular quasi-projective variety of pure codimension $i$. (The connected components of $F_{i} \backslash F_{i+1}$ are called the strata of the stratification.)
(ii) Whenever $S_{j}$ and $S_{k}$ are connected components of $F_{i} \backslash F_{i+1}$ and $F_{l} \backslash F_{l+1}$ respectively with $S_{j} \subset \bar{S}_{k}$, then the pair $\left(S_{k}, S_{j}\right)$ satisfies the Whitney conditions (a) and (b).

## Polar varieties

$L_{(k)}=(n-d+k-2)$-dimensional linear subspace of $\mathbf{P}^{n}, 1 \leq$ $k \leq d=\operatorname{dim} X$. The $k$ th polar variety (or polar locus) of $X$ associated with $L_{(k)}$ is

$$
P\left(L_{k}, X\right):=\text { closure of }\left\{x \in X \text { reg } \mid \operatorname{dim}\left(T_{x} X \cap L_{(k)}\right) \geq k-1\right\}
$$

For $k=0$ we set $P\left(L_{(0)}, X\right):=X$.

If $L_{(k)}$ is generic, we write $P_{k}(X)=P\left(L_{(k)}, X\right)$ and if

$$
L_{(0)} \subset L_{(1)} \subset \ldots \subset L_{(d)}
$$

is a generic flag, then we have

$$
X=P_{0}(X) \supset P_{1}(X) \supset \ldots \supset P_{d}(X)
$$

Let $x \in X$. Teissier showed that the sequence of multiplicities

$$
m_{0}=e_{x}\left(P_{0}(X)\right), \ldots, m_{d-1}=e_{x}\left(P_{d-1}(X)\right)
$$

does not depend upon the choice of the general flag.

Theorem 3 (Teissier, 1982) The pair (Xreg, $Y$ ) satisfies the Whitney conditions in $x_{0}$ if and only if the sequence of polar multiplicities

$$
m_{0}=e_{y}(X), m_{1}=e_{y}\left(P_{1}(X)\right), \ldots, m_{d-1}=e_{y}\left(P_{d-1}(X)\right)
$$

is locally constant in $Y$ around $x_{0}$.

We propose the following function $g$ to measure the singularity of $X$ in a point $x$ of $X$ :
$A:=\mathcal{O}_{X \times X,(x, x)}, I:=$ diagonal ideal in $A$,

$$
g(x):=\sum_{i=0}^{d} c_{i}(I, A)=e\left(G_{I}(A)\right) .
$$

Note that $\operatorname{dim} A=2 d, c_{d+1}=\cdots=c_{2 d}=0$ and that

$$
\left(c_{0}(I, A), c_{1}(I, A), \ldots, c_{d}(I, A)\right)
$$

is a refinement of the multiplicity

$$
c_{d}(I, A)=e_{x} X=e\left(\mathcal{O}_{X, x}\right)
$$

of $X$ at $x$.

Theorem 4 (Achilles-Manaresi, 2003) Let $X \subset \mathrm{P}^{n}$ be a (reduced) surface and $x \in X$ be a closed point. Then

$$
X_{j}:=\{x \in X \mid g(x) \geq j\}, j=0,1, \ldots
$$

are closed subschemes of $X$ or empty, and the connected components of

$$
S_{g}(j):=g^{-1}(j)=X_{j} \backslash X_{j+1}
$$

are the strata of a Whitney stratification of $X$ (the coarsest one if $n=3$ ).

Generalized Samuel multiplicities ( $c_{2}, c_{1}, c_{0}$ ) and polar multiplicities ( $m_{0}, m_{1}$ ) (both ordered by codimension) for the surface in $\mathrm{C}^{3}$ (or in $\mathrm{P}^{3}$ ) defined by the equation

1. $x^{4}+y^{4}-x y z=0$;
2. $y^{2}-x^{3}-x^{2} z^{2}=0$.

In both cases the Whitney stratification is given by

$$
\text { surface } \subset z \text {-axis } \subset \text { origin. }
$$

We illustrate the second example:


