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Abstract. We characterize the interpolating sequences for the weighted an-
alytic Besov spaces Bp(s), defined by the norm

‖f‖p
Bp(s)

= |f(0)|p +

Z

D
|(1− |z|2)f ′(z)|p(1− |z|2)s dA(z)

(1− |z|2)2
,

1 < p < ∞ and 0 < s < 1, and for the corresponding multiplier spaces
M(Bp(s)).
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1. Introduction and main results

In this paper we characterize the interpolating sequences for the multiplier spaces
of the family of weighted Besov spaces Bp(s), 1 < p < ∞, 0 < s < 1, defined below.
Throughout the paper, we denote by M(X) the multiplier space of the Banach space
X. The problem of finding the interpolating sequences for spaces of holomorphic
functions (and their multiplier spaces) is an old one. The prototype of all such
results is Carleson’s celebrated Interpolation Theorem [8] for H∞ = M(Hp), later
extended to the spaces Hp themselves, 0 < p < ∞ in [24],[17]. All known proofs of
Carleson’s Theorem in the Hardy class make an essential use of Blaschke products,
and this has been so far the main obstruction to an extension of the theorem to
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several complex variables. Note that H2 = B2(1) falls just outside the range of
spaces here considered. Another result which is relevant to the present paper is
that concerning the multiplier space M(B2(0)) of the Dirichlet space B2(0), whose
interpolating sequences were characterized in the very deep paper [19] (see also
[3]). The extension to M(Bp(0)), 1 < p < ∞, is far from trivial and it is carried
out in [6]. In the s = 0 case the Blaschke products play no role, which does not
come as a surprise because, for instance, B2(0), hence M(B2(0)), does not contain
infinite Blaschke products. There is another instance in which the space B2(0)
differs from B2(1). The Carleson measures for B2(1) = H2 (first characterized in
[9]) are characterized by a simple condition to be checked on single boxes, while,
when 0 < s ≤ 1, characterizing the Carleson measures for Bp(s) requires more
complicated conditions, see [29], [30], [1].

Our characterization of the interpolating sequences for M(Bp(s)) relies on the
fact that, for 0 < s < 1, the space M(Bp(s)) is rich of Blaschke products, hence it
is possible to mimic many arguments from the Hardy endpoint s = 1. On the other
hand, the Carleson measures are more similar to those of the Dirichlet endpoint
s = 0, and this accounts for some involved proofs.

The universal interpolating sequences for the spaces Bp(s), 1 < p < ∞, 0 < s <
1, were characterized in [11], a paper that did not receive the attention it deserved.
An alternative proof easily follows from our construction of the interpolating se-
quences for M(Bp(s)), and it is given in this paper. The characterization of the
interpolating sequences for M(B2(s)) is also studied in [31]. A beautiful, short
proof for M(B2(s)), which heavily relies on the Hilbert space nature of B2(s), is
given in [7]. In the proof, we follow the basic ideas in [15] and [16], by constructing
an explicit solution of an auxiliary ∂-problem.

Main results. For 1 < p < ∞ and 0 ≤ s < 1, let Bp(s) be the Besov type space
of those analytic functions on the unit disc D for which

‖f‖Bp(s) =
(∫

D
|f ′(z)|p dAp,s(z)

)1/p

+ |f(0)| < ∞,

where dAp,s(z) = (1− |z|2)p−2+s dA(z), and dA is the normalized area measure.

The reproducing formula for Bp(s) (see [5] or [22] for the case p = 2) gives

(1.1) f(z) = f(0) +
∫

D
f ′(w)K(z, w) (1− |w|2)s dA(w),

where

K(z, w) =
1− (1− w̄z)1+s

w̄ (1− w̄z)1+s
.

From (1.1) it is easy to deduce that the point evaluations are bounded linear func-
tionals in Bp(s). Let w(z) denote the norm of the point-evaluation functional at
the point z. Then a sequence Z = {zn} of distinct points of D is called a universal
interpolating sequence for the Besov type space Bp(s) if f 7→ { f(zn)

w(zn)

}
maps Bp(s)

into and onto lp.
The (pointwise) multipliers of Bp(s) denoted by M(Bp(s)) are those analytic

functions g for which gf is in Bp(s) whenever f is in Bp(s). The algebra M(Bp(s))
plays a role in the study of the space Bp(s) which is similar to the role played
by H∞ in the study of the classical Hardy spaces Hp. The corresponding notion
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of interpolating sequences for such functions is that the map f 7→ {
f(zn)} maps

M(Bp(s)) onto l∞.
As for bounded analytic functions (see [8]), the characterization of the interpo-

lating sequences involves a separation condition that says how close two points in
the sequence can be. A sequence {zn} of points of D is called a separated sequence
if

inf
j 6=k

ρ(zj , zk) > 0,

where ρ is the pseudohyperbolic distance

ρ(z, w) =
∣∣∣ z − w

1− w̄z

∣∣∣.
This condition is equivalent to the fact that there is a positive constant δ < 1 such
that the pseudohyperbolic discs Dzj

= {z : ρ(z, zj) < δ} are pairwise disjoints.

As for the classical Hardy spaces Hp, a positive Borel measure µ on D is called
an (s, p)-Carleson measure if there is a positive constant C such that∫

D
|f |p dµ ≤ C ‖f‖p

Bp(s)

whenever f is in Bp(s). The role of these measures in the characterization of
interpolating sequences for Bp(s) is similar to the Hp situation.
Throughout the paper, q will denote the conjugate exponent of p, that is, 1

p + 1
q = 1.

We can now state our main theorem.

Theorem 1. Let 1 < p < ∞ and 0 < s < 1. The following are equivalent for a
sequence Z = {zn} in D.

(M) Z is an interpolating sequence for M(Bp(s)).
(RS) The following norm equivalence holds:

∥∥∥
∑

j

aj

kzj

‖kzj‖Bq(s)

∥∥∥
Bq(s)

³
( ∑

j

|aj |q
)1/q

.

(UIS) Z is an universal interpolating sequence for Bp(s).
(CS) Z is a separated sequence and µZ =

∑
zn∈Z(1 − |zn|2)s δzn is an (s, p)-

Carleson measure.

We point out that in the case p = 2, the equivalence between (CS) and (UIS)
was proved by Cohn in [11]. Note that, since the real part of the derivative of
the reproducing kernels is not always positive, we can not use the generalization
of the standard Hilbert space techniques developed in [6] to prove that condition
(M) implies conditions (RS) and (UIS). Instead of that, since it is standard that
conditions (RS) and (UIS) are equivalent (see, e.g. [2, p.42]), we will show that
condition (CS) is necessary and sufficient for both the multiplier and the universal
interpolation problems.

The paper is organized as follows: Section 2 is devoted to background material
and preliminaries for the analytic Besov-type spaces Bp(s). In Section 4 we prove
some relations between boundary value functions f ∈ Lp

s and some extensions in
D, and we also study the multipliers of Lp

s in terms of (s, p)-Carleson measures.
In Section 5 we prove the necessity part of Theorem 1. In Section 6, we study a
∂-problem with estimates needed to prove the sufficiency part in Section 7. This
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∂̄-problem is also applied to prove the corona theorem for the multiplier algebra.

Also, given a function f ∈ L1(T), we denote by f̂ to be the Poisson integral of
f ,

f̂(z) =
1
2π

∫ 2π

0

f(eiθ)
1− |z|2
|eiθ − z|2 dθ.

The letter C will denote an absolute constant whose value may change from line
to line. We also use the notation a . b to indicate that there is a constant C > 0
with a ≤ Cb, and the notation a ³ b means that a . b and b . a.

2. Background and preliminaries

Consider the inner product

〈f, g〉s = f(0)g(0) +
∫

D
f ′(z) g′(z) (1− |z|2)s dA(z)

for f ∈ Bp(s) and g ∈ Bq(s). By Hölder’s inequality,

(2.1)
∣∣〈f, g〉s

∣∣ ≤ ‖f‖Bp(s) ‖g‖Bq(s)

for f ∈ Bp(s) and g ∈ Bq(s). With that pairing, the dual of Bp(s) can be identified
with Bq(s) (see Lemma 2.1 below). Since the point-evaluations are continuous,
there are reproducing kernels kz ∈ Bq(s) with f(z) = 〈f, kz〉s, and it is easy to
compute that w(z) ≈ ‖kz‖Bq(s) ≈ (1− |z|2)−s/p.

The following lemma is proved in Section 4.2 of [32].

Lemma A. Suppose z ∈ D, c > 0 and t > −1, then the integral

Ic,t(z) =
∫

D

(1− |w|2)t

|1− w̄z|2+t+c
dA(w)

is comparable to (1− |z|2)−c.

The next result is taken from [5].

Lemma B. Let 1 < p < ∞, and let σ > −1 b ≥ 0 with b < 2 + σ. Let g be
analytic on D. Then,

∫

D
|g(z)− g(0)|p (1− |z|2)σ

|1− w̄z|b dA(z) ≤ C

∫

D
(1− |z|2)p|g′(z)|p (1− |z|2)σ

|1− w̄z|b dA(z).

The following is standard and can be proved as other duality results in [32].

Lemma 2.1. Let 1 < p < ∞ and 0 ≤ s < 1. The dual space of Bp(s) can be
identified with Bq(s) (with equivalent norms) under the pairing

〈f, g〉s = f(0)g(0) +
∫

D
f ′(z) g′(z) (1− |z|2)s dA(z),

where f ∈ Bp(s) and g ∈ Bq(s).

Let kz ∈ Bq(s) be the reproducing kernel associated with the pairing <,>s.
From (1.1) it follows that kz(0) = 1 and

k′z(ζ) =
1
ζ

1− (1− z̄ζ)1+s

(1− z̄ζ)1+s
.

Now, we state some properties of the reproducing kernels kz.
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Lemma 2.2. Let 1 < p < ∞, and s > 0. Then

‖kz‖p
Bq(s) ³ (1− |z|2)−s.

Proof. This follows by direct calculation using the above expression for the deriva-
tive of the reproducing kernel and Lemma A. ¤

Lemma 2.3. Let 1 < p < ∞, and s > 0. Let z, w ∈ D having pseudo-hyperbolic
distance ρ(z, w) ≤ c < 1. Then

‖kz − kw‖Bq(s) ≤ C

∣∣∣∣
z − w

1− w̄z

∣∣∣∣ (1− |w|2)−s/p.

Proof. By the mean value theorem, there exists ν ∈ [z, w], the line segment joining
z and w, such that for ζ ∈ D,

∣∣(1− w̄ζ)1+s − (1− z̄ζ)1+s
∣∣ ≤ (1 + s)|ζ| |1− ν̄ζ|s |z − w|.

Using this, we obtain

∣∣k′z(ζ)− k′w(ζ)
∣∣ =

∣∣∣∣
(1− z̄ζ)1+s − (1− w̄ζ)1+s

ζ (1− w̄ζ)1+s (1− z̄ζ)1+s

∣∣∣∣ . |z − w| |1− ν̄ζ|s
|1− w̄ζ|1+s |1− z̄ζ|1+s

.

Since ρ(z, w) ≤ c < 1, then |1− ν̄ζ| ³ |1− w̄ζ| ³ |1− z̄ζ|, and we get

(2.2)
∣∣k′z(ζ)− k′w(ζ)

∣∣ . |z − w|
|1− w̄ζ|2+s

.

Now, using (2.2) and Lemma A, we obtain

‖kz − kw‖Bq(s) =
(∫

D

∣∣k′z(ζ)− k′w(ζ)
∣∣q (1− |ζ|2)q−2+s dA(ζ)

)1/q

. |z − w|
(∫

D

(1− |ζ|2)q−2+s dA(ζ)
|1− w̄ζ|2q+qs

)1/q

. |z − w|
1− |w|2 (1− |w|2)− (q−1)s

q

³
∣∣∣ z − w

1− w̄z

∣∣∣ (1− |w|2)−s/p.

¤

The proof of the necessity part of condition (CS) in Theorem 1 uses a randomiza-
tion technique that has been very useful in many other areas of analysis. Thus we
are going to discuss Khinchine’s inequality. Given finitely many complex numbers
α1, . . . , αn, consider the 2n possible sums

n∑

j=1

±αj

obtained as the plus-minus signs vary in the 2n possible ways. For r > 0 we use

E



∣∣∣∣∣∣

n∑

j=1

±αj

∣∣∣∣∣∣

r
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to denote the average value of
∣∣∣ ∑n

j=1±αj

∣∣∣
r

over the 2n choices of sign. To be
precise, let Ω be the set of 2n points ω = (ω1, ω2, . . . , ωn), where ωj = ± 1. Define
the probability µ on Ω so that each point ω has probability 2−n. Also define

X(ω) =
n∑

j=1

αjωj .

Then X(ω) is a more rigorous expression for
∑±αj , and by definition

E



∣∣∣∣∣∣

n∑

j=1

±αj

∣∣∣∣∣∣

r
 =

1
2n

∑

ω∈Ω

|X(ω)|p =
∫

Ω

|X(ω)|p dµ.

Khinchine’s inequality. Let r > 0, then

(2.3) E



∣∣∣∣∣∣

n∑

j=1

±αj

∣∣∣∣∣∣

r
 ≤ Cr




n∑

j=1

|αj |2



r/2

(see [13, p. 302]). Actually Cr = 1 if r ≤ 2. The important thing in (2.3) is that
Cr does not increase as n increases. This inequality will be used in the reproducing
formula for Bp(s). We also use the elementary inequalities

(2.4)

(
E

∣∣∣∣∣
n∑

k=1

± ak

∣∣∣∣∣

)t

≤ E



∣∣∣∣∣
n∑

k=1

± ak

∣∣∣∣∣

t

 , t ≥ 1,

and

(2.5)
∑

|ak| ≤
( ∑

|ak|r
)1/r

, 0 < r ≤ 1.

3. Carleson measures and multipliers for Bp(s)

Given an arc I of the unit circle T of normalized arclength |I|, consider the
Carleson box S(I) defined as

S(I) = {reit ∈ D : 1− r ≤ |I|; eit ∈ I}.
Let s > 0. A positive Borel measure on D is said to be an s-Carleson measure if

(3.1) sup
I⊂T

µ(S(I))
|I|s < ∞.

When s = 1 we obtain the classical Carleson measures, that by Carleson embedding
theorem, are just the measures characterizing when the embedding Hp ⊂ Lp(µ) is
continuous.

A positive Borel measure on D is a Carleson measure for Bp(s) (or an (s, p)-
Carleson measure) if the embedding Bp(s) ⊂ Lp(µ) is continuous, that is, if there
is a positive constant C such that∫

D
|f(z)|p dµ(z) ≤ C ‖f‖p

Bp(s),

whenever f is in Bp(s). There are several characterizations of Carleson measures
for Bp(s) (see [29] and [30] for a capacitary condition analogous to Stegenga’s
description in [25] of Carleson measures for Bp, or [1] and [18] for non capacitary
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conditions), but for our purposes we only need the following simple observation
proved in [5].

Lemma C. Let 1 < p < ∞ and 0 ≤ s ≤ 1. Let µ be a Carleson measure for
Bp(s). Then for each ε > 0

sup
a∈D

∫

D

(1− |a|2)ε

|1− az|ε+s
dµ(z) ≤ C,

where C is a positive constant independent of ε.

The following is a well known generalization of the characterization of classical
Carleson measures in conformal invariant terms. See [13, Chapter VI, Lemma 3.3]
for the classical case and [4, Lemma 4.1] for the general case.

Lemma D. Let s > 0. Then µ is an s-Carleson measure if and only if

sup
a∈D

∫

D

(
1− |a|2
|1− az|2

)s

dµ(z) < ∞.

Not all s-Carleson measures are Carleson measures for Bp(s). It is known that
the condition (3.1) is not sufficient for a measure µ to be a Carleson measure for
Bp(s) (see for example [19] for the case p = 2), but it turns to be an important
necessary condition.

Lemma 3.1. Let 1 < p < ∞, and s > 0. If µ is a Carleson measure for Bp(s),
then µ is an s-Carleson measure.

Proof. This follows immediately after an application of Lemma C with ε = s, and
then Lemma D. ¤

We also need the following result (see [5]) that says that Carleson measures for
Bp(s) are stable under the action of some integral operator.

Lemma E. Let 0 ≤ s < 1, 1 < p < ∞, and let

Tv(z) =
∫

D

v(w)
|1− wz|2 dA(z).

If |v(z)|pdAp,s(z) is a Carleson measure for Bp(s) (and |v(z)|(1 − |z|) ≤ C when
1 < p < 2), then |Tv(z)|pdAp,s(z) is also a Carleson measure for Bp(s).

Recall that the algebra M(Bp(s)) of pointwise multipliers of Bp(s), consists of
those analytic functions on D such that gf ∈ Bp(s) whenever f ∈ Bp(s). Identifying
a multiplier g with the operator given by Mg(f) = gf , and using the operator norm
as the multiplier norm, M(Bp(s)) becomes a Banach algebra.

The following well known result (see, e.g. [1, p.472]) describes the multipliers of
Bp(s) in terms of (s, p)-Carleson measures.

Lemma F. Let 1 < p < ∞ and 0 ≤ s < 1. Then f ∈ M(Bp(s)) if and only if
f ∈ H∞ and |f ′(z)|p dAp,s(z) is an (s, p)-Carleson measure.

The next result says that there are infinite Blaschke products in M(Bp(s)). This
is proved in [29]. We give an elementary proof of it to keep the paper self-contained.
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Proposition 3.2. Let 1 < p < ∞ and 0 < s < 1. Let {zn} be a sequence in D
such that

∑
n(1 − |zn|2)sδzn

is an (s, p)-Carleson measure, then B belongs to the
multiplier algebra M(Bp(s)), where

B(z) =
∏
n

|zn|
zn

zn − z

1− z̄nz
.

is the Blaschke product with zeros {zn}.
Proof. Note first that the assumption also implies that the measure

(3.2) µ{zn} =
∑

n

(1− |zn|2) δzn

is a 1-Carleson measure. Indeed, let S(I) be a Carleson box, then

µ{zn}(S(I)) =
∑

zn∈S(I)

(1− |zn|2) ≤ |I|1−s
∑

zn∈S(I)

(1− |zn|2)s ≤ C|I|.

For a ∈ D, let ϕa(z) = a−z
1−āz . By Lemma D with s = 1, for all z ∈ D we have

(3.3)
∑

n

(1− |ϕzn(z)|2) =
∫

D

( 1− |z|2
|1− w̄z|2

)
dµ{zn}(w) ≤ C.

By Lemma F, the condition that B ∈ M(Bp(s)) is equivalent to the fact that
|B′(z)|p dAp,s(z) is an (s, p)-Carleson measure. Let g ∈ Bp(s). Since B ∈ H∞ ⊂ B,
the Bloch space, we have

(3.4) (1− |z|2)|B′(z)| ≤ C.

So, by (3.4), and using the estimate

|B′(z)| ≤
∑

n

(1− |zn|2)
|1− z̄nz|2 ,

we have

∫

D
|g(z)|p |B′(z)|p dAp,s(z) .

∫

D
|g(z)|p

( ∑
n

1− |zn|2
|1− z̄nz|2

)
(1− |z|2)s−1 dA(z)

=
∑

n

(1− |zn|2)
∫

D
|g(z)|p (1− |z|2)s−1

|1− z̄nz|2 dA(z)

.
∑

n

(1− |zn|2)
∫

D
|g(zn)|p (1− |z|2)s−1

|1− z̄nz|2 dA(z)

+
∑

n

(1− |zn|2)
∫

D
|g(z)− g(zn)|p (1− |z|2)s−1

|1− z̄nz|2 dA(z)

= I1 + I2.

(3.5)

By Lemma A and the fact that
∑

n(1−|zn|2)sδzn is an (s, p)-Carleson measure, we
have

I1 =
∑

n

|g(zn)|p (1− |zn|2)
∫

D

(1− |z|2)s−1

|1− z̄nz|2 dA(z)

.
∑

n

|g(zn)|p (1− |zn|2)s . ‖g‖p
Bp(s).

(3.6)
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On the other hand, making the change of variables w = ϕzn(z) we have 1

I2 =
∑

n

(1− |zn|2)
∫

D
|g(z)− g(zn)|p (1− |z|2)s−1

|1− z̄nz|2 dA(z)

=
∑

n

(1− |zn|2)s

∫

D
|gzn

(w)− gzn
(0)|p (1− |w|2)s−1

|1− z̄nw|2s
dA(w),

where gzn
= g ◦ ϕzn

. Therefore, since s− 1 > −1 and 2s < 1 + s, by Lemma B, a
change of variables z = ϕzn(w), and (3.3) we get

I2 .
∑

n

(1− |zn|2)s

∫

D
|(g ◦ ϕzn

)′(w)|p (1− |w|2)p+s−1

|1− z̄nw|2s
dA(w)

=
∑

n

∫

D
|g′(z)|p (1− |ϕzn

(z)|2) dAp,s(z) ≤ C ‖g‖p
Bp(s).

(3.7)

So, putting together (3.5), (3.6) and (3.7) the proof is completed. ¤

4. Boundary values

Since for s < 1, Bp(s) ⊂ Hp, it follows that every function f in Bp(s) has
nontangential limits a.e. on T. Denote by fb the boundary values of f (taken as
a nontangential limit). The purpose of this section is to give a description of the
space Bp(s) in terms of its boundary values.

Let f ∈ Lp(T). We say that f ∈ Lp
s if the seminorm

‖f‖∗p
Lp

s
=

∫ 2π

0

∫ 2π

0

|f(eit)− f(eiu)|p
|eit − eiu|2−s

du dt

is finite. A norm for this space can be defined as ‖f‖p
Lp

s
= ‖f‖∗p

Lp
s

+ ‖f‖p
Lp(T).

Lemma 4.1. Let 1 < p < ∞ and 0 < s < 1. Let f ∈ Lp(T) and let F ∈ C1(D)
with limr→1 F (reiθ) = f(eiθ) for a.e. eiθ ∈ T. If

∫
D |∇F (z)|p dAp,s(z) < ∞ then

f ∈ Lp
s .

Proof. It is enough to show that

(4.1) ‖f‖∗p
Lp

s
=

∫ 2π

0

∫ 2π

0

|f(eit)− f(eiu)|p
|eit − eiu|2−s

du dt .
∫

D
|∇F (z)|p dAp,s(z).

To see that, we use an argument from [20]. Changing the coordinates we obtain

‖f‖∗p
Lp

s
=

∫ 2π

0

1
|eiϕ − 1|2−s

(∫ 2π

0

|f(ei(u+ϕ))− f(eiu)|p du

)
dϕ

≤ C

∫ 1/2

0

1
h2−s

∫ 2π

0

|f(ei(u+h))− f(eiu)|p du dh.

1Recall that

ϕ′a(z) =
1− |ϕa(z)|2

1− |z|2 , 1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2 , ϕa ◦ ϕa = Id.
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Take r = 1− h. We have
∣∣f(ei(u+h))− f(eiu)

∣∣ ≤ |f(ei(u+h))− F (rei(u+h))|+ ∣∣F (rei(u+h))− F (reiu)
∣∣

+
∣∣F (reiu)− f(eiu)

∣∣

≤
∫ 1

r

|∇F (xei(u+h))| dx +
∫ h

0

|∇F (rei(u+t))| dt

+
∫ 1

r

|∇F (xeiu)| dx.

Apply Minkowski integral inequality [26, p. 271], to get
∫ 2π

0

|f(ei(u+h))− f(eiu)|p du

.
∫ 2π

0

(∫ 1

r

|∇F (xeiu)| dx

)p

du +
∫ 2π

0

(∫ h

0

|∇F (rei(u+t))| dt

)p

du

.
(∫ 1

r

(∫ 2π

0

|∇F (xeiu)|p du

)1/p

dx

)p

+

(∫ h

0

(∫ 2π

0

|∇F (rei(u+t))|p du

)1/p

dt

)p

= (I) + (II).

For the term (I), after the change of variables x = 1−t, we apply Hardy’s inequality
[26, p. 272] to obtain

∫ 1/2

0

1
h2−s

(I) dh =
∫ 1/2

0

1
h2−s

(∫ 1

r

( ∫ 2π

0

∣∣∇F (xeiu)
∣∣pdu

)1/p

dx

)p

dh

=
∫ 1/2

0

1
h2−s

(∫ h

0

( ∫ 2π

0

∣∣∇F
(
(1− t)eiu

)∣∣pdu
)1/p

dt

)p

dh

≤
(

p

1− s

)p ∫ 1/2

0

∫ 2π

0

∣∣∇F
(
(1− h)eiu

)∣∣p duhp−2+s dh

≤ C

∫

D

∣∣∇F (z)
∣∣p dAp,s(z).

For the term (II) we just take r = 1 − h and integrate with respect to t and we
obtain the desired result.

∫ 1/2

0

1
h2−s

(II) dh =
∫ 1/2

0

1
h2−s

(∫ h

0

( ∫ 2π

0

∣∣∇F (reiu)
∣∣pdu

)1/p

dt

)p

dh

=
∫ 1/2

0

hp−2+s

(∫ 2π

0

∣∣∇F
(
(1− h)eiu

)∣∣pdu

)
dh

≤ C

∫

D
|∇F (z)|p dAp,s(z).

So, we obtain (4.1), and the proof is finished. ¤
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Proposition 4.2. Let 1 < p < ∞, 0 < s < 1, and let f ∈ Lp(T). Then f ∈ Lp
s if

and only if ∫

D
|∇f̂(z)|p dAp,s(z) < ∞,

where f̂ = Pf is the Poisson integral of f . Moreover, there exists a universal
constant C such that

C−1‖f‖∗p
Lp

s
≤

∫

D
|∇f̂(z)|p dAp,s(z) ≤ C‖f‖∗p

Lp
s
.

Proof. Consider f ∈ Lp(T), and let f̂ be the Poisson integral of f . If
∫

D
|∇f̂(z)|p dAp,s(z) < ∞,

then it follows from Lemma 4.1 that f ∈ Lp
s . For the converse we will show that

(4.2)
∫

D
|∇f̂(z)|p dAp,s(z) ≤ C

∫ 2π

0

∫ 2π

0

|f(eit)− f(eiu)|p
|eit − eiu|2−s

du dt.

Since

f̂(z) =
∫ 2π

0

f(eit)
(1− |z|2)
|eit − z|2

dt

2π
,

an easy computation gives

|∇f̂(reiu)| ≤ C

∫ 2π

0

|f(eit)− f(eiu)|
|eit − reiu|2 dt.

Then, by Hölder’s inequality

|∇f̂(reiu)|p .
(∫ 2π

0

|f(eit)− f(eiu)|
|eit − reiu|2 dt

)p

≤
∫ 2π

0

|f(eit)− f(eiu)|p
|eit − reiu|2 dt

(∫ 2π

0

1
|eit − reiu|2 dt

)p−1

= 2π

(∫ 2π

0

|f(eit)− f(eiu)|p
|eit − reiu|2 dt

)
(1− r2)−(p−1).

(4.3)

So, using (4.3), we obtain
∫

D
|∇f̂(z)|p (1− |z|2)p−2+s dA(z)

.
∫ 2π

0

∫ 1

0

∫ 2π

0

|f(eit)− f(eiu)|p
|eit − reiu|2 dt (1− r2)s−1 r dr du

=
∫ 2π

0

∫ 2π

0

|f(eit)− f(eiu)|p
(∫ 1

0

r(1− r2)s−1

|eit − reiu|2 dr

)
dt du.

So, the proof will be complete if we show

(4.4)
∫ 1

0

r(1− r2)s−1

|eit − reiu|2 dr . 1
|eit − eiu|2−s

.

To prove (4.4), let N be a positive integer with 2N−1|eit − eiu| < 1 < 2N |eit − eiu|,
and set R0 = {r ∈ (0, 1) : 0 < 1− r ≤ |eit − eiu|}, and

Rn = {r ∈ (0, 1) : 2n−1|eit − eiu| < 1− r ≤ 2n|eit − eiu|} for n = 1, . . . , N.
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Using the fact that |eit − reiu|2 = (1− r)2 + r|eit − eiu|2, we get

(4.5)
∫

R0

r(1− r2)s−1

|eit − reiu|2 dr ≤ 1
|eit − eiu|2

∫

R0

(1− r)s−1 dr =
1

s |eit − eiu|2−s
,

and for n ≥ 1∫

Rn

r(1− r2)s−1

|eit − reiu|2 dr ≤
∫

Rn

dr

(1− r)3−s
≤ 4 · 2−n

|eit − eiu|2−s
.(4.6)

Together (4.5) and (4.6) gives
∫ 1

0

r(1− r2)s−1

|eit − reiu|2 dr ≤
∫

R0

r(1− r2)s−1

|eit − reiu|2 dr +
N∑

n=1

∫

Rn

(1− r2)s−1

|eit − reiu|2 dr

≤ 1
s |eit − eiu|2−s

+
4

|eit − eiu|2−s

N∑
n=1

2−n

≤ C

|eit − eiu|2−s
,

proving (4.4). So, the proof is finished. ¤
As a consequence of Proposition 4.2 we obtain the following result.

Corollary 4.3. Let 1 < p < ∞, 0 < s < 1, and let f ∈ H1. Then f ∈ Bp(s) if
and only if fb ∈ Lp

s, where fb denotes the boundary values of f (taken as a radial
limit or a nontangential limit). Moreover, ‖f‖Bp(s) ³ ‖f‖Lp

s
.

Proof. Since f ∈ H1, then f = f̂b (see [13, Chapter II]). Hence the result follows
from Proposition 4.2. ¤
Multipliers of Lp

s . Let M(Lp
s) be the algebra of (pointwise) multipliers of Lp

s ,
that is,

M(Lp
s) = {g : T→ C : gf ∈ Lp

s whenever f ∈ Lp
s}.

Note that, since 1 ∈ Lp
s , we have M(Lp

s) ⊂ Lp
α. We also need a description of

the multipliers of Lp
s , in terms of Carleson measures for Bp(s), in a similar way as

Lemma F. To do this, first we need the following description of Carleson measures
for Bp(s) using functions in Lp

s .

Lemma 4.4. Let 1 < p < ∞, 0 < s < 1, and let µ be a positive measure on D.
The following conditions are equivalent:

(i) µ is an (s, p)-Carleson measure;

(ii)
∫

D
|ĥ(z)|p dµ(z) ≤ C‖h‖p

Lp
s

for all h ∈ Lp
s .

Proof. Suppose first that µ is an (s, p)-Carleson measure and let h ∈ Lp
s . Without

loss of generality we may assume that h is real valued. Let h̃ be the harmonic
conjugate function of ĥ. By the Cauchy-Riemann equations we have |∇ĥ(z)| ³
|f ′(z)|, where f = ĥ + ih̃. Now, it follows from Proposition 4.2 that f belongs to
Bp(s). Then, by (i) and (4.2),∫

D
|ĥ(z)|p dµ(z) .

∫

D
|f(z)|p dµ(z) . ‖f‖p

Bp(s)

. ‖h‖p
Lp(T) +

∫

D
|∇ĥ(z)|p dAp,s(z) . ‖h‖p

Lp
s
.
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For the converse, suppose that (ii) holds, and let f ∈ Bp(s). By Corollary 4.3,
fb ∈ Lp

s and f = f̂b. So, by condition (ii) and (4.1), we get
∫

D
|f(z)|p dµ(z) =

∫

D
|f̂b(z)| dµ(z) ≤ C‖fb‖p

Lp
s
≤ C‖f‖p

Bp(s),

and therefore µ is a Carleson measure for Bp(s). ¤

Lemma 4.5. Let 1 < p < ∞, 0 < s < 1. Let f ∈ L∞(T) and F ∈ C1(D) ∩ L∞(D)
with limr→1 F (reiθ) = f(eiθ) for a.e. eiθ ∈ T. If |∇F (z)|p dAp,s(z) is an (s, p)-
Carleson measure, then f ∈ M(Lp

s).

Proof. We must show that fg ∈ Lp
s whenever g is in Lp

s . So, let g ∈ Lp
s . Since

f ∈ L∞(T), it follows that fg ∈ Lp(T). Using (4.1) with the extension F ĝ of fg
on D we get

‖fg‖∗p
Lp

s
≤ C

∫

D
|∇(F ĝ )(z)|p dAp,s(z)

≤ C

(∫

D
|F (z)|p |∇ĝ(z)|p dAp,s(z) +

∫

D
|ĝ(z)|p|∇F (z)|p dAp,s(z)

)
.

(4.7)

Since F ∈ L∞(D), for the first term of the sum, using (4.2) with g ∈ Lp
s we obtain

(4.8)
∫

D
|F (z)|p |∇ĝ(z)|p dAp,s(z) ≤ C‖F‖p

L∞(D) ‖g‖p
Lp

s
.

For the second term, we use the fact that |∇F (z)|p dAp,s(z) is an (s, p)-Carleson
measure and Lemma 4.4 to get

(4.9)
∫

D
|ĝ(z)|p|∇F (z)|p dAp,s(z) ≤ C‖g‖p

Lp
s
.

Putting together (4.7), (4.8) and (4.9), we obtain that ‖fg‖Lp
s
≤ C‖g‖Lp

s
. So

f ∈ M(Lp
s) and the proof is complete. ¤

Now we can give a description of the multipliers of Lp
s in terms of (s, p)-Carleson

measures.

Theorem 4.6. Let 1 < p < ∞ and 0 < s < 1. The following conditions are
equivalent:

(i) g ∈ M(Lp
s)

(ii) g ∈ L∞(T) and |∇ĝ (z)|p dAp,s(z) is an (s, p)-Carleson measure.

Proof. That (ii) ⇒ (i) follows from Lemma 4.5. For the converse, let g ∈ M(Lp
s).

We start by proving that g ∈ L∞(T) using an argument from [10]. By the closed
graph theorem, the operator of multiplication by g is bounded, that is, ‖gf‖p

Lp
s
≤

C‖f‖p
Lp

s
for all f ∈ Lp

s . Taking ϕ(z) = g(z)/C1/p we may assume that ‖ϕ f‖p
Lp

s
≤

‖f‖p
Lp

s
for all f ∈ Lp

s . Note that

ϕn(eit)
(
f(eit)− f(eiu)

)
= (ϕnf)(eit)− (ϕnf)(eiu)− f(eiu)

(
ϕn(eit)− ϕn(eiu)

)
.
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Since 1 ∈ Lp
s , we see that ϕ ∈ Lp

s , and so ϕn ∈ Lp
s with ‖ϕn‖Lp

s
≤ ‖ϕ‖Lp

s
, for n ≥ 1.

Hence,
∫ 2π

0

∫ 2π

0

|ϕ(eit)|np |f(eit)− f(eiu)|p
|eit − eiu|2−s

dt du

≤ C

(
‖ϕnf‖p

Lp
s

+
∫ 2π

0

∫ 2π

0

|f(eiu)|p |ϕ
n(eit)− ϕn(eiu)|p
|eit − eiu|2−s

dt du

)

≤ C

(
‖f‖p

Lp
s

+
∫ 2π

0

∫ 2π

0

|f(eiu)|p |ϕ
n(eit)− ϕn(eiu)|p
|eit − eiu|2−s

dt du

)

Now, taking f to be the identity function on T, which belongs to Lp
s , we obtain

∫ 2π

0

∫ 2π

0

|ϕ(eit)|np|eit − eiu|p−2+s dt du

≤ C + C

(∫ 2π

0

∫ 2π

0

|ϕn(eit)− ϕn(eiu)|p
|eit − eiu|2−s

dt du

)
≤ C.

Therefore, since n is arbitrary and the constant C is independent of n, we have
|ϕ(ξ)| ≤ C for almost every ξ ∈ T and so g ∈ L∞(T).

Now we are going to show that the measure |∇ĝ (z)|p dAp,s(z) is an (s, p)-Carleson
measure. So, let f ∈ Bp(s). Using (4.2), (4.1) and the fact that g ∈ M(Lp

s) we see
that

(4.10)
∫

D
|∇(fĝ )(z)|p dAp,s(z) ≤ C‖fg‖Lp

s
≤ C‖f‖p

Lp
s
≤ C‖f‖p

Bp(s).

Furthermore, since g ∈ L∞(T) then ĝ ∈ L∞(D) and we obtain

(4.11)
∫

D
|ĝ (z)|p |∇f(z)|p dAp,s(z) ≤ C‖f‖p

Bp(s).

Finally, putting together (4.10) and (4.11), we get
∫

D
|f(z)|p |∇ĝ (z)|p dAp,s(z) ≤ C

∫

D

(
|∇(fĝ )(z)|p + |ĝ (z)|p |∇f(z)|p

)
dAp,s(z)

≤ C‖f‖p
Bp(s).

Therefore, the measure |∇ĝ(z)|p dAp,s(z) is an (s, p)-Carleson measure and the
proof is complete. ¤

As a consequence of Theorem 4.6 we can conclude the following relationship
between multipliers in Bp(s) and multipliers in Lp

s .

Corollary 4.7. Let f ∈ H1. Then f ∈ M(Bp(s)) if and only if fb ∈ M(Lp
s).

Proof. Let f be analytic on D. By Lemma F, f ∈ M(Bp(s)) if and only if f ∈ H∞

and |f ′(z)|p dAp,s(z) is an (s, p)-Carleson measure. Since f ∈ H1, then f̂b = f . So,
by Theorem 4.6, f ∈ M(Bp(s)) if and only if fb ∈ M(Lp

s). ¤
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5. Necessity of condition (CS)

Recall that for s > 0, the Qs space consists of those analytic functions f on D
for which the measure

dµf,s(z) = |f ′(z)|2 (1− |z|2)s dA(z)

is an s-Carleson measure, that is, there is a positive constant C such that for any
Carleson box S(I),

µf,s(S(I)) ≤ C |I|s.
A sequence of points {zn} ⊂ D is called an interpolating sequence for Qs ∩ H∞

if for any bounded sequence {an} of complex numbers, we can find a function
f ∈ Qs ∩H∞ with f(zn) = an for each n. In [21] the following characterization of
interpolating sequences for Qs ∩H∞ was obtained.

Theorem G. Let 0 < s < 1, and let {zn} ⊂ D. Then {zn} is an interpolating
sequence for Qs ∩H∞ if and only if the sequence {zn} is separated and

∑
n

(1− |zn|2)s δzn

is an s-Carleson measure.

Lemma 5.1. Let 1 < p ≤ 2, and 0 < s < 1. Then M(Bp(s)) ⊂ Qs ∩H∞.

Proof. Let f ∈ M(Bp(s)). By Lemma F, f ∈ H∞ and the measure dµf,p,s(z) =
|f ′(z)|p dAp,s(z) is an (s, p)-Carleson measure. By Lemma 3.1, this implies that
the measure µf,p,α is an s-Carleson measure. Also, since H∞ ⊂ B, we have (1 −
|z|2) |f ′(z)| ≤ C. Therefore, since p ≤ 2, for any Carleson box S(I), we get

∫

S(I)

|f ′(z)|2 (1− |z|2)s dA(z) =
∫

S(I)

|f ′(z)|p |f ′(z)|2−p (1− |z|2)s dA(z)

≤ C

∫

S(I)

|f ′(z)|p (1− |z|2)p−2+s dA(z)

≤ C|I|s.
Hence the measure |f ′(z)|2 (1 − |z|2)s dA(z) is an s-Carleson measure, and so f
belongs to Qs. ¤

Lemma 5.2. Let 1 < p ≤ 2, 0 < s < 1. If {zj} is an interpolating sequence for
M(Bp(s)), then

(5.1) sup
z∈D

∞∑

k=1

(1− |z|2)s (1− |zk|2)s

|1− z̄kz|2s
< ∞.

Proof. This follows directly from Lemma 5.1, Theorem G and Lemma D. ¤

(M)⇒ (CS). Suppose that (M) holds. Since {zj} is an interpolating sequence for
M(Bp(s)) ⊂ H∞, in particular {zj} is an interpolating sequence for H∞, hence, it
is separated.

The Carleson measure condition will follow from an argument which combines
Khinchine’s inequality and the reproducing formula for Bp(s). The idea to use
Khinchine’s inequality on interpolation problems goes back to Varopoulos (see [28]).
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Fix a positive integer n > 1, and set εk
j = ±1 for 1 ≤ k ≤ n and 1 ≤ j ≤ 2n.

Take gj ∈ M(Bp(s)) with gj(zk) = εk
j , and let f ∈ Bp(s). Since fgj ∈ Bp(s) with

‖f gj‖Bp(s) ≤ C‖f‖Bp(s), using the reproducing formula (1.1), we get

(5.2) (f gj)(zk) = (f gj)(0) +
∫

D
(f gj)′(w) K(zk, w) (1− |w|2)s dA(w),

where

K(zk, w) =
(1− wzk)1+s − 1
w(1− wzk)1+s

.

In particular, we have the estimate

(5.3) |K(zk, w)| . 1
|1− wzk|1+s

.

Now, by (5.2), we have
n∑

k=1

|f(zk)|p(1− |zk|2)s =
n∑

k=1

εj
k

(
f gj

)
(zk) f(zk) |f(zk)|p−2(1− |zk|2)s

= (f gj)(0)
n∑

k=1

εj
k f(zk) |f(zk)|p−2(1− |zk|2)s

+
n∑

k=1

εj
k

(∫

D
(f gj)′(w)K(zk, w)(1− |w|2)sdA(w)

)
f(zk) |f(zk)|p−2(1− |zk|2)s

= I1 + I2.

We will compute the expectation of both sides of this equality. Let q be the conju-
gate exponent of p. Since |g(0)| ≤ ‖g‖Bp(s) for all g ∈ Bp(s), applying Khinchine’s
inequality (2.3) with r = 1,

E(|I1|
) ≤ ‖fgj‖Bp(s) E

(∣∣∣∣∣
n∑

k=1

εj
k f(zk) |f(zk)|p−2(1− |zk|2)s

∣∣∣∣∣

)

≤ C‖f‖Bp(s)

(
n∑

k=1

|f(zk)|2(p−1)(1− |zk|2)2s

)1/2

.

• If p ≥ 2, then 2(p− 1) ≥ p, and by (2.5) with r = p
2(p−1) = q/2 ≤ 1 we get

E(|I1|
) ≤ C‖f‖Bp(s)

( n∑

k=1

|f(zk)|p (1− |zk|2)qs
)1/q

≤ C‖f‖Bp(s)

( n∑

k=1

|f(zk)|p (1− |zk|2)s
)1/q

.

(5.4)

• If 1 < p < 2 we apply Holder’s inequality with exponent q/2 ≥ 1, and then (5.1)
with z = 0, to get

E(|I1|
)

. ‖f‖Bp(s)

(
n∑

k=1

|f(zk)|q(p−1)(1− |zk|2)2s

)1/q( n∑

k=1

(1− |zk|2)2s

)1/p

. ‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p(1− |zk|2)s

)1/q

.

(5.5)
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Together (5.4) and (5.5), gives that there is a constant C independent of n such
that

(5.6) E(|I1|
) ≤ C‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p(1− |zk|2)s

)1/q

, 1 < p < ∞.

Now, we are going to estimate the expectation of I2. We have

E(|I2|
) ≤ ‖f gj‖Bp(s)

(∫

D

(
E

∣∣∣∣∣
n∑

k=1

εj
kK(zk, w)f(zk) |f(zk)|p−2(1− |zk|2)s

∣∣∣∣∣

)q

dAq,s(w)

)1/q

(by Hölder’s inequality)

. ‖f‖Bp(s)

(∫

D
E

( ∣∣∣∣∣
n∑

k=1

εj
kK(zk, w)f(zk) |f(zk)|p−2(1− |zk|2)s

∣∣∣∣∣

q)
dAq,s(w)

)1/q

(by (2.4))

. ‖f‖Bp(s)




∫

D

(
n∑

k=1

|K(zk, w)|2|f(zk)|2(p−1)(1− |zk|2)2s

)q/2

dAq,s(w)




1/q

(by (2.3) with r = q).

• If p ≥ 2, we use inequality (2.5) with r = q/2 ≤ 1 in the last estimate to obtain

E(|I2|
)

. ‖f‖Bp(s)

(∫

D

( n∑

k=1

|K(zk, w)|q · |f(zk)|q(p−1)(1− |zk|2)qs
)

dAq,s(w)

)1/q

. ‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p(1− |zk|2)qs

∫

D

(1− |w|2)q−2+s

|1− wzk|(1+s)q
dA(w)

)1/q

. ‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p(1− |zk|2)s

)1/q

,

after and application of Lemma A (we can apply it, since (1+s)q > 2+(q−2+s)).

• If 1 < p < 2, we use Hölder’s inequality with exponent q/2 ≥ 1, and then
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(5.1) to obtain

E(|I2|
)

. ‖f‖Bp(s)

(∫

D

( n∑

k=1

|f(zk)|p (1− |zk|2)s+ qs
2

|1− w̄z|q+2s

)( n∑

k=1

(1− |zk|2)s

|1− w̄zk|2s

)(q−2)/2

dAq,s(w)

)1/q

. ‖f‖Bp(s)

(∫

D

( n∑

k=1

|f(zk)|p (1− |zk|2)s+ qs
2

|1− w̄z|q+2s

)
(1− |w|2)−s(q−2)/2 dAq,s(w)

)1/q

= ‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p (1− |zk|2)s+ qs
2

∫

D

(1− |w|2)q+2s−2−s q
2

|1− w̄z|q+2s
dA(w)

)1/q

. ‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p (1− |zk|2)s

)1/q

,

after an application of Lemma A. Putting together the estimates for E(|I2|
)

ob-
tained for the cases 1 < p < 2 and p ≥ 2, we have that there is a constant C
independent of n such that

(5.7) E(|I2|
) ≤ C‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p (1− |zk|2)s

)1/q

.

Then, together (5.6) and (5.7) gives

n∑

k=1

|f(zk)|p (1−|zk|2)s ≤ E(|I1|
)
+E(|I2|) ≤ C‖f‖Bp(s)

(
n∑

k=1

|f(zk)|p (1− |zk|2)s

)1/q

,

where the constant C is independent of n. So, we can conclude that
∞∑

k=1

|f(zk)|p (1− |zk|2)s ≤ C‖f‖p
Bp(s),

that is, the measure
∑

zk∈Z(1 − |zk|2)sδzk
is a Carleson measure for Bp(s). This

finishes the proof.
(UIS) ⇒ (CS). Let Z = {zn}, and suppose the map TZ : f 7→

{
f(zn)

‖kn‖Bq(s)

}

from Bp(s) to `p, is bounded and onto. The Carleson measure condition is just a
reformulation of the boundedness of the map. Indeed, let f ∈ Bp(s), then

∫

D
|f(z)|pdµZ(z) =

∑
|f(zn)|p(1− |zn|2)s

≤ C
∑ |f(zn)|p

‖kn‖p
Bq(s)

= C‖TZf‖p
`p ≤ C‖f‖p

Bp(s).

Now we prove the separation condition. Fix a point zj ∈ Z. Since TZ is onto, there
exists a function fj ∈ Bp(s) such that fj(zj) = 1, and fj(zk) = 0 if k 6= j. Now, it
follows from the open mapping theorem and Lemma 2.2 that

(5.8) ‖fj‖p
Bp(s) ≤ C

∑

k

|f(zk)|p
‖kzk

‖p
Bq(s)

≤ C |f(zj)|p (1− |zj |2)s.
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Now, let zm be a point in Z distinct from zj . We can assume that ρ(zj , zm) ≤ 1/2.
Then, it follows from (5.8) and Lemma 2.3 that

‖fj‖Bp(s) ≤ C |f(zj)− f(zm)| (1− |zj |2)s/p

≤ C‖fj‖Bp(s) ‖kzj − kzm‖Bq(s) (1− |zj |2)s/p

≤ C ‖fj‖Bp(s) ρ(zj , zm).

Hence ρ(zj , zm) ≥ δ with δ = 1/C, and the sequence {zn} is separated.

6. A ∂̄-problem with estimates and the corona theorem

In order to prove the sufficiency of condition (CS) in Theorem 1, first we will
construct a non-analytic solution of the interpolation problem, and then we find
the analytic solution by solving a ∂̄-equation with the appropriate estimates.

Lemma 6.1. Let 1 < p < ∞ and 0 ≤ s < 1. Then e−iθ ∈ M(Lp
s).

Proof. Note that h ∈ M(Lp
s) if and only if h ∈ M(Lp

s). So, it is enough to show
that h(eiθ) = eiθ ∈ M(Lp

s). Let ĥ(z) = z be the harmonic extension of h in D.
By Theorem 4.6, it is enough to show that dAp,s(z) = (1 − |z|2)p−2+s dA(z) is
an (s, p)-Carleson measure. So, let f ∈ Bp(s). Using Lemma B with b = 0 and
σ = p− 2 + s, we get

∫

D
|f(z)|p dAp,s(z) ≤ C |f(0)|p + C

∫

D
|f(z)− f(0)|p (1− |z|2)p−2+s dA(z)

≤ C |f(0)|p + C

∫

D
|f ′(z)|p (1− |z|2)2p−2+s dA(z)

≤ C ‖f‖p
Bp(s).

Hence the measure (1−|z|2)p−2+s dA(z) is an (s, p)-Carleson measure and the proof
is complete. ¤

First of all we will solve a ∂̄-equation that will be useful in the construction of
the interpolating function f ∈ Bp(s)

Theorem 6.2. Let 1 < p < ∞ and 0 < s < 1. If φ ∈ C(D), then there is a function
b ∈ C(D) such that

∂b

∂z
= φ on D,

(in the sense of distributions) such that the boundary valued function b|T belongs to
Lp

s . Moreover ‖b|T‖Lp
s

. ‖φ‖Lp(dAp,s).

Proof. Consider the function

u(z) =
∫

D

φ(w)
(z − w)

dA(w).

It is easy to check that u ∈ C(D) and ∂̄u = φ (see [13, Chapter VIII]). We will show
that u|T belongs to Lp

s . To do that, consider the function

v(z) =
∫

D

φ(w)
(1− wz)

dA(w).
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Observe that v(eiθ) = eiθ u(eiθ) for all eiθ ∈ T. So, by Lemma 6.1 and Lemma 4.1,
it is enough to prove that |∇v| ∈ Lp(dAp,s). An easy computation gives

|∇v(z)| .
∫

D

|g(w)|
|1− wz|2 dA(w).

If we define

Tφ(z) =
∫

D

φ(w)
|1− wz|2 dA(w),

then T is a bounded operator from Lp(dAp,s) to itself (see [14, Theorem 1.9]). Since
φ ∈ Lp(dAp,s),∥∥∥|∇v|

∥∥∥
Lp(dAp,s)

.
∥∥∥(T |φ|)

∥∥∥
Lp(dAp,s)

. ‖φ‖Lp(dAp,s) < ∞.

Hence |∇v| ∈ Lp(dAp,s) and the proof is complete. ¤

To prove the implication (CS) ⇒ (M) in Theorem 1, we need to solve a ∂̄
problem in a way that the boundary values of the solution must be in M(Lp

s).
This is more technical than Theorem 6.2, and uses the beautiful solution of the
∂̄-equation given by P. Jones in [16]. So, we pause briefly to discuss Jones’ solution.
Given a 1-Carleson measure µ on the unit disc, it is well known (see [13, Chapter
VIII]) that the ∂̄-problem ∂̄F = µ, has a solution u, in the sense of distributions,
satisfying ‖u‖L∞(T) ≤ C‖µ‖1. In [16], P. Jones found that one such solution is
given by the formula

(6.1) u(z) =
∫

D
Kµ(z, ζ) dµ(ζ),

where

Kµ(z, ζ) =
2i

π

1− |ζ|2
(1− ζ̄z)(z − ζ)

exp

{∫

|w|≥|ζ|

(1 + w̄ζ

1− w̄ζ
− 1 + w̄z

1− w̄z

) dµ(w)
‖µ‖1

}
.

The estimate
∫
D |Kµ(eiθ, ζ)| dµ(ζ) ≤ C1‖µ‖1 shows that u ∈ L∞(T). Therefore,

if |g(z)| dA(z) is a 1-Carleson measure, then the equation ∂̄u = g has a solution
u ∈ L∞(T).

Before stating the ∂̄-criteria needed, we prove the following simple observation.

Lemma 6.3. Let 1 < p < ∞, 0 < s < 1. If |g(z)|p dAp,s(z) is an (s, p)-Carleson
measure, then |g(z)| dA(z) is a 1-Carleson measure.

Proof. Let S(I) be a Carleson box. By Hölder’s inequality and Lemma 3.1,∫

S(I)

|g(z)| dA(z) =
∫

S(I)

|g(z)|(1− |z|2) p−2+s
p (1− |z|2)−(p−2+s)

p dA(z)

≤
(∫

S(I)

|g(z)|p dAp,s(z)

) 1
p

(∫

S(I)

(1− |z|2)−q
p (p−2+s)dA(z)

) 1
q

≤ C |I|s/p

(∫

S(I)

dA(z)

(1− |z|2) p−2+s
p−1

) p−1
p

≤ C |I|s/p
(
|I| p−s

p−1

) p−1
p

= C |I|.
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Note that, in the last inequality, we used the fact that s < 1. ¤

Theorem 6.4. Let 1 < p < ∞ and 0 < s < 1. If |g(z)|p dAp,s(z) is an (s, p)-
Carleson measure (and |g(z)|(1− |z|) ≤ C for 1 < p < 2), then there is a function
f defined on D such that

∂f

∂z
= g on D,

(in the sense of distributions) and such that the boundary valued function f|T belongs
to M(Lp

s).

Proof. Since |g(z)|p dAp,s(z) is an (s, p)-Carleson measure, it follows from Lemma
6.3 that dµ(z) = |g(z)| dA(z) is a 1-Carleson measure. Thus, we can take Jones’
solution u, given by (6.1), of the ∂̄-problem ∂̄u = g on D. Moreover, the boundary
valued function u lies in L∞(T). But our aim is to verify that the boundary valued
function u lies in M(Lp

s). For this purpose, consider

v(z) =
2i

π

∫

D

1− |ξ|2
|1− ξz|2 · exp

[∫

|w|≥|ξ|

(
1 + w ξ

1− w ξ
− 1 + w z

1− w z

)
|g(w)| dA(w)

]
g(ξ) dA(ξ)

which has the same boundary values as zf(z). Then, by Lemma 6.1 and Lemma
4.5, to see that u|T ∈ M(Lp

s), it is enough to prove that v ∈ L∞(D) and the measure
|∇v(z)|p dAp,s(z) is an (s, p)-Carleson measure. Note that the function v was also
considered in [21], where the estimate

(6.2) |∇v(z)| ≤ C

∫

D

|g(w)|
|1− w̄z |2 dA(w).

was proved. Since |g(z)| dAp,s(z) is an (s, p)-Carleson measure (and if 1 < p < 2,
we have (1− |z|2) |g(z)| ≤ C), it follows from (6.2) and Lemma E that the measure
|∇v(z)|p dAp,s(z) is an (s, p)-Carleson measure.

Also, since |g(z)| dA(z) is a Carleson measure, it follows from Lemma D that

Re
( ∫

|w|≥|ζ|

1 + w̄ζ

1− w̄ζ
|g(w)| dA(w)

)
≤ 2

∫

D

1− |ζ|2
|1− w̄ζ|2 |g(w)| dA(w) ≤ C,

where C > 0 is a constant independent of ζ ∈ D. This gives

|v(z)| .
∫

D

1− |ζz|2
|1− ζ̄z|2 exp

(
−

∫

|w|≥|ζ|

1− |wz|2
|1− w̄z|2 |g(w)| dA(w)

)
|g(ζ)| dA(ζ) . 1

(see the proof of Lemma 2.1 in [16]). This implies that v ∈ L∞(D) finishing the
proof. ¤

The corona problem. It is well known that there is a close connection between
interpolating sequences, the ∂̄-equation and the corona theorem. Here we will use
Theorem 6.4 to show that the corona theorem holds for the algebra M(Bp(s)). This
was first proved by Tolokonnikov in [27].

Theorem 6.5. Let 1 < p < ∞ and 0 < s < 1. Let g1, . . . , gn ∈ M(Bp(s)) with

(6.3) inf
z∈D

n∑

j=1

|gj(z)| := δ > 0.

Then there exist functions f1, . . . , fn ∈ M(Bp(s)) such that

f1g1 + · · ·+ fngn ≡ 1.
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Proof. Once we have the ∂̄ criteria needed (in our case, Theorem 6.4), the proof is
very standard. Let g1, . . . , gn ∈ M(Bp(s)) for which (6.3) holds. Consider the non
analytic solutions

ϕj =
gj∑ |gk|2 , j = 1, . . . , n,

of the equation g1ϕ1 + · · · + gnϕn = 1. For 1 ≤ j, k ≤ n, let Gjk = ϕj ∂̄ϕk. Note
that, by (6.3), we have

(6.4) |Gj,k(z)| . δ−3
n∑

l=1

|g′l(z)|.

By Lemma F we have that, for 1 ≤ l ≤ n, the measures |g′l(z)|p dAp,s(z) are (s, p)-
Carleson measures. Then, by (6.4), if f ∈ Bp(s),

∫

D
|f(z)|p |Gjk(z)|p dAp,s(z) . Cn

n∑

l=1

∫

D
|f(z)|p |g′l(z)|p dAp,s(z)

≤ Cn ‖f‖p
Bp(s),

and so, |Gjk(z)|p dAp,s(z) is an (s, p)-Carleson measure. Hence, by Theorem 6.4,
there exist functions ajk with boundary values in M(Lp

s) such that ∂̄ajk = Gjk for
1 ≤ j, k ≤ n. Then the functions

fj = ϕj +
n∑

k=1

(ajk − akj)gk, j = 1, . . . , n,

are analytic solutions of the equation
∑n

j=1 fjgj = 1. To see that fj ∈ Bp(s), by
Corollary 4.7, it is enough to show that fj has boundary values in M(Lp

s). Since
gj ∈ M(Bp(s)) and ajk has boundary values in M(Lp

s), all reduces to prove that the
boundary values of ϕj are in M(Lp

s). To see that, by Lemma 4.5, it suffices to prove
that ϕj is bounded on D, and |∇ϕj(z)|p dAp,s is an (s, p)-Carleson measure. But,
since gj ∈ M(Bp(s)) ⊂ H∞, then (6.3) gives ‖ϕj‖∞ . δ−2‖gj‖∞, and therefore ϕj

is bounded on D. Also, (6.3) and an easy computation gives

∣∣∇ϕj(z)
∣∣ . δ−3

n∑

l=1

|g′l(z)|.

Then, since |g′l(z)|p dAp,s(z) is an (s, p)-Carleson measure, it follows that the mea-
sure |∇ϕj(z)|p dAp,s(z) is an (s, p)-Carleson measure, and the proof is complete. ¤

Let g = (g1, . . . , gn) ∈ H(D)n, and f = (f1, . . . , fn) ∈ H(D)n, and consider the
operator Mg defined by

Mg(f) =
n∑

k=1

fkgk.

As an immediate consequence of Theorem 6.5 we obtain the following corona type
decomposition. Note that the case p = 2 was proved in [31].

Corollary 6.6. Let 1 < p < ∞ and 0 < s < 1. The following are equivalent:
(i) Mg maps M(Bp(s))× · · · ×M(Bp(s)) boundedly onto M(Bp(s));

(ii) Mg maps Bp(s)× · · · ×Bp(s) boundedly onto Bp(s);
(iii) g1, . . . , gn ∈ M(Bp(s)) and (6.3) holds.
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Proof. (i) implies (ii). Since Mg maps M(Bp(s))n into M(Bp(s)) it follows that
g1, . . . gn ∈ M(Bp(s)). Then, if f1, . . . , fn ∈ Bp(s), Mg(f) ∈ Bp(s), and it follows
from the closed graph theorem that Mg maps Bp(s)×· · ·×Bp(s) into Bp(s). Now,
let h ∈ Bp(s). Then, by (i), there are functions h1, . . . , hn ∈ M(Bp(s)) such that∑

gjhj = 1. Then the functions fk = hkh are in Bp(s) and
∑

fkgk = h. Thus, Mg

is surjective.

(ii) implies (iii). It is clear that if Mg maps Bp(s) × · · · × Bp(s) into Bp(s),
then the functions gj are pointwise multipliers of Bp(s). To see that (6.3) holds, let
f ∈ Bp(s). Since Mg is onto, then it follows from the open mapping theorem that
there exist functions fj ∈ Bp(s) with f =

∑n
j=1 fjgj and ‖fj‖Bp(s) ≤ C‖f‖Bp(s).

Now, using that |fj(z)| ≤ ‖fj‖Bp(s)‖kz‖Bq(s), we obtain

(6.5) |f(z)| ≤
n∑

j=1

|fj(z)| |gj(z)| ≤ C‖kz‖Bq(s)

n∑

j=1

|gj(z)|.

Taking the function fz(w) =
(1− |w|2)s/p

(1− z̄w)2s/p
that is in Bp(s), with ‖fz‖Bp(s) ≤ C

(just use Lemma A to see that), and since ‖kz‖Bq(s) ³ (1 − |z|2)−s/p, then (6.5)
gives

n∑

j=1

|gj(z)| ≥ C > 0,

proving (6.3).

(iii) implies (i). By Theorem 6.5, there exist functions h1, . . . , hn ∈ M(Bp(s))
with

∑n
k=1 hkgk = 1. Then, if f ∈ M(Bp(s)), the functions fk = fhk are in

M(Bp(s)). Hence Mg is surjective. ¤

7. Sufficiency of condition (CS)

(CS) ⇒ (UIS). Given a separated sequence Z = {zn} with µZ =
∑

n(1−|zn|2)sδzn

an (s, p)-Carleson measure. We must show that the map

TZ : Bp(s) −→ `p

f 7→
{

f(zn)
‖kn‖Bq(s)

}
.

is bounded and onto. Since µZ is an (s, p)-Carleson measure,
∥∥∥∥

f(zn)
‖kn‖Bq(s)

∥∥∥∥
p

`p

³
∑

n

|f(zn)|p (1− |zn|2)s =
∫

D
|f(z)|p dµZ(z) . ‖f‖p

Bp(s).

To see that TZ is also onto, consider an arbitrary sequence {wn} ∈ lp. We will find
a function f ∈ Bp(s) with

f(zn) = wn ‖kn‖Bq(s) for n = 1, 2, . . .

By a standard normal family argument, it suffices to consider a finite sequence
z1, . . . , zN , provided we have uniform control on the norm of the interpolating
functions.

Since {zn} is separated, there exists ε > 0 such that the pseudohyperbolic discs
D(zn, 2ε) are pairwise disjoints. With standard arguments, we construct a smooth
function ϕ such that ϕ(z) = wn ‖kn‖Bq(s) for z ∈ D(zn, ε); ϕ vanishes outside
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⋃
n D(zn, 2ε), and (1 − |z|)|∇ϕ(z)| ≤ |wn|‖kn‖Bq(s) for all z ∈ D(zn, 2ε). The

function ϕ solves the interpolation problem with the data required, but it is not
analytic. To arrange that we will solve an appropriate ∂̄-problem. Using the above
conditions on ϕ, we get∫

D
|∇ϕ(z)|p dAp,s(z) ≤

∑
n

∫

D(zn,2ε)

|wn|p ‖kn‖p
Bq(s) (1− |z|)s−2 dA(z)

.
∑

n

|wn|p < ∞.

Let B(z) be the Blaschke product with zeros {zn}. By (3.2),
∑

(1 − |zn|)δzn is a
Carleson measure, and there exists a constant C > 0 such that |B(z)| ≥ C for all
z in the support of ∂̄ϕ. Then ∂ϕ/B ∈ C(D). So, by Theorem 6.2, we can find a

solution u of the ∂̄-equation ∂̄u =
1
B

∂̄ϕ with boundary values in Lp
s and

‖u‖p
Lp

s
≤ C

∫

D

∣∣∣∣
∂̄ϕ(z)
B(z)

∣∣∣∣
p

dAp,s(z) ≤ C
∥∥∥|∇ϕ|

∥∥∥
p

Lp(dAp,s)
.

Then the function f = ϕ − Bu is analytic on D, and solves the interpolation
problem f(zn) = ϕ(zn) = wn ‖kn‖Bq(s) for each n. So, it only remains to prove
that f ∈ Bp(s). By Corollary 4.3, it is enough to see that f has boundary values in
Lp

s . By Proposition 3.2, the Blaschke product B belongs to M(Bp(s)), and so, Bu
has boundary values in Lp

s with ‖Bu‖Lp
s
≤ C‖u‖Lp

s
. Since the boundary values of

ϕ are identically zero, we can conclude that the function f = ϕ−B u ∈ Bp(s) with

‖f‖Bp(s) ≤ C‖b‖Lp
s
≤ C‖wn‖lp ,

for some constant C not depending on the number of points N . Hence the proof is
complete.

(CS) ⇒ (M). Let Z be a separated sequence and µZ =
∑

zn∈Z(1− |zn|2)sδzn be
an (s, p)-Carleson measure. We want to see that Z is an interpolating sequence
for M(Bp(s)). Let {wn} ∈ `∞. Since Z = {zn} is separated, there is ε > 0 such
that the pseudohyperbolic discs Dn = D(zn, 2ε) are pairwise disjoints. As before,
we construct a smooth function ϕ with 0 ≤ |ϕ| ≤ 1 on D such that ϕ(z) = wn

for z ∈ D(zn, ε); ϕ vanishes outside
⋃

n D(zn, 2ε); and (1− |z|)|∇ϕ(z)| ≤ C for all
z ∈ D.

Now, assume for a moment that we have seen that |∇ϕ(z)|p dAp,s(z) is an (s, p)-
Carleson measure. Let B be the Blaschke product with zeros {zn}. Since |B(z)| ≥
C for all z in the support of ∂̄ϕ, we have

∣∣∂̄ϕ/B
∣∣ ≤ C|∇ϕ|, and therefore

∣∣∣ ∂̄ϕ

B
(z)

∣∣∣
p

dAp,s(z)

is an (s, p)-Carleson measure. Hence, by Theorem 6.4, there is a solution u of the
∂̄-problem

∂u =
1
B

∂ϕ

with boundary values in M(Lp
s). Then the function g = ϕ − Bu is analytic on D,

and g(zn) = ϕ(zn) = wn solving the interpolation problem with the data required.
To see that the function g ∈ M(Bp(s)), by Corollary 4.7, it is enough to show that g
has boundary values M(Lp

s). By Lemma 3.2, the Blaschke product B ∈ M(Bp(s)),
and therefore, Bu has boundary values in M(Lp

s). Since the boundary values of ϕ
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are identically zero, we deduce that g = ϕ−Bu belongs to M(Bp(s)) finishing the
proof.

So, it only remains to show that |∇ϕ(z)|p dAp,s(z) is an (s, p)-Carleson measure.
Let f ∈ Bp(s). Since ∂̄ϕ is supported on

⋃
Dn and (1− |z|)|∇ϕ(z)| ≤ C, we have

∫

D
|f(z)|p |∇ϕ(z)|p dAp,s(z) ≤

∑
n

∫

Dn

|f(z)|p(1− |z|2)s−2 dA(z)

.
∑

n

|f(zn)|p (1− |zn|2)s

+
∑

n

∫

Dn

|f(z)− f(zn)|p (1− |z|2)s−2 dA(z).

(7.1)

Since
∑

n(1− |zn|2)sδzn
is an (s, p)-Carleson measure, we have

(7.2)
∑

n

|f(zn)|p(1− |zn|2)s ≤ C‖f‖p
Bp(s).

So, if we prove

(7.3)
∑

n

∫

Dn

|f(z)− f(zn)|p (1− |z|2)s−2 dA(z) ≤ C‖f‖p
Bp(s),

then, joining (7.1), (7.2) and (7.3), we obtain
∫

D
|f(z)|p |∇ϕ(z)|p dAp,s(z) . ‖f‖p

Bp(s),

proving that the measure |∇ϕ(z)|p dAp,s(z) is an (s, p)-Carleson measure. To see
(7.3), we use the reproducing formula (1.1), and inequality (2.2), to obtain

|f(z)− f(zn)| .
∫

D
|f ′(w)| |z − zn|

|1− w̄z|2+s
(1− |w|2)s dA(w).

Choose t > 0 with max (0, 2 − p) < tp < 1 + s · min(1, p − 1). Then, by Hölder’s
inequality and Lemma A

|f(z)− f(zn)|p . (1− |z|2)p

(∫

D
|f ′(w)|p (1− |w|2)tp

|1− w̄z|2+s
dAp,s(w)

)

·
(∫

D

(1− |w|2)−tq

|1− w̄z|2+s
dAq,s(w)

)p−1

.
(∫

D
|f ′(w)|p (1− |w|2)tp

|1− w̄z|2+s
dAp,s(w)

)
(1− |z|2)2−tp

Hence, by Fubini’s theorem and Lemma A we obtain
∑

n

∫

Dn

|f(z)− f(zn)|p (1− |z|2)s−2 dA(z)

.
∑

n

∫

Dn

(∫

D
|f ′(w)|p (1− |w|2)tp

|1− w̄z|2+s
dAp,s(w)

)
(1− |z|2)s−tp dA(z)

≤
∫

D
|f ′(w)|p

(∫

D

(1− |z|2)s−tp

|1− w̄z|2+s
dA(z)

)
(1− |w|2)tp dAp,s(w)

.
∫

D
|f ′(w)|p dAp,s(w) ≤ ‖f‖p

Bp(s).
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Note that the conditions on t ensures that the application of Lemma A is correct.
So, the proof is complete.

Another construction of the interpolating function. In [12], Earl give a con-
structive proof of Carleson interpolating theorem for bounded analytic functions.
Given a sequence {zn} in the unit disc with

(7.4) inf
k

∏

j:j 6=k

ρ(zj , zk) := δ > 0,

and a sequence a = {aj} ∈ `∞, Earl constructed a Blaschke product B with zeros
{ζj} such that the function f(z) = K ‖a‖`∞B(z) solves the interpolating problem

f(zj) = aj , j = 1, 2, . . . ,

for some constant K. Also, the zeros {ζj} of the Blaschke product B satisfy

(7.5) ρ(zj , ζj) ≤ δ/3.

So, in view of Proposition 3.2, we can use the same construction to give a different
proof of the implication (CS) ⇒ (M) of Theorem 1.

Theorem 7.1. Let {zn} be a separated sequence such that
∑

(1− |zn|2)sδzn is an
(s, p)-Carleson measure. Then, given a = {an} ∈ `∞, there is a constant K and a
Blaschke product B in the multiplier algebra M(Bp(s)) such that the function

f(z) = K ‖a‖`∞B(z)

solves the interpolation problem f(zj) = aj j = 1, 2 . . . .

Proof. Since
∑

(1− |zn|2)s δzn is an (s, p)-Carleson measure, then
∑

(1− |zn|2)δzn

is a 1-Carleson measure (see the first paragraphs of the proof of Proposition 3.2).
This and the separation condition gives (7.4) for some δ > 0. Hence, by Earl’s
construction, there is a constant K and a Blaschke product B with zeros {ζj} such
that the function f(z) = K ‖a‖`∞B(z) interpolates the data required. To see that
B is a multiplier of Bp(s), by Proposition 3.2 it is enough to prove that if {ζj} is a
sequence of points in the unit disc with ρ(zj , ζj) < δ/3 for all j, then the measure
ν =

∑
(1− |ζj |2)sδζj is also an (s, p)-Carleson measure. To see that, let g ∈ Bp(s),

then
∑

n

|g(ζn)|p (1− |ζn|2)s

.
∑

n

|g(ζn)− g(zn)|p (1− |ζn|2)s +
∑

n

|g(zn)|p (1− |ζn|2)s

= S1 + S2.

Since ρ(zn, ζn) < δ/3 < 1, then (1− |ζn|2) ³ (1− |zn|2), and since
∑

n(1− |zn|2)s

is an (s, p)-Carleson measure we get

(7.6) S2 .
∑

n

|g(zn)|p (1− |zn|2)s . ‖g‖p
Bp(s).
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To estimate S1, note that the subharmonicity of |g′| gives

|g(ζn)− g(zn)| ≤
∫

[zn,ζn]

|g′(w)| |dw|

.
∫

[zn,ζn]

(
1

(1− |w|)2
∫

Dw

|g′(z)| dA(z)
)
|dw|,

(7.7)

where Dw = {z : ρ(z, w) < δ
6}. Since ρ(zn, ζn) < δ/3, then Dw ⊂ Dn for each

w ∈ [zn, ζn], where Dn = {z : ρ(z, zn) < δ
2}. Note that the pseudohyperbolic discs

Dn are pairwise disjoints. Also one has (1−|w|) ³ (1−|zn|). These facts, together
with (7.7) gives

(7.8) |g(ζn)− g(zn)| . |zn − ζn|
(1− |zn|)2

∫

Dn

|g′(z)| dA(z).

Since |zn − ζn| . (1− |zn|2), then (7.8) and Hölder’s inequality gives

S1 .
∑

n

(∫

Dn

|g′(z)| dA(z)
)p

(1− |zn|2)s−p

≤
∑

n

(∫

Dn

|g′(z)|p dA(z)
)
|Dn|p−1 (1− |zn|2)s−p

.
∑

n

∫

Dn

|g′(z)|p dAp,s(z) ≤ ‖g‖p
Bp(s).

(7.9)

So, putting together (7.6) and (7.9), we obtain that ν is an (s, p)-Carleson measure,
and this concludes the proof. ¤

8. Concluding remarks

Using the characterization of interpolating sequences obtained in Theorem 1,
together with the description of Carleson measures for the spaces Bp(s) obtained in
[1] and [30], one can give explicit examples of interpolating sequences. For example,
one has that a radial sequence is interpolating if and only if it is separated. It also
follows that different values of s give different classes of interpolating sequences.

Here are some questions for which we do not have a ready answer.
(1) By retracing the steps of the proof, it can be seen that the solution of the

interpolating problem is an explicit operator which is not linear with respect to the
data. Is there a linear interpolating operator? See [6].

(2) Characterize the interpolating sequences for a larger class of weighted Besov
spaces, where the weights are not necessarily of the form (1 − |z|2)s. A related
problem is that of characterizing the interpolating sequences for spaces with the
complete Nevanlinna-Pick property. See [23].
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[6] B. Böe, Interpolating sequences for Besov spaces, J. Funct. Anal. 192 (2002), 319–341.
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Departament de Matemàtica Aplicada i Analisi, Universitat de Barcelona, Gran Via
de les Corts Catalanes, 585, 08007 Barcelona, SPAIN

E-mail address: jordi.pau@ub.edu


